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Abstract: Fractional calculus has achieved a great interest in the last decades since many physical problems are modeled with fractional

differential equations. The definition of fractional derivatives involves integral operators, some of them having singular kernel, and

its calculation is not easy. For that reason, in addition to theoretical developments, it is important to look for accurate numerical

approximations to these operators. In this work we propose a new and simple numerical scheme to approximate the solutions to initial

value problems involving Caputo-Fabrizio fractional derivatives. Following some previous results, we choose a wavelet basis with

special properties, apply the wavelet decomposition to the data, calculate the fractional derivatives of the wavelet basis and combine

them by means of a Galerkin-type scheme to reconstruct the unknown from its wavelet coefficients. The properties of the chosen basis

guarantee that the numerical scheme is simple, stable and its accuracy can be easily improved. It could be adapted to solve initial

value problems combining other fractional and natural order derivatives and fractional partial differential equations. We present some

numerical illustrative examples to show its performance.

Keywords: Fractional calculus, Caputo-Fabrizio fractional derivative, wavelet analysis.

1 Introduction

Fractional calculus has achieved a great interest in the last decades since there is a wide range of problems in physics,
chemistry, biology, economics and engineering that are modeled with differential equations involving fractional
derivatives. In recent papers the importance and usefulness of fractional differential equations involving
Riemann-Liouville, Caputo, Atangana-Baleanu and Caputo-Fabrizio derivative, were shown (see [1,2,3,4,5,6,7,8,9,10,
11,12]). These fractional derivatives are nonlocal. Their definition involves integral operators, some of them having
singular kernel, and its calculation may not be easy. For that reason, in addition to theoretical developments, it is
important to look for accurate numerical approximations to these operators. There are many results on fractional calculus
devoted to the solvability of fractional differential equations. Theoretical results concerning existence and uniqueness of
solutions appear, for example, in [9,10,13,14,15,16]. Different approaches to effectively calculate solutions to
differential equations involving fractional derivatives were proposed in [9,10,17,18,19,20,21,22,23].
In this work we propose a new and simple numerical scheme to approximate the solution to the initial value problem
(IVP) {

Dα
0 f (t)+λ f (t) = g(t),

f (0) = 0,
(1)

where Dα
0 f is the Caputo-Fabrizio fractional derivative of order α ∈ (0,1) in [0,b], f is the unknown and g is the data,

g(0) = 0.
In [15], existence and uniqueness for the solution of (1) are proved for a 6=−∞ and λ = 0. Explicit formulae are presented
in [24] for λ = 0 and in [1] for any λ . Both of them include the computation of the primitive of the data function. In all
cases a 6=−∞.
Our approximation technique is based on some previous works [25,26,27,28]. We choose a wavelet basis with appropriate
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properties: well localized in both, time and frequency domain, smooth, band limited, infinitely oscillating with fast decay;
and apply the wavelet decomposition to the data, calculate the fractional derivatives of the wavelet basis and combine
them by means of a Galerkin-type scheme to reconstruct the unknown from its wavelet coefficients.
We present the approximation scheme by steps, solving two auxiliary problems. The first one is the construction of an
approximate primitive f of a given function g considering a = −∞. The second one is the solution to the fractional
differential equation Dα

−∞ f +λ f = g. Finally, the IVP (1) is solved. The choice of the basis guarantees that the numerical
scheme is simple, stable and its accuracy can be easily improved. We do not need to impose any supplementary properties
to the data or to the unknown. It is worth noting that this technique could be extended to solve other differential equations
containing fractional derivatives when no explicit formulae for the solution is available.
This work is organized as follows. In the next section we introduce the notation and the definitions of the operators.
In Section 3 we describe the wavelet basis and present the approximate primitive. The auxiliary fractional differential
equation is solved in Section 4. Section 5 contains the solution to the IVP (1). The error is analyzed. Some numerical
examples are presented in Section 6. Finally we state some conclusions.

