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In this study, we investigate the influence of viscous dissipation and radiation on the
problem of unsteady MHD mixed convection two-dimensional laminar flow of an in-
compressible electrically conducting micropolar fluid past a semi-infinite vertical mov-
ing porous plate embedded in a porous medium. By taking the radiative heat flux in the
differential form and imposing an oscillatory time-dependent perturbation, the coupled
nonlinear equations are solved for the temperature and velocity distributions. The ef-
fects of the material parameters on the temperature and velocity profiles are discussed
quantitatively. Especially, the effects of non-zero values of micro-gyration vector on
the velocity, angular velocity and temperature fields across the boundary layer are stud-
ied. Numerical evaluation of the analytical results is performed and some graphical
results for the velocity, angular velocity and temperature profiles within the boundary
layer have been illustrated.

Keywords: Analytical solution, micropolar fluid, mixed convection, unsteady flow,
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NOMENCLATURE

A – Small positive parameter;
B – Planck’s function;
CP – Specific heat capacity;
Ec – Eckert number;
g – gravitational acceleration;
Gr – Grashof number (free-convection parameter);
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H ′
o – Constant transverse magnetic field;

K – Dimensional porosity parameter;
k – thermal conductivity;
M2 – Non-dimensional magnetic parameter;
Pr – Prandtl number;
q∗z∗ – Radiative heat flux;
R2 – Radiation parameter;
t∗ – Dimensional time;
Tw – Wall temperature;
T∞ – Free stream temperature;
u∗, v∗, w∗– Dimensional velocity components;
Uo – Mean velocity of U∗(t∗);
U∗ – Dimensional free stream velocity;
w∗o – Dimensional suction velocity;
x∗, y∗, z∗ – Dimensional Cartesian coordinates;

Greek Symbols

α2 – Absorption coefficient;
δ – Radiation absorption coefficient along the surface;
ε – Small positive parameter;
χ2 – Darcy number;
λ – Frequency;
γ – Spin gradient viscosity;
µ – Dynamic viscosity of the fluid;
ν – Kinematic viscosity;
ρ – Fluid density;
σo – Electrical conductivity;
ω∗ – Dimensional free stream frequency of oscillation;

Subscripts

w – Surface conditions;
∞ – Conditions far a way form the surface.
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1 Introduction

Flow through porous medium past infinite vertical plate is common in nature and has
many applications in engineering and science. A number of workers have investigated such
flows and excellent literature on the properties and phenomenon may be found in literature (
[1]- [3]). For example, Soundalgekar [3] investigated the effects of free-convection currents
on the oscillatory type boundary layer flow past an infinite vertical plate with constant
suction where the plate temperature differs from the free stream temperature. Kim [4] has
considered the case of a semi-infinite moving porous plate in a porous medium with the
presence of pressure gradient and constant velocity in the flow direction when the magnetic
field is imposed transverse to the plate. He also considered the free stream to consist of a
mean velocity and temperature over which are superimposed an exponentially varying with
time.

On the other hand, heat transfer by simultaneous free or mixed convection and thermal
radiation in the case of a micropolar fluid has not received as much attention. This is
unfortunate because thermal radiation plays an important role in determining the overall
surface heat transfer in situations where convective heat transfer coefficients are small.
Such situations are common in space technology [5]. Raptis [6] studied numerically the
case of a steady two-dimensional flow of a micropolar fluid past a continuously moving
plate with a constant velocity in the presence of thermal radiation. Gorla and Tornabene [7]
investigated the effects of thermal radiation on mixed convection flow over a vertical plate
with nonuniform heat flux boundary conditions.

Micropolar fluids are fluids with microstructure belonging to a class of fluids with
asymmetrical stress tensor. Physically, they represent fluids consisting of randomly ori-
ented particles suspended in a viscous medium ( [8]– [11]). The micropolar fluid con-
sidered here is a gray, absorbing-emitting but non-scattering optically thick medium. The
problem of micropolar fluids past through a porous media has many applications, such as,
porous rocks, foams and foamed solids, aerogels, alloys, polymer blends and microemul-
sions. The simultaneous effects of a fluid inertia force and boundary viscous resistance
upon flow and heat transfer in a constant porosity porous medium were analyzed by Vafai
and Tien [12]. Raptis [13] studied boundary layer flow of a micropolar fluid through a
porous medium. Kim [14] has considered the case of a semi-infinite moving porous plate
with a constant velocity in the longitudinal direction when the magnetic field is imposed
transversely to the plate. Kim [15] has considered the effect of nonzero values of micro-
gyration vector on the semi-infinite moving porous plate with a constant velocity in the
longitudinal direction when the magnetic field is imposed transversely to the plate.

