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Abstract: In this paper, Advection - diffusion equation (ADE) has been solved in two dimensions using the separation 
technique to obtain the crosswind integrated ground concentration considering vertical eddy diffusivity and mean wind 
speed depend on power law and time. We compared between estimated concentrations and observed which conducted in 
the Northern part of Copenhagen, Denmark of sulfur hexafluoride (SF6) which released from a tower at a height of 115m 
without buoyancy. Comparison between estimated and observed crosswind integrated of pollutant concentration per 
emission rate, there are some present data which are agreement with observed data (one to one), others lie inside a factor of 
two and four.  
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1 Introduction  

Different shapes of the atmospheric diffusion equation has 
been solved depend on Gaussian and non-Gaussian 
solutions. Study of mathematical solutions with wind 
speed for power law and the realistic assumption for eddy 
diffusivity by [1]. The solutions have been implemented in 
the KAPPA-G model [2]. We has been extended the 
solutions under boundary conditions assumption for dry 
deposition at the ground. The modeling of atmospheric 
dispersion has been solved by [3,4]. Solved the  
Advection–diffusion equation with variable coefficients 
for three dispersion problems in One-dimensional: (i) the 
dispersion solute along steady flow through an 
inhomogeneous medium, (ii) the dispersion of temporally 
dependent solute along uniform flow through the 
homogeneous medium. (iii)  The dispersion along 
temporally dependent flow through an inhomogeneous 
medium has been soluted. Using Laplace transformation 
technique to obtain the Analytical solutions for 
Continuous point sources of uniform and increasing nature 
was considered in an initially solute-free semi-infinite 
medium. Inhomogeneity of the medium is expressed by 
the spatially dependent flow. The dispersion was 
considered proportional to the square of the spatially 

dependent velocity. Atmospheric dispersion modeling 
refers to the mathematical description of contaminant 
transport in the atmosphere. The term dispersion in this 
context used to describe the combination of diffusion (due 
to turbulent eddy motion) and advection (due to the wind). 
Mathematical and approximate solutions for the 
atmospheric dispersion problem have been derived under 
a wide range of simplifying assumptions, as well as 
various boundary conditions and parameter dependencies. 
Study Mathematical Solution is especially useful to 
engineers and environmental scientists who study 
pollutant transport, since they allow parameter sensitivity 
and source estimation by [5]. Both our scientific 
understanding and technical developments have greatly 
increased by using of empirical, Mathematical and 
numerical models to present the air pollution 
concentration in the atmosphere. For this purpose, the 
advection – diffusion equation Wide spread in operational 
atmospheric dispersion models, in principal; from this 
equation it is possible to obtain the dispersion from a 
source given appropriate boundary and initial conditions 
plus knowledge of the mean wind velocity and 
concentration turbulent fluxes [6].  

            In this paper, we solved advection-diffusion 
equation (ADE) in two dimensions using separation 
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technique to obtain the crosswind integrated ground 
concentration considering vertical eddy diffusivity and 
mean wind speed depend on power law and time.  
 

2 Mathematical Solutions 

The basic gradient transport model can be written [7]: 
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Where, 
C is the average concentration of diffusing for continuous 
point source (x, y, and z) (kg/m3). 
U is mean wind velocity along the x-axis (m/s). 
Kx, ky and kz are the eddy diffusivities coefficients along 
x, y and z-axes respectively (m /s). 
x wind coordinate measured in wind direction from the 
source (m).  
y is crosswind coordinate direction (m). 
z is vertical coordinate measured from the ground (m). 
 Equation (1) is impossible to solve Mathematical for 
complete general functional forms for the diffusivity K 
and wind speeds u, v and w. Integrating equation (1) 
respect to y from -∞ to ∞ to obtain the crosswind 
integrated of pollutant concentration as follows and the 
diffusion in direction x is neglected, then: 
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Where, Kz and u are function of z in power law [7]: 
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Dividing Eq. (2) on Kz, one gets that: 
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Substituting from Eq. (3) in Eq. (4), gives us: 
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Eq. (5) is subjected to the following boundary conditions 
1-The flux at the ground and the top of the boundary layer 
is equal zero given by: -  
  k+

!	#01
!	+

= 0          at           z= 0                                     (i)                                                                                                                                                                                    
2-The mass continuity is written in the form:-   
u (z)  (x, z, t) =Q δ(t) δ (z-h)        at x =0 ,t=0        (ii)                                                       
δ () is Dirac delta function 
3-The concentration of the pollutant tends to zero at large 

distance of the source, i.e.  
 (x, z, t) =0    at x, z→ ∞, t>0                            (iii) 