2 Mathematical background

We denote by H1(a,b), the Sobolev space W 1,2(a,b) of functions u : (a,b) → R, with (weak) derivative
u′ = D1u ∈ L2(a,b).
In [29] the authors defined the new Caputo-Fabrizio fractional derivative (CFFD) of order 0 < α < 1 of f ∈ H1(a,b), as

Dα
a f (t) :=

M(α)

1−α

∫ t

a
f ′(τ)e−

α(t−τ)
1−α dτ, (2)

where −∞ ≤ a < b and M(α) is a normalized factor. The authors proved some results concerning this new derivative that
resemble those of the classical one. For instance, the CFFD of order 0 < α < 1 of a constant function is zero and

lim
α→1

Dα
a f (t) = f ′(t), lim

α→0
Dα

a f (t) = f (t)− f (a). (3)

It is worth noting the CFFD is expressed by an integral operator with causal kernel k(t) = e−
αt

1−α , t > 0 that is not singular,
k ∈ L1(−∞,b)∩L2(−∞,b).
If we consider a =−∞ and change variables in (2), CFFD can be associated to the convolution operator:

Dα
−∞ f (t) =

M(α)

1−α

∫ ∞

0
f ′(t − τ)e−

α
1−α τ dτ =

M(α)

1−α
f ′ ∗ k(t).

Then, we have Dα
−∞ f ∈ L2(−∞,b) and k̂(ω) = 1−α

α+iω(1−α) .

Thus, we rewrite the CFFD of order α ∈ (0,1) as

Dα
−∞ f (t) =

M(α)

2π(1−α)

∫

R

f̂ ′(ω) k̂(ω)eiωt dω

or

Dα
−∞ f (t) =

M(α)

1−α

∫

R

f̂ (ω)h(ω)eiωtdω (4)

with the smooth kernel h(ω) = 1
2π

iω(1−α)
α+iω(1−α)

that does not depend on t.

3 Approximate primitives

In [28], we propose a method based on the wavelet transform, to find a primitive f of g, i.e., an approximate solution to

Dα
−∞ f (t) = g(t). (5)

Below we summarize the method. We describe the wavelet basis where the data g is decomposed. Afterwards the fractional
derivative of the basis is calculated. Finally the approximate primitive is presented.
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3.1 The wavelet basis

We choose a smooth, infinitely oscillating wavelet with fast decay, ψ ∈ S (the Schwartz class), well localized in both
time and frequency domains, [30]. Its Fourier transform verify supp|ψ̂(2− jω) |= Ω j, where

Ω j =
{

ω : 2 j(π −β )≤ |ω | ≤ 2 j+1(π +β )
}

with 0 < β ≤ π/3.

The family {ψ jk = 2 j/2 ψ(2 jt − k), j,k ∈ Z}, is an orthonormal basis (BON) of L2(R) associated to a Multiresolution
Analysis (MRA).
With the usual notation Wj = span{ψ jk,k ∈ Z} and VJ =

⊕
j<J Wj for the wavelet and scale subspaces respectively, we

have L2(R) =
⊕

j∈ ZWj =
⊕

j≥n Wj +Vn, n ∈ Z, ([31], [32]).

There is also a scale function φ ∈V0 such that {φ(t − k),k ∈ Z} is BON of V0.

Remark. The sets Ω j−1, Ω j, Ω j+1 have little overlap and Wj is nearly a basis for the set of functions whose Fourier
transform has support in Ω j (see Figure 1).

Fig. 1: The sets Ω j−1, Ω j , Ω j+1

3.2 The data

For any J, the data function g ∈ L2(R) can be decomposed as

g(t) = ∑
j∈Z

Q jg(t) = PJg(t)+ ∑
j≥J

Q jg(t) = ∑
n∈Z

〈g,φJn〉φJn(t)+ ∑
j≥J

∑
k∈Z

〈
g,ψ jk

〉
ψ jk(t),

where PJg and Q jg are the orthogonal projections of g in VJ and Wj, respectively. The properties of localization of the
wavelets guarantee absolute convergence in each Wj (see [33] for details concerning the basis and its implementation).