Most of the previous studies of the same problem neglected viscous dissipation and
radiation. In the present work we consider the case of mixed convection flow of a microp-
olar fluid past a semi-infinite, steadily moving porous plate with varying suction velocity
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normal to the plate in the presence of thermal radiation and viscous dissipation.

Figure 1.1: The physical model and coordinate system of the problem.

2 Mathematical Analysis

The problem that we will study is the two-dimensional, unsteady, mixed convection
flow of a laminar, incompressible, micropolar fluid over a semi-infinite vertical porous
moving plate in the presence of a magnetic field. It is also assumed here that the hole size
of the porous plate is significantly larger than a characteristic microscopic length scale of
a micropolar fluid. The x∗ -axis is taken along the planar surface in the upward direction
and the z∗ axis is taken to be normal to the plate. At time t∗ = 0, the plate is maintained at
a temperature Tw, which is high enough to initiate radiative heat transfer. A constant mag-
netic field is maintained in the z∗ direction and the plate moves uniformly along the positive
x∗ direction with velocity U0. Under Boussinesq approximation the flow is governed by
the following equations:

∂w∗

∂z∗
= 0, (2.1)

∂u∗

∂t∗
+ w∗

∂u∗

∂z∗
= (ν + νr)

∂2u∗

∂z∗2
+

∂U∗

∂t∗
− (

µ2σoH
2
o

ρ
+

ν

K∗ )(u∗ − U∗)

+gβ(T ∗ − T∞) + 2νr
∂N∗

∂z∗
, (2.2)

∂N∗

∂t∗
+ w∗

∂N∗

∂z∗
=

γ

ρj∗
∂2N∗

∂z∗2
, (2.3)

∂T ∗

∂t∗
+ w∗

∂T ∗

∂z∗
=

k

ρcp
(
∂2T ∗

∂z∗2
−∇q∗z∗) +

µ

ρcp
(
∂u∗

∂z∗
)2, (2.4)
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∂2q∗z∗
∂z∗2

− 3α2q∗z∗ − 16ασT 3
∞

∂T ∗

∂z∗
= 0, (2.5)

the boundary conditions are

u∗ = u∗p, N∗ = −n
∂u∗

∂z∗
, T ∗ = Tw z∗ = 0,

u∗ = U∗(t∗) = w∗o(1 + εeiω∗t∗), N∗ −→ 0, T ∗ −→ T∞ z∗ −→∞,

(2.6)

where the medium is optically thin with relativity low density and α ¿ 1 the radiative heat
flux given by Eq. (2.5) in the spirit of Cogley et al. [16] becomes

∂q∗z∗
∂z∗

= 4α2(T ∗ − T∞). (2.7)

Since

α2 =
∫ ∞

0

δλ
∂B

∂T ∗
, (2.8)

it is clear from Eq. (2.1) that the suction velocity at the plate surface is a function of time
only. Assuming that it takes the following exponential form

w∗ = −wo(1 + εAeiω∗t∗), (2.9)

where A is a real positive constant, ε and εA are small and less than unity, and wo is a
scale of suction velocity which has non-zero positive constant. The second equation in
(2.6) is the boundary condition for microrotation variable N∗ that describes its relationship
with the surface stress. In this equation, the parameter n is a number between 0 and 1 that
relates the micro-gyration vector to the shear stress. The value n = 0 corresponds to the
case where the particle density is sufficiently large so that microelements close to the wall
are unable to rotate. The value n = 0.5 is indicative of weak concentrations, and when
n = 1 flows are believed to represent turbulent boundary layers in Rees and Bassom [17].

