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Abstract: Motivated by recent applications of fractional calculus, in this paper, we derive analytical solutions of fractional advection -

dispersion equation with retardation by replacing the integer order partial derivatives with fractional Riesz - Feller derivative for space

variable and Caputo fractional derivative for time variable. The Laplace and Fourier transforms are applied to obtain the solution in

terms of the Mittag - Leffler function. Some interesting special cases of the time - space fractional advection - dispersion equation

with retardation are also considered. The composition formulas for Green function has been evaluated which enables us to express the

solution of the space time fractional advection dispersion equation in terms of the solution of space fractional advection dispersion

equation and time fractional advection dispersion equation. Furthermore, from this representation we derive explicit formulae, which

enable us to plot the probability densities in space for the different values of the relevant parameters.

Keywords: Caputo derivative, Riesz-Feller derivative, Mittag-Leffler functions, Laplace-Fourier transform, H-function.

1 Introduction

Model of advection-dispersion equation used for the prediction of transport of nonreactive dissolved contaminants in the
groundwater. Governing equation of advection-dispersion equation in one-dimension is given by

∂C(x, t)

∂ t
=−vx

∂C(x, t)

∂x
+Dx

∂ 2C(x, t)

∂x2
. (1)

The one-dimensional advection-dispersion transport equation with retardation can be obtained through sorption,
radioactive decay, chemical reaction, biological transformations etc. Molecules and ions are exchanged by sorption from
solid phase to the liquid phase, including both adsorption and desorption. Adsorption is an excess of contaminant
concentration at the surface of a solid by which contaminants move slower than the flowing groundwater, this effect is
called retardation process. A retardation factor of 10 implies that contaminant plume moves 10 times slower than the
groundwater velocity. Retardation factor is a measure of the retardation effect of the adsorption process on the transport
of the chemical in the groundwater. In groundwater, the retardation effect caused by the adsorption process is measured
by retardation factor.
The amount of contaminant adsorbed by the solids is a function of the concentration in solution, S = f (C) [1, p. 386].
Governing equation that includes retardation, in a homogeneous saturated media due to adsorption, adds a source-sink
term:

∂C(x, t)

∂ t
=−v

∂C(x, t)

∂x
+

ρb

n

∂S(x, t)

∂ t
+DL

∂ 2C(x, t)

∂x2
, (2)
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and for linear isotherm dS(x, t) = Kd dC(x, t), Kd being distribution coefficient, equation (2) becomes

(

1+
ρb

n
Kd

) ∂C(x, t)

∂ t
=−v

∂C(x, t)

∂x
+DL

∂ 2C(x, t)

∂x2
. (3)

R
∂C(x, t)

∂ t
=−v

∂C(x, t)

∂x
+DL

∂ 2C(x, t)

∂x2
. (4)

Here R is called the retardation factor, DL is the longitudinal hydrodynamic dispersion coefficient, ρb is the bulk mass

density of porous media, n is the porosity of the medium,
∂S(x,t)

∂ t
is the rate at which constituent is adsorbed,

ρb
n

∂S(x,t)
∂ t

is
the change in concentration in groundwater caused by adsorption or desorption, v is the average linear velocity along flow
line.

A list of previous work in which analytical solutions have been obtained for advection dispersion equation with
retardation factor are as follows:

Genuchten [2] derived an analytic solution for the flow of a chemical in porous medium as affected by adsorption and
decay.

Genuchten and Alves [3] derived mathematical models for advection-dispersive equation (4) and solved analytically.
Chrysikopoulous et al. [4] derived a closed form analytic solution to the one dimensional advection dispersion equation
(4) with spatially variable retardation factor to investigate the transport of sorbing solutes in heterogenous porous media.
Van Kooten [5] presented a stochastic nature of first order kinetic process to decouple the advection dispersion equation
and the sorption. Liu et al. [6] derived an analytical solution to the one-dimensional solute advection-dispersion equation.
Chang et al. [7] applied linear and nonlinear equilibrium - controlled sorption process to study the retardation factor used
in the cooper and cadmium transport. Liu and Si [8] developed the orthogonal expansion technique to solve the diffusion
in layered porous media.
One of the problems of using advection - dispersion equation to simulate the transport process is the scale dependent
dispersion, i.e. the dispersion coefficient increases with contaminant travel distance [9,10]. However, research results
of using fractional advection dispersion equation to simulate the data of small scale column test [11] showed that the
dispersion coefficient of fractional advection dispersion equation does not change significantly with the length of the
column, and the scale effect is reflected by the order of the fractional derivative. Lu et al. [12] found that the dispersion
coefficient is still scale dependent when modelling the large scale solute transport with fractional advection dispersion
equation.
These days, efforts have been made to generalize the integer order advection dispersion equation to fractional order
advection dispersion equation. Yildirim and Kocak [13] solved space time fractional advection dispersion equation by
homotopy perturbation method. Doha et al. [14] presented two efficient spectral methods to solve two kinds of space
fractional linear advection-dispersion problems.