We suppose that there exist Jmin,Jmax ∈ Z such that: g = ∑
Jmax
j=Jmin

g j + r with ||r||2 < ε‖g‖2
∼= 0, i.e., the levels where the

energy of g is concentrated. Let g j = ∑k∈Z c jkψ jk ∈ Wj be the projection on Wj, where c jk =
〈
g,ψ jk

〉
are the wavelet

coefficients.
We denote by g̃ j the truncated projection of g on Wj,

g̃ j(t) = ∑
k∈K j

c jkψ jk(t), (6)

where K j ⊂ Z, |K j|= η j < ∞, that satisfies ∑k/∈K j
|
〈
g,ψ jk

〉
|2 < ε||g j||

2 and ε ∼= 0.

3.3 The derivatives of the wavelet basis

Let v jk = Dα
−∞ψ jk, then

v jk(t) =
M(α)

1−α

∫

R

ψ̂ jk(ω)h(ω)eiωtdω . (7)
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Fig. 2: Some v jk with α = 0.5

The functions v jk defined in (7) inherit translation and expansion properties similar to the wavelets ψ jk. We show some of
them in Figure 2. Based on the next Lemma we consider v jk ∈Wj.

Lemma 1. Let v jk be defined by (7), then v jk ∈Wj−1 ∪Wj ∪Wj+1. Moreover, the statement v jk ∈Wj is nearly true.

Proof. From (4)

v jk(t) =
M(α)

1−α
(ψ ′

jk ∗ k)(t) ⇒ v̂ jk(ω) =
M(α)

(1−α)
iω ψ̂ jk(ω)k̂(ω)

then,

supp(v̂ jk)⊆ Ω j.

For the chosen wavelet basis, the sets Ω j−1, Ω j, Ω j+1 are nearly non overlapping (see Figure 1), and Wj is a basis for the
set of functions whose Fourier transform has support in Ω j. Thus, disregarding the few wavelets whose Fourier transform
has support in the small intersections Ω j−1 ∩Ω j or Ω j ∩Ω j+1, we can consider v jk ∈Wj.

⊓⊔

Now we turn back to the calculus of a primitive

f (t) = ∑
j∈Z

∑
k∈Z

b jkψ jk(t). (8)

Considering the result of Lemma 1. we work on each level j, Jmin ≤ j ≤ Jmax and restricted to K j, i.e., for

f̃ j = ∑k∈K j
b jkψ jk it follows

Dα
−∞ f̃ j(t) = ∑

k∈K j

b jkv jk(t) = g̃ j(t), (9)

then, ∑k∈K j
b jkv jk

∼= ∑k′∈K j
c j′k′ψ j′k′ , and we calculate the vector of coefficients b

j
k = {b jk}k∈K j

from the linear system

〈

∑
l∈K j

b jlv jl ,ψ jm

〉
= ∑

l∈K j

b jl

〈
v jl ,ψ jm

〉
= c jm, m ∈K j,

or, in matrix form

M
jb

j

k = c
j

k, k ∈K j, (10)
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where M
j

lm =
〈
v jl ,ψ jm

〉
.

Based on the properties of the wavelet basis, M j is not singular on each level j.

Lemma 2. M j is a band matrix.

Proof. Since,

h(ω) =
1

2π

iω(1−α)

α + iω(1−α)
=

1

2π
(heven(ω)+ ihodd(ω))

there exists N ∈ N such that

h(ω) =
1

2π

(
N

∑
n=0

an cos(
nω

2 j
)+ i

N

∑
n=1

bn sin(
nω

2 j
)

)
+ ε(ω),

where ε(ω) is an error that is small for large N. Then, from (7),

v jk(t)∼=
M(α)

2π(1−α)

∫

Ω j

ψ̂ jk(ω)

(
N

∑
n=0

an cos(
nω

2 j
)+ i

N

∑
n=1

bn sin(
nω

2 j
)

)
eiωtdω .