We shall use the dimensionless variables

u =
u∗

Uo
, w =

w∗

w0
, N =

ν

U0wo
N∗, z =

woz
∗

ν
, t =

w2
ot∗

4ν
, U =

U∗

U0
, Up =

u∗p
Uo

,

j =
w2

0

ν2
j∗, θ =

T ∗ − T∞
Tw − T∞

, ω =
4νω∗

w2
o

, χ2 =
ν2

K∗w2
0

, Ec =
U2

o

cp(Tw−T∞)
,

Gr =
νgβ(Tw − T∞)

Uow2
o

, R2 =
4α2(Tw − T∞)

ρcpkw2
o

, P r =
µcp

k
, M2 =

µ2σoH
2
o

ρw2
o

,

(2.10)
where Pr is the Prandtl number , Gr is the Grashof number, Ec is the Eckert number, R is
the radiation parameter, M is the magnetic field parameter and χ2 is the Darcy number.

Furthermore, the spin-gradient viscosity γ which gives some relationship between the
coefficients of viscosity and micro-inertia, is defined as

γ = (µ +
k

2
)j∗ = µj∗(1 +

1
2
β); β =

k

µ
. (2.11)
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Here β denotes the dimensionless viscosity ratio in which k is the coefficient of gyro-
viscosity (or vortex viscosity). In view of Eqs.(2.5)-(2.11), Eqs. (2.2)-(2.4) become

1
4

∂u

∂t
− (1 + εAeiωt)

∂u

∂z
= (1 + β)

∂2u

∂z2
+

1
4

∂U

∂t
− (M2 + χ2)(u− U)

+Grθ + 2β
∂N

∂z
, (2.12)

1
4

∂N

∂t
− (1 + εAeiωt)

∂N

∂z
=

1
η

∂2N

∂z2
, (2.13)

Pr

4
∂θ

∂t
− Pr(1 + εAeiωt)

∂θ

∂z
= (

∂2

∂z2
−R2)θ + PrEc(

∂u

∂z
)2. (2.14)

where

η =
µj∗

γ
=

2
2 + β

.

The boundary conditions are

u = Up, θ = 1, N = −n
∂u

∂z
, on z = 0,

u → (1 + εeiωt), θ −→ 0, N −→ 0, as z −→∞. (2.15)

The mathematical statement of the problem is now complete and embodies the solution of
Eqs.(2.12)-(2.14) subject to boundary conditions (2.15)

3 Method of Solution

In order to reduce the above system of partial differential equations to a system of
ordinary differential equations in dimensionless form, we may represent the linear velocity,
microrotation and temperature as

u(z, t) = uo(z) + εeiωtu1(z) + O(ε2),

N(z, t) = No(z) + εeiωtN1(z) + O(ε2), (3.1)

θ(z, t) = θo(z) + εeiωtθ1(z) + O(ε2).

Substituting Eqs.(3.1) into Eqs.(2.12-2.15), equating the harmonic and non-harmonic
terms, and neglecting the higher order of O(ε2),and simplifying we obtains the follow-
ing pairs of equations uo, No, θo and u1, N1, θ1

(1 + β)u′′o + u′o − (M2 + χ2)uo = −(M2 + χ2)−Grθo − 2βN ′
o, (3.2)

N ′′
o + ηN ′

o = 0, (3.3)
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θ′′o + Prθ′o −R2θo = −PrEcu′2o , (3.4)

subject to the boundary conditions

uo = Up, θ0 = 1, No = −nu′o, on z = 0,

uo = 1, θ0 = 0, No = 0, as z −→∞, (3.5)

for O(1) equations, and

(1+β)u′′1 + u′1−(M2+χ2+
iω

4
)u1 = −(M2+χ2+

iω

4
)−Grθ1−2βN1−Au′o, (3.6)

N ′′
1 + ηN ′

1 − (
iω

4
)ηN1 = −AN ′

o, (3.7)

θ′′1 + Prθ′1 − (R2 +
iω

4
Pr)θ1 = −PrAθ′0 − 2PrEcu′ou

′
1, (3.8)

where a prime denotes ordinary differentiation with respect to z. The corresponding bound-
ary conditions can be written as

u1 = 0, θ1 = 0, N1 = −nu′1, on z = 0,

u1 = 1, θ1 = 0, N1 = 0, as z −→∞, (3.9)

for O(ε) equations.
To solve the nonlinear-coupled Eqs.(3.2-3.8) and (3.9), we further assume that the vis-

cous dissipation parameter (Eckert number Ec) is small, and therefore, advance an asymp-
totic expansion for the liner velocity, microrotation and temperature as follows:

uo(z) = uo1(z) + Ecuo2(z) + O(Ec2),

No(z) = No1(z) + EcN02(z) + O(Ec2),

θo(z) = θo1(z) + Ecθ02(z) + O(Ec2), (3.10)

u1(z) = u11(z) + Ecu12(z) + O(Ec2),

N1(z) = N11(z) + EcN12(z) + O(Ec2),

θ1(z) = θ11(z) + Ecθ12(z) + O(Ec2).