Using the method of separating the variables, and thus 
suppose the experimental solution to Eq. (2) with the 
following formula  
CNN) = (x, z, t) 	= T	(t)	G(x, z)				                                    (6) 
Where, G(x, z) =X(x) Z (z) 
Substituting from Eq. (6) in Eq. (5) and divided on T (t) 
G(x, z), one gets that: - 
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Where,  𝜇 is a constant of separation variable.  
Eq. (7) are divided into three Eqns. as follows  
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Substituting from Eq. (iii) in Eq. (8), one gets that 
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Eq. (8) becomes: 
   T(t) = c5e-5                                                              (8.2)                                                                                   
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Substituting from Eq. (ii) in Eq. (9), one gets that 
𝑐W =

de(])e(;?f)
g(;)

                                                           (9.1)  
Eq. (9.1) becomes: 
X(x) = de(])e(;?f)
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Then Eq. (10) is Bessel Equation. The general solution is  
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Where, J0 and Y0 are Bessel function of order zero, A and 
B are constants. 
Since, C(x, z, t) is a finite at z=0 then B =0 
The Eq. (10.1) becomes: 
𝑍(𝑧) = 𝐴	𝐽t -

g=
u=
- ;
;=
/
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𝜇/                                     (10.2) 
Where, J0 is taken from [8] as follows: 
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The general solution of Eq. (6) as follows:  
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Where, 
c	� = A	c5 
Substituting	from	Eq.	(ii)	in	Eq.	(11),	one	gets	that	
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Eq. (11) becomes: 
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Where,  𝛿(𝑧 − ℎ) at m=1 gives [8]: 

 
 

3 Results and Discussion 

The used data set was taken from the atmospheric 
diffusion experiments conducted in the Northern part of 
Copenhagen, Denmark, under unstable conditions [9, 10]. 
The tracer sulfur hexafluoride (SF6) was eased from a 
tower at a height of 115m without buoyancy. The values 
of different parameters such as stability, wind speed, and 
downwind distance during the experiment are represented 
in (Table 1). Comparison between the predicted and 
observed crosswind normalized integrated concentration 
at a different downwind distance, wind speed and distance 
for the different runs and “m”, “n” depend on stability 
classes. The two figures shows that the Comparison 
between present and observed crosswind normalized 
integrated of pollutant concentration, one finds that some  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

present data which are agreement with observed 
crosswind normalized integrated concentration (one to 
one) and others lie inside factor of two and four. This 
present crosswind normalized integrated concentration is 
agreement with previous work. 
0 

 
Fig.1: Comparison between predicted and observed 
concentrations per emission rate. 

 

Fig. 2: Comparison between concentrations per emission 
rate and downwind distance. 
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Table 1: Comparison between the predicted and observed Crosswind- normalized integrated concentration at a 
different downwind distance, wind speed. 

Run. m n Speed 
(m/s) 

Effective 
Height (m) 

Distance 
(m) 

𝑪0𝒚
𝑸
	(10-4s/m2) 

     Observe
d 

Present Ref.[2] 
1 0.90 0.10 2.1 1980 1900 6.48 6.34 4.13 
1 0.80 0.20 4.9 1980 3700 2.31 2.33 2.00 
2 0.70 0.30 4.9 1920 2100 5.38 1.73 2.28 
2 0.60 0.40 2.4 1920 4200 2.95 1.13 5.69 
3 0.50 0.50 2.4 1120 1900 8.2 5.87 6.83 
3 0.40 0.60 2.4 1120 3700 6.22 3.21 4.54 
3 0.30 0.70 2.5 1120 5400 4.3 3.67 5.71 
5 0.20 0.98 3.1 820 2100 6.72 5.33 6.90 
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4 Conclusions 

Using separation of variables technique is estimated 
advection-diffusion equation (ADE) in two dimensions to 
obtain the crosswind integrated ground level concentration 
by taking vertical eddy diffusivity and mean wind velocity 
depend on power law dependent on time. The used dataset 
was observed from the atmospheric diffusion experiments 
conducted in the Northern part of Copenhagen, Denmark. 
The tracer sulfur hexafluoride (SF6) was released from a 
tower at a height of 115m without buoyancy. Comparison 
between present and observed crosswind integrated of 
pollutant concentration per emission  rate, there are some 
present data which are agreement with observed data (one 
to one), others lie inside a factor of two also factor of four.  
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5 0.10 0.90 3.1 820 4200 5.84 3.91 3.80 
5 0.10 0.10 3.1 820 6100 4.97 3.23 4.02 
6 0.90 0.10 7.2 1300 2000 3.96 2.52 3.62 
6 0.80 0.20 7.2 1300 4200 2.22 3.22 2.70 
6 0.70 0.30 7.2 1300 5900 1.83 6.27 6.78 
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7 0.40 0.60 4.1 1850 5300 2.23 2.93 2.61 
8 0.30 0.70 4.2 810 1900 4.16 4.04 3.40 
8 0.20 0.98 4.2 810 3600 2.02 5.31 5.10 
8 0.20 0.98 4.2 810 5300 1.52 3.13 4.63 
9 0.10 0.90 5.1 2090 2100 4.58 3.51 2.63 
9 0.10 0.90 5.1 2090 4200 3.11 4.29 4.63 
9 0.10 0.90 5.1 2090 6000 2.59 3.98 1.63 

 