We observe that,

an cos(
nω

2 j
)ψ̂ jk(ω) =

an

2
(e

i nω
2 j + e

−i nω
2 j ) ψ̂ jk(ω) =

an

2
(ψ̂ j(k−n)(ω)+ ψ̂ j(k+n)(ω))

and

bn sin(
nω

2 j
)ψ̂ jk(ω) =

bn

2i
(e

i nω
2 j − e

−i nω
2 j ) ψ̂ jk(ω) =

bn

2i
(ψ̂ j(k−n)(ω)− ψ̂ j(k+n)(ω)).

Then,

v jk(t)∼=
M(α)

1−α

[
a0ψ jk(t)+

N

∑
n=1

(
an + bn

2
ψ j(k−n)(t)+

an − bn

2
ψ j(k+n)(t)

)]

and for m ∈K j, 0 ≤ m ≤ N, we can approximate the elements of the matrix

M
j

km =
〈
v jk,ψ jm

〉
∼=

{
M(α)
1−α

ak−m+bk−m

2
, if k−m > 0

M(α)
1−α

ak+m−bk+m

2
, if k−m < 0

M
j

kk =
〈
v jk,ψ jk

〉
∼=

M(α)

1−α
a0.

The inner products are zero for m > N. Thus, M j is a band matrix. ⊓⊔

Remark. As expected, in all numerical developments, the matrix M j is a diagonal dominant matrix, due to the
characteristics of the kernel h and the wavelet basis.

Finally,

f̃ (t) =
Jmax

∑
j=Jmin

f̃ j(t) (11)

is an approximate solution to (5).

Remark. Note that it is not necessary to calculate v jk. Only the inner product M
j

km =
〈
v jk,ψ jm

〉
are needed to solve (10).
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4 An auxiliary fractional differential equation

For casual g ∈ L2(−∞,b], g(0) = 0, let’s consider f ∈ H1(−∞,b), b ∈ R such that

Dα
−∞ f (t)+λ f (t) = g(t). (12)

We construct such f using the scheme described in the previous section.
The relationship between the coefficients of f j and g j now reads

Dα
−∞ f j(t)+λ f j(t) = ∑

k∈K j

b jk(v jk(t)+λ ψ jk(t)) = g̃ j(t)

and

∑
k∈K j

b jk(v jk(t)+λ ψ jk(t))∼= ∑
k′∈K j

c jk′ψ jk′(t)

or
M̃ j b

j
k = c

j
k, k ∈K j,

with M̃ j = (M j +λ Id).

Remark. From Lemma 2., the associated matrix M̃ j is a band matrix.

Since,
M̃ j

km =
〈
v jk,ψ jm

〉
,

M̃ j
kk =

〈
v jk,ψ jk

〉
∼=

M(α)

1−α
a0 +λ ,

and the inner products are zero for m > N, then the system can be solved efficiently.

Remark. For casual g, the proposed method produces a solution of the auxiliary problem that satisfies f (0)∼= 0.

Actually, being g(t) = 0 for t ≤ 0, its wavelets coefficients c jk are null, with a few exceptions associated to wavelets with

support in a neighborhood of the origin. The coefficients b
j

k, satisfy M̃ jb
j

k = c
j

k, thus b
j

k are also null.

5 A solution to the IVP

Finally we focus on the IVP (1), i. e., {
Dα

0 f (t)+λ f (t) = g(t), t > 0
f (0) = 0.

Note that in this PVI we calculate Dα
0 f instead of Dα

−∞ f as in (12) .
Let’s consider the solution f to the equation

Dα
−∞ f (t)+λ f (t) = g(t)χ[0,b]

constructed as presented in Section 4., where χ[0,b] is the characteristic function of the interval [0,b], and define

f (t) = f (t)χ[0,b].