Substituting Eqs.(3.10) into Eqs.(3.2-3.9), we obtain the following sequence of approx-
imations:

(1 + β)u′′o1 + u′o1 − (M2 + χ2)uo1 = −(M2 + χ2)−Grθo1 − 2βN ′
o1, (3.11)

N ′′
o1 + ηN ′

o1 = 0, (3.12)
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θ′′o1 + Prθ′o1 −R2θo1 = 0, (3.13)

(1 + β)u′′o2 + u′o2 − (M2 + χ2)uo2 = −Grθo2 − 2βN ′
o2, (3.14)

N ′′
o2 + ηN ′

o2 = 0, (3.15)

θ′′o2 + Prθ′o2 −R2θo2 = −Pru′2o1, (3.16)

subject to

uo1 = Up, θo1 = 1, No1 = −nu′o1, u02 = θo2 = 0, No2 = −nu′o2, on z = 0

uo1 = uo2 = θo1 = θo2 = No1 = No2 = 0, as z −→∞, (3.17)

for O(1) equations, and

(1 + β)u′′11 + u′11 − (M2 + χ2 +
iω

4
)u11 = −(M2 + χ2 +

iω

4
)−Grθ11

−2βN ′
11 −Au′o1, (3.18)

N ′′
11 + ηN ′

11 −
iω

4
ηN11 = −AN ′

o1, (3.19)

θ′′11 + Prθ′11 − (R2 +
iω

4
Pr)θ11 = −PrAθ′01, (3.20)

(1 + β)u′′12 + u′12 − (M2 + χ2 +
iω

4
)u12 = −Grθ12 − 2βN ′

12 −Au′o2, (3.21)

N ′′
12 + ηN ′

12 −
iω

4
ηN12 = −AN ′

o2, (3.22)

θ′′12 + Prθ′12 − (R2 +
iω

4
Pr)θ12 = −PrAθ′o2 − 2Pru′o1u

′
11, (3.23)

subject to

u11 = θ11 = 0, N11 = −nu′11, u12 = θ12 = 0, N12 = −nu′12, on z = 0

u11 = 1, u12 = θ11 = θ12 = N11 = N12 = 0, as z −→∞, (3.24)

for O(Ec) equations.
Solving Eqs.(3.11-3.16) under the boundary conditions (3.17) and Eqs. (3.18-3.23)

under the boundary conditions (3.24) and substituting into Eqs. (3.10) and (3.1) we obtain
the temperature, angular velocity and velocity profiles of the flow respectively as
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θ(z, t)
= e−m1z + Ec[α6e

−2m2z + α7e
−2m1z + α8e

−(m1+m2)z + α9e
−2ηz + α10e

−(m1+η)

+α11e
−(m2+η)z + α12e

−m3z] + εeiωt{α23[e−m1z − e−m5z] + Ec[α48e
−(m1+m2)z

+α49e
−(m1+m5)z + α50e

−(m1+m6)z + α51e
−(m2+m5)z + α52e

−(m2+m5)z (3.25)

+α53e
−2m1z + α54e

−2m2z + α55e
−m3z + α56e

−(m1+η)z + α57e
−(m2+η)z

+α58e
−2ηz + α59e

−(m1+m9)z + α60e
−(m2+m9)z + α61e

−(m5+η)z

+α62e
−(m6+η)z + α63e

−(m9+η)z + α64e
−m7z]},

u(z, t)
= 1+α1e

−m1z+α4e
−ηz + α5e

−m2z+Ec[α13e
−2m2z+α14e

−2m1z+α15e
−(m1+m2)z

+α16e
−m3z+α17e

−2ηz+α18e
−(m1+η)+α19e

−(m2+η)+α20C2e
−ηz+α22e

−m4z)]

+εeiωt{1 + α24e
−m2z + α25e

−m1z + α26e
−m5z + α27e

−ηz + α28C3e
−m9z

+α31e
−m6z + Ec[α65e

−m7z + α66e
−(m1+m2)z + α67e

−2m1z + α68e
−2m2z (3.26)