Huang et al. [15] solved fractional advection dispersion equation by finite element method. Hohener and Atteia [16]
presented analytical models which predict concentrations and isotope ratios of organic pollutants in homogenous
medium in aquifers. Huang et al. [17] developed a FORTRAN based program named FADEMain for modelling
adsorbing contaminant transport in homogenous media.

Recently, Atangana and Kilicman [18] obtained solution of fractional advection dispersion equation

∂ αC(x, t)

∂xα
− v

∂ βC(x, t)

∂xβ
−λ Rc = R

∂C(x, t)

∂ t
, 0 < β ≤ 1 < α ≤ l, (5)

using Riemann Liouville and Caputo fractional derivatives, with initial and boundary conditions are as

C(x,0) = 0, C(0, t) = c0exp(−γt),
∂C(x, t)

∂x
= 0 as x → ∞, 0 < t ≤ t0. (6)

In our problem, we fractionalize equation (4) with respect to both space and time variables. We use Caputo fractional
derivative for time variable and Riesz-Feller derivative of order β and skewness θ for space variable

R C
0 Dα

t C(x, t) =−vDx C(x, t)+DL xD
β
θ C(x, t), x ∈R, t ∈ (0,∞), α ∈ (0,1], β ∈ (0,2], (7)

with initial and boundary conditions are as

C(x,0) = f (x), C(x, t) = 0 as |x| → ∞, (8)

c© 2019 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 5, No. 4, 283-295 (2019) / www.naturalspublishing.com/Journals.asp 285

where v > 0, DL ≥ 0. We have generalized the initial condition for a sufficiently well-behaved function f (x) ∈ Lc(R),
defined and continuous in an open interval except, possibly, at isolated points where these functions can be infinite and
Lc(R) is a class of functions for which the Riemann improper integral absolutely converges. Here C

a Dα
t is the Caputo time

fractional derivative of order α (0 < α ≤ 1), xD
β
θ is the Riesz-Feller space fractional derivative of order β (0 < β ≤ 2)

and skewness θ (|θ | ≤ min{β , 2−β}). For v = 0, our problem reduces to space time diffusion equation.
Since Riesz-Feller derivative is able to model the problems for either sides of domain, no condition is required to be
imposed at the source. For θ = 0 case, Riesz-Feller space fractional derivative reduces to symmetric fractional derivative
[19, Eq. 2.7]. Many authors have used symmetric and skewed fractional derivative operator in their results (see, e.g.[15],
[20], [21], [22]). It has been shown that solutions of fractional Riesz-Feller space derivative [23] and continuous time
random walk theory for Levy flights [24,25] gives same results. Because of the added advantage of the Riesz-Feller
derivative, it has been used in solving fractional Schrodinger equation also in [26,27,28].

Let Re(α)> 0 and f (t) be a piecewise continuous function in interval J
′
= (0,∞) also f is integrable on J = [0,∞). Then

RL
a Dα

t f (t) =

(

d

dt

)m+1 ∫ t

a
(t − ξ )m−α f (ξ )dξ , m ≤ α < (m+ 1), t > 0 (9)

is the Riemann - Liouville fractional derivative of f (t) of order α [29, Eq. 2.1, p. 82]. Caputo fractional derivative of a
function f (t) of order α is given by

C
a Dα

t f (t) =

{

1
Γ (α−n)

∫ t
a

f n(τ)dτ
(t−τ)α+1−n , (n− 1)< α < n,

dn f (t)
dtn , α = n.

This operator was introduced by Caputo [30, Eq. 5, p. 530].
Laplace transform of the Caputo fractional derivative is given by Caputo [31] and Kilbas et al. [32, Eq. 2.4.62, p. 98] as,

L(Ca Dα
t f (t)) = sα f (s)−

n−1

∑
k=0

sα−k−1 f (k)(0), (n− 1)< α ≤ n, (10)

where Re(s)> 0 and Re(α)> 0.
Riesz - Feller fractional derivative [33] of a sufficiently well-behaved function f (x), is defined via Fourier transform as

F(xD
β
θ f (x);k) =−ψθ

β (k) f ∗(k), 0 < β ≤ 2, |θ | ≤ min{β ,2−β}, (11)

where ψθ
β (k) = |k|β exp

[

i(sign k) θπ
2

]

is the pseudo-differential operator given in [33,34,35,36,37]. When θ = 0, (11)

reduces to

F(xD
β
0 f (x);k) =−|k|β , (12)

This can be written as −(k)β =−(k2)
β
2 . For θ = 0, we can write

xD
β
0 ≡−

(

− d2

dx2

)

β
2

. (13)

Saichev and Zaslavsky [19] gave an alternative notation for the symmetric fractional derivative as

xD
β
0 ≡ dβ

d|x|β . (14)

Explicit representation of Riesz fractional derivative of a sufficiently well-behaved function f (x), for 0 < β < 2 is given
as

xD
β
0 f (x) =

Γ (1+β )

π
sin

(

β π

2

)

∫ ∞

0

f (x+ ξ )− 2 f (x)+ f (x− ξ )

ξ 1+β
dξ (15)

Integral representation for Riesz-Feller derivative of a sufficiently well-behaved function f (x), given as

xD
β
θ f (t) =

Γ (1+β )