Lemma 3. f is a solution to the IVP.

Proof. We note that:

• for t < 0 we have f (t) = 0 and f
′
(t) = 0,

• for t > 0, f
′
(t) = f ′(t),

• Dα
−∞ f (t)+λ f (t) = e−

αt
1−α Dα

−∞ f (0)+Dα
0 f (t)+λ f (t) = e−

αt
1−α (g(0)−λ f (0))+Dα

0 f (t)+λ f (t)

= Dα
0 f (t)+λ f (t).

Then, Dα
0 f (t)+λ f (t) = g(t) and f (0)= 0. ⊓⊔

Existence and uniqueness of solution to this IVP has been proved in previous papers (see for example [1] and [24]):

Theorem 1. If g ∈C(0,+∞) and g(0) = 0, there exists a unique continuous solution to

Dα
0 f (t)+λ f (t) = g(t), f (0) = 0.

Remark. We have constructed an approximation to it.
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5.1 The error

While performing the proposed scheme we introduce some approximation errors. Below we give a detailed description of
them.

• Approximation of the data g:
as we mentioned in the Subsection 3.2. The data function g ∈ L2(R) can be decomposed as

g(t) = ∑
n∈Z

〈g,φJn〉φJn(t)+ ∑
j≥J

∑
k∈Z

〈
g,ψ jk

〉
ψ jk(t), (13)

then, we introduce an error supposing that there exist Jmin,Jmax ∈ Z such that: g = ∑
Jmax
j=Jmin

g j + r , g j ∈ Wj, with

||r||2 < ε‖g‖2
∼= 0. Assumptions on r guarantee that it can be neglected. In addition, g j is truncated and we actually

work with g̃ j = ∑k∈K j
c jkψ jk(t) where K j ⊂ Z, |K j| = η j < ∞. It satisfies ∑k/∈K j

|
〈
g,ψ jk

〉
|2 < ε||g j||

2 and ε ∼= 0.

Once more, K j is chosen such that the truncation error is small. It can also be reduced considering larger K j.
• v jk ∈Wj:
this statement enables us to consider the equation (9) and it is justified by Lemma 1. The error that this assumption
introduces can be reduced considering more levels simultaneously.

• Computation of M̃ j : some errors are introduced in the calculation of the inner products 〈v jk,ψ jl〉. The corresponding
integrals can be performed in the frequency domain, i.e., on compact subsets and it can be computed with good
precision.
• Solving (4):

matrices M̃ j have good condition number (nearly 1). Thus, the linear system can be solved efficiently.

6 Numerical applications

6.1 Example 1

To illustrate the performance of the proposed approximation scheme we solve IVP (1) for λ = 0, α = 0.5 and g a casual
function defined as g(t) = v(t)sin(t) where v(t) is a smooth window in [0,19]. In Figure 3 we show the plots of g and of its
exact primitive from the formula appearing in [1]. Wavelet analysis indicates that the energy of the data g is concentrated

Fig. 3: (a) g(t) = v(t)sin(t), (b) solution to IVP (1)

in the subspaces W−2 and W−3 as shown in Table 1.
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Table 1: Energy distribution of g

level j energy of g frequency

0 0.0009 [3.14, 6.28]

-1 0.0111 [1.57, 3.14]

-2 0.8639 [0.78, 1.57]

-3 0.0996 [0.39, 0.78]

-4 0.0088 [0.19, 0.39]

-5 0.0146 [0.09, 0.19]

For the reconstruction we consider levels −4 ≤ j ≤ −1 and calculate f̃ j = ∑k∈K j
b jkψ jk. The approximate solution f̃

to the IVP is obtained adding the components ∑−1
j=−4 f̃ j. In Figure 4 we plot this solution (green) together with the exact

one calculated from the formula in [1] (blue).