+α69e
−m3z + α70e

−m4z + α71e
−(m1+m5)z + α72e

−(m1+m6)z

+α73e
−(m2+m5)z + α74e

−(m2+m6)z + α75e
−2ηz + α76e

−(m1+η)

+α77e
−(m2+η) + α78e

−ηz + α79e
−(m1+m9)z + α80e

−(m2+m9)z

+α81e
−(m5+η)z + α82e

−(m6+η)z + α83e
−(m9+η)z + α84C4e

−m9z + α86e
−m8z]},

N(z, t) = α3e
−ηz + Ecα21e

−ηz + εeiωt{α29e
−m9z +

4iα3A

ω
e−ηz

+Ec[α85e
−m9z +

4iα21A

ω
e−ηz]}. (3.27)

The physical quantities of interest are the wall shear stress τw and the local surface heat
transfer rate qw. These are defined by

τw = ρ[(ν + νr)
∂u∗

∂z∗
]z∗=0 + νr[

∂N∗

∂z∗
]z∗=0 = ρU2

o [(1 + β)u′(0)− nβu′(0)]

= ρU2
o [1 + β(1− n)]u′(0). (3.28)

Therefore, the local friction factor Cf is given by

Cf =
2τw

ρU2
o

= 2[(1 + β)u′(0)− nβu′(0)].

The couple stress at the wall is defined from the definition of

Mw = γ
∂N∗

∂z∗
|z∗=0 =

γU3
o

ν2
N ′(0), (3.29)
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the local surface heat flux defined by

qw = −k
∂T ∗

∂z∗
, (3.30)

(where k is the effective thermal conductivity), together with the definition of the local
Nusselt number

Nu =
qw

Tw − T∞

x

k
, (3.31)

one can write

Nu

Re
= −θ′(0), (3.32)

where the constants are given in Appendix, Re = Uox/ν.

4 Results and Discussion

The formulation of the problem that accounts for the effect of radiation field on the
flow and heat transfer of an incompressible micropolar fluid along a semi-infinite, moving
vertical porous plate was accomplished out in the preceding sections. This enables us
to carry out the numerical computations for the velocity, microrotation and temperature
fields for various values of the flow conditions and fluid properties. Figures 4.1-4.7 show
representative plots of the streamwise velocity and angular velocity as well as temperature
profiles for a micropolar fluid with the fixed conditions ω = 2, A = 0.01, t = 2, ε = 0.01,
and E = 0.01 while β, Gr, χ, M, n, Pr, Up and R are varied over a range, which are listed
in the figures legend.

Figure 4.1a shows the streamwise velocity distribution within the boundary layer. As
the material parameter β increases, we observe that the magnitude of the stream wise ve-
locity decreases and the inflection point for the velocity distribution moves further away
from the surface. The numerical results show that the velocity distribution is lower for a
Newtonian fluid β = 0 with the fixed flow and material parameters. Figure 4.1b presents
buoyancy-assisted results for angular velocity profile as a function of spanwise coordinate
z within the boundary layer. It can be shown that as the viscosity ratio increases the ampli-
tude of the angular velocity profiles decreases.

The velocity and angular velocity profiles against spanwise coordinate z for different
values of Grashof number Gr are described in Figures. 4.2a and 4.2b. It is observed that
an increase in Gr leads to arise in the values of velocity, but decreases due to angular
velocity. Here the positive value of Gr corresponds to a cooling of the surface by natural
convection. In addition, the curves show that the peak value of velocity increases rapidly
near the wall of the porous plate as Grashof number increases, and then decays to the free
stream velocity.
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Figure 4.1: Effects of (the micropolar parameter) on the velocity and angular velocity distribution for
R = 2, n = 0.5, M = 2, Up = 0.5, Gr = 10, χ = 2 and Pr = 0.71.

Figure 4.2: Effects of (Grashof number) on the velocity, and angular velocity distribution for R =

2, n = 0.5, M = 2, Up = 1, β = 0.2, χ = 2 and Pr = 0.71.
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Figure 4.3: Effects of (χ parameter) on velocity and angular velocity distribution forR = 2, n =

0.5, M = 2, Up = 0.5, β = 0.2, Gr = 10 and Pr = 0.71.