π

{

sin
[

(β +θ )
π

2

]

∫ ∞

0

f (t + ξ )− f (t)

ξ 1+β
dξ

+sin
[

(β −θ )
π

2

]

∫ ∞

0

f (t − ξ )− f (t)

ξ 1+β
dξ

}

. (16)
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Using Mellin - Barnes type integral, Fox [38] introduced the H - function defined as follows

Hr,s
u,v(t) =Hr,s

u,v



t

∣

∣

∣

∣

∣

∣

(au,Au)

(bv,Bv)



 = Hr,s
u,v



t

∣

∣

∣

∣

∣

∣

(a1,A1), ...,(au,Au)

(b1,B1), ...,(bv,Bv)



 =
1

2π i

∫

ω
Θ(ξ )t−ξ dξ , (17)

where

Θ(ξ ) =
[Π r

j=1Γ (b j +B jξ )][Π
s
i=1Γ (1− ai−Aiξ )]

[Π v
j=r+1Γ (1− b j −B jξ )][Π u

i=s+1Γ (ai +Aiξ )]
, (18)

The empty products are interpreted as unity always; r,s,u,v ∈ N0 with 0 ≤ s ≤ u, 1 ≤ r ≤ v, Ai, B j ∈R+, ai, b j ∈ R or
C(i = 1,2, ...,u; j = 1,2, ...,v) such that

Ai(b j + k) 6= B j(ai − l− 1), (k, l ∈ N0; i = 1,2, ...,s; j = 1,2, ...,r). (19)

The notations here are: N0 = (0,1,2, ...); R= (−∞,∞), R+ = (0,∞), and C denotes the complex number field.
The Mittag - Leffler function is a simple generalization of the exponential function and it is an entire function. Its

importance is realized due to its direct involvement in the problems of physics, biology, engineering and applied sciences.
Two parameter Mittag - Leffler function is given by Wiman [39] as

Eα ,β (t) =
∞

∑
n=0

tn

Γ (nα +β )
, Re(α)> 0, Re(β )> 0, α,β ∈ C, t ∈ C. (20)

On taking β = 1, in (20), we get corresponding results for one parameter Mittag - Leffler function given by Mittag -
Leffler [40].

One can find relation between two parameter Mittag - Leffler function and Fox H-function in terms of Mellin - Barnes
integral as

Eα ,β (t) =
1

2π i

∫

ω

Γ (s)Γ (1− s)

Γ (β −αs)
tsds = H

1,1
1,2



−t

∣

∣

∣

∣

∣

∣

(0,1)

(0,1),(1−β ,α)



 , (21)

where the contour ω goes from c− i∞ to c+ i∞, and separates the poles of function Γ (s) from those of the function
Γ (1− s). It is shown by Mathai et al. [41] that the integral converges for all t.

In [42, Eq. 25], inverse Fourier transform of Mittag - Leffler function in two parameter is given as

F−1{Eβ ,γ(−atβ |k|α );x}= 1

α|x|H
2,1
3,3





|x|
a

1
α t

β
α

∣

∣

∣

∣

∣

∣

(1, 1
α ),(γ,

β
α )(1,

1
2
)

(1, 1
α )(1,1)(1,

1
2
),



 (22)

where min{Re(α),Re(β ),Re(γ)}> 0 and α > 0.

2 Analytic solution of the space time fractional advection dispersion equation with retardation

Theorem 1.Consider the space time fractional advection dispersion equation

R C
0 Dα

t C(x, t) =−vDx C(x, t)+DL xD
β
θ C(x, t), x ∈ R, t ∈ (0,∞), (23)

with initial and boundary conditions

C(x,0) = f (x), C(x, t) = 0 as |x| → ∞, (24)

where C
0 Dα

t is the Caputo time fractional derivative of order α (0 < α ≤ 1), xD
β
θ is the Riesz-Feller space fractional

derivative of order β (0 < β ≤ 2) and skewness θ (|θ | ≤ min{β , 2−β}), f (x) is a sufficiently well-behaved function,

DL is the longitudinal hydrodynamic dispersion coefficient and v is the average linear velocity along flow line. Then the

solution of equation (23) under the above conditions is given by:

C(x, t) =
∫ ∞

−∞
Gθ

α ,β (x− y, t) f (y)dy, (25)
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where

Gθ
α ,β (x, t) =

1

2π

∫ ∞

−∞
e−ikxEα [−Λ(k)tα ]dk, (26)

is the Green function and Λ(k) =−ik v
R
+ DL

R
ψθ

β (k).

Proof.Applying Laplace transform for Caputo time fractional derivative with respect to time variable t we obtain,

R
[

sαC̄(x,s)− sα−1C(x,0)
]

=−vDxC̄(x,s)+DL xD
β
θ C̄(x,s). (27)

Now applying Fourier transform with respect to space variable x

R

[

sα ˜̄C(k,s)− sα−1C(k,0)
]

=−ivk ˜̄C(k,s)+DL ψθ
β (k)

˜̄C(k,s), (28)

where

ψθ
β (k) = |k|β exp i(signk)

θπ