Fig. 4: Approximate primitive of g (green) vs exact solution (blue)

6.2 Example 2

We consider the IVP (1) for λ = 2.1, α = 0.5 and a casual function g(t) = v(t)e−
t2

2 (sin(12πt)− sin(2.5πt)) where v(t) is
a smooth window in [0,4]. In Figure 5 the plots of g and the exact solution are shown. Once more we perform the wavelet
analysis and observe that 97% of the energy of g is concentrated on the levels j = 0,1 and j = 3. We present the energy
distribution of g in Table 2.
We consider levels −1 ≤ j ≤ 4, for these levels we calculate f̃ j = ∑k∈K j

b jkψ jk and reconstruct the solution performing

∑4
j=−1 f̃ j. In Figure 6 we present the approximate solution to the IVP (1) (green) and the exact solution (blue).

6.3 Example 3

Finally we consider the IVP (1) for λ = 3.5, α = 0.7 and a casual function g(t) = v(t)t2 sin(4.5πt) where v(t) is a smooth
window in [0,5]. In Figure 7 the plots of g and the exact solution are shown. In this case the wavelet analysis indicates
that 96% of the energy of g is concentrated on the level j = 2. We present the energy distribution of g in Table 3.
We consider levels 1 ≤ j ≤ 2 and calculate f̃ j = ∑k∈K j

b jkψ jk and reconstruct the solution performing ∑2
j=1 f̃ j . Finally, in

Figure 8 we show the approximate solution f of the IVP (1).
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Fig. 5: (a) g(t) = v(t)exp(− t2

2 )(sin(12πt)− sin(2.5πt)), (b) solution to the IVP (1)

Table 2: Energy distribution of g

level j energy of g frequency

-1 0.0114 [1.57, 3.14]

0 0.0922 [3.14, 6.28]

1 0.3903 [6.28, 12.56]

2 0.0142 [12.56, 25.12]

3 0.4806 [25.12, 50.24]

4 0.0026 [50.24, 100.48]

5 0.0001 [100.48, 200.96]

Fig. 6: Approximate solution f to the IVP (1) (green) vs exact solution (blue)
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Fig. 7: (a) g(t) = v(t)t2 sin(4.5πt), (b) solution to the IVP (1)

Table 3: Energy distribution of g

level j energy of g frequency

0 0.0003 [3.14, 6.28]

1 0.0300 [6.28, 12.56]

2 0.9693 [12.56, 25.12]

3 0.0004 [25.12, 50.24]

Fig. 8: Approximate solution f to the IVP (1) (green) vs exact solution (blue)
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7 Conclusion

We have presented an approximate solution to an initial value problem involving Caputo-Fabrizio fractional derivatives.
Following some previous results we choose a wavelet basis with suitable properties - well localized in both, time and
frequency domain, smooth, band limited, infinitely oscillating with fast decay - where the unknown and the data are to
be decomposed. In order to solve the IVP (1) we proceed by steps. First we calculate the fractional derivatives of the
wavelet basis. Afterwards we solve some auxiliary problems. In all cases the wavelet coefficients of the unknown are the
solution to a linear algebraic system of equations. Finally we build the approximate solution to the IVP from its wavelet
coefficients. The choice of the basis guarantees that the numerical scheme is simple, stable and its accuracy can be easily
improved. We do not need to impose any supplementary properties to the data or to the unknown. If the data is given only
at discrete points, we can proceed because we only use its wavelet coefficient. No integration of the data is needed. The
matrix to be inverted in each level has shown good condition number in all the numerical examples we have developed.
Another approximation we have to carry on is the one involving the images of the wavelet basis and the inner product
between them and the wavelets. Once more the properties of the basis enable us to compute them accurately and to be able
to refine this calculation if necessary. It is worth noting that this technique could be applied to other fractional derivatives.
We exhibit some numerical examples that illustrate the good performance of the proposed scheme.
In future work we are interested in extending this technique to solve IVP combining ordinary and fractional derivatives
and boundary value problems for fractional partial differential equations.
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