Figure 4.4: Effects of (n parameter) on velocity and angular velocity distribution forR = 2, M =

2, χ = 2, Up = 0.5, β = 0.5, Gr = 10 and Pr = 0.71.
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Figure 4.3a shows the velocity profiles for different values of the Darcy number χ.
Clearly as χ increases the peak value of velocity tends to decrease. Figure 4.3b illustrates
variation of the angular velocity across the boundary layer for various values of the Darcy
number χ in the direction of fluid flow. The values of angular velocity on the porous plate
are increased as the permeability increases.

Figure 4.5: Effects of (R rotational parameter) on velocity and angular velocity distribution forPr =

0.71, M = 2, χ = 2, Up = 0.5, β = 0.2, Gr = 10 and n = 0.5.

For the case of a micropolar fluid β = 0.2, the profiles of streamwise velocity and
micro-rotation against the spanwise coordinate z for the variations of the parameter n in
the boundary condition for micro-gyration vector are shown in Figures 4.4a, 4.4b. The
results show that increasing values of n-parameter results in an increasing velocity within
the boundary layer, which eventually approaches to the relevant free stream velocity at the
edge of boundary layer. However, the micro-rotation profiles decreases as the n-parameter
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increases.

For different values of the radiation parameter R, the velocity and temperature profiles
are plotted in Figures 4.5a, 4.5b and 4.5c. It is obvious that an increase in the radiation
parameter R results in decreasing velocity and temperature within the boundary layer and
increasing the angular velocity, as well as a decreased thickness of the velocity, and tem-
perature boundary layers. This is because the large R-values correspond to an increased
dominance of conduction over radiation thereby decreasing buoyancy force (thus, vertical
velocity) and thickness of the thermal and momentum boundary layers.

Figure 4.6: Effects of (Pr prandtl number) on velocity and angular velocity distribution forR =

2, M = 2, χ = 2, Up = 0.5, β = 0.2, Gr = 10 and n = 0.5.

Figure 4.6a shows the velocity profiles against spanwise coordinate z for different val-
ues of Prandtl number Pr. The numerical results show that the effect of increasing values
of Prandtl number results in a decreasing velocity. The results also reveal that the peak
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value of velocity decreases as Pr increases. For the case of a micropolar fluid β = 0.2,
the profiles of micro-rotation against the spanwise coordinate z for the variations of the
parameter Pr in the boundary condition for micro-gyration vector are shown in Figure
4.6b The results show that increasing values of Pr parameter results in a decreasing the
micro-rotation profiles.

Typical variations in the temperature profiles along the spanwise coordinate are shown
in Figure 4.6c for different values of the Prandtl number Pr. As expected, the numerical
results show that an increase in the Prandtl number results in a decrease of the thermal
boundary layer thickness and in general lower average temperature within the boundary
layer. The reason is that smaller values of Pr are equivalent to increasing the thermal
conductivity of the fluid, and therefore heat is able to diffuse away from the heated surface
more rapidly than for higher values of Pr. Hence in the case of smaller Prandtl numbers
the thermal boundary layer is thicker and the rate of heat transfer is reduced.

For different values of the magnetic field parameter M , the velocity and angular veloc-
ity profiles are plotted in Figure 4.7a, and 4.7b. It is obvious that the effect of increasing
values of magnetic field parameter results in a decreasing velocity distribution across the
boundary layer. Furthermore, the results show that the values of angular velocity on the
porous plate are increased as M increases.

Figure 4.7: Effects of (magnetic parameter) on velocity and angular velocity distribution forR =

2, n = 0.5, χ = 2, Up = 0.5, β = 0.2, Gr = 10 and Pr = 0.71.
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Concluding Remarks

In this paper, the flow of an unsteady MHD mixed-convection flow of micropolar fluid
past an infinite vertical plate with time-dependent suction under the simultaneous effects
of viscous dissipation and radiation is affected by the material parameters. The governing
boundary layer equations for the velocity, microrotation component and temperature have
been solved analytically. The resulting partial differential equations were transformed into
a set of ordinary differential equations using two-term series and solved in closed-form.
Numerical evaluations of the closed-form results were performed and some graphical re-
sults were obtained to illustrate the details of the flow and heat and mass transfer charac-
teristics and their dependence on some of the physical parameters. In addition, an increase
temperature profile is a function of an increase in viscous dissipation. Whereas an increase
in radiation and magnetic field parameters led to a decrease in the temperature profile on
cooling. Equally, cooling of the plate by convection currents with increases in the radia-
tion, magnetic field and Darcy parameters led to a decrease in the velocity profile. Finally,
increased cooling of the plate and viscous dissipation resulted in an increase in the velocity
profile.

Appendix

m1 = m3 = 1
2 (Pr +

√
Pr2 + 4R2)

m2 = m4 = 1
2(1+β) (1 +

√
1 + 4(M2 + χ2))

m5 = m7 = 1
2 (Pr +

√
Pr2 + 4N2)

m6 = m8 = 1
2(1+β) (1 +

√
1 + 4N1)

m9 = m10 = 1
2 (η +

√
η2 + iωη)

α1 =
−Gr

(1 + β)m2
1 −m1 −M2 − χ2

α2 =
2βη

(1 + β)η2 − η −M2 − χ2

α3 =
n((m1 −m2)α1 + (1− Up)m2)

1− nα2(η −m2)
α4 = α2α3α5 = Up − (1 + α1 + α4)

α6 =
−Prα2

5m
2
2

4m2
2 − 2Prm2 −R2

α7 =
−Prα2

1m
2
1

4m2
1 − 2Prm1 −R2

α8 =
−2Prα5α1m1m2

(m1 + m2)2 − Pr(m1 + m2)−R2

α9 =
−Prα2

4η
2

4η2 − 2Prη −R2

α10 =
−2Prα1α4m1η

(m1 + η)2 − Pr(m1 + η)−R2
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α11 =
−2Prα5α4m2η

(m2 + η)2 − Pr(m2 + η)−R2

α12 = −(α6 + α7 + α8 + α9 + α10 + α11)

α13 =
−Grα6

4(1 + β)m2
2 − 2m2 −M2 − χ2

α14 =
−Grα7

4(1 + β)m2
1 − 2m1 −M2 − χ2

α15 =
−Grα8

(1 + β)(m1 + m2)2 − (m1 + m2)−M2 − χ2

α16 =
−Grα12

(1 + β)m2
3 −m3 −M2 − χ2

α17 =
−Grα9

4(1 + β)η2 − 2η −M2 − χ2

α18 =
−Grα10

(1 + β)(m1 + η)2 − (m1 + η)−M2 − χ2

α19 =
−Grα11

(1 + β)(m2 + η)2 − (m2 + η)−M2 − χ2

α20 =
2βη

(1 + β)η2 − η −M2 − χ2

α21 = {n[α13(2m2 −m4) + α14(2m1 −m4) + α15(m1 + m2 −m4) + α16(m3 −m4)
+α17(2η−m4)+α18(m1+η −m4)+α19(m2+η −m4)]}/[1−nα20(η −m4)]

α22 = (α13 + α14 + α15 + α16 + α17 + α18 + α19 + α20α21

N1 = M2 + K2 +
iw

4
N2 = R2 +

iw

4
Pr

α23 =
Pr

m2
1 − Prm1 −N1

α24 =
Aα5m2

(1 + β)m2
2 −m2 −N1

α25 =
Aα1m1

(1 + β)m2
1 −m1 −N1

α26 =
−Gr

(1 + β)m2
5 −m5 −N1

α27 =
Aα4η + (4iα3A/ω)
(1 + β)η2 − η −N1

α29 =
n[α24(m2 −m6) + α25(m1 −m6) + α26(m5 −m6) + α27(η −m6)]

1− nα28(m9 −m6)
− 4iα3A

ω

α28 =
2βm9

(1 + β)m2
9 −m9 −N1

α30 = α29α28

α31 = −(α24 + α25 + α26 + α27 + α28α29)
α32 = APr(m1 + m2)α8 − 2Prα1m1m2α24 − 2Prα5m1m2α25

α33 = −2Prα1m1m5α26

α34 = −2Prα1α31m1m6

α35 = −2Prα5α26m2m5

α36 = −2Prα5α31m2m6

α43 = −2Prα1α30m1m9

α37 = −2PrAm1α7 − 2Prα1m
2
1α25

α38 = −2PrAm2α6 − 2Prα5m
2
2α24

α39 = PrAα12m3
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α40 = APr(m1 + η)α10 − 2Prα4α25ηm1 − 2Prα1α27ηm1

α41 = APr(m2 + η)α11 − 2Prα5α27ηm2 − 2Prα4ηm2α24

α42 = −2PrAα9η − 2Prα4α27η
2

α44 = −2Prα5α30m2m9

α45 = −2Prα4m5ηα26

α46 = −2Prα31α4ηm6 α47 = −2Prα30α4ηm9

α48 =
α32

(m1 + m2)2 − Pr(m1 + m2)−N2

α49 =
α33

(m1 + m5)2 − Pr(m1 + m5)−N2

α50 =
α34

(m1 + m6)2 − Pr(m1 + m6)−N2

α51 =
d35

(m5 + m2)2 − Pr(m5 + m2)−N2

α52 =
d36

(m6 + m2)2 − Pr(m6 + m2)−N2

α53 =
d37

m2
1 − 2Prm1 −N2

α54 =
d38

4m2
2 − 2Prm2 −N2

α55 =
d39

m2
3 − Prm3 −N2

α56 =
α40

(m1 + η)2 − Pr(m1 + η)−N2

α57 =
α41

(m2 + η)2 − Pr(m2 + η)−N2

α58 =
h42

4η2 − 2Prη −N2

α59 =
h43

(m1 + m9 − Pr(m1 + m9)−N2

α60 =
α44

(m2 + m9)2 − Pr(m2 + m9)−N2

α61 =
α45

(m5 + η)2 − Pr(m5 + η)−N2

α62 =
α46

(m6 + η)2 − Pr(m6 + η)−N2

α63 =
α47

(m9 + η)2 − Pr(m9 + η)−N2

α64 = −(α48 + α49 + · · ·+ α63)

α65 =
−Grα64

(1 + β)m2
7 −m7 −N1

α66 =
Aα15(m1 + m2)−Grα48

(1 + β)(m1 + m2)2 − (m1 + m2 −N1

α67 =
2Am1α14 −Grα53

4(1 + β)m2
1 − 2m1 −N1

α68 =
2Am2α13 −Grα54

4(1 + β)m2
2 − 2m2 −N1

α69 =
Am3α16 −Grα55

(1 + β)m2
3 −m3 −N1

α70 =
Aα22m4

(1 + β)m2
4 −m4 −N1
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α71 =
−Grα48

(1 + β)(m5 + m1)2 − (m5 + m1)−N1

α72 =
−Grα50

(1 + β)(m1 + m6)2 − (m1 + m6)−N1

α73 =
−Grα51

(1 + β)(m5 + m2)2 − (m5 + m2)−N1

α74 =
−Grα52

(1 + β)(m6 + m2)2 − (m6 + m2)−N1

α75 =
2Aα17η −Grα58

4(1 + β)η2 − 2η −N1

α76 =
Aα18(m1 + η)−Grα56

(1 + β)(m1 + η)2 − (m1 + η)−N1

α77 =
Aα19(m2 + η)−Grα57

(1 + β)(m2 + η)2 − (m2 + η)−N1

α78 =
Aα20α21η + 8iβα21η/ω

(1 + β)η2 − η −N1

α79 =
−Grα59

(1 + β)(m1 + m9)2 − (m1 + m9)−N1

α80 =
−Grh60

(1 + β)(m2 + m9)2 − (m2 + m9)−N1

α81 =
−Grα61

(1 + β)(m5 + η)2 − (m5 + η)−N1

α82 =
−Grα62

(1 + β)(m6 + η)2 − (m6 + η)−N1

α83 =
−Grh63

(1 + β)(m9 + η)2 − (m9 + η)−N1

α84 =
2βm9

(1 + β)m2
9 −m9 −N1

α85 = {n[α65(m7 −m8) + α66(m1 + m2 −m8) + α67(2m1 −m8) + α68(2m2 −m8)
+α69(m3 −m8) + α70(m4 −m8) + α71(m1 + m5 −m8)
+α72(m1 + m6 −m8) + α73(m5 + m2 −m8) + α74(m6 + m2 −m8)
+α75(2η −m8) + α76(m1 + η −m8) + α77(m2 + η −m8) + α78(η −m8)
+α79(m1 + m9 −m8) + α80(m2 + m9 −m8) + α81(m5 + η −m8)
+α82(m6 + η−m8) + α83(m9 + η −m8)]− 4iAα21/ω}/[1−nα84(m9−m8)].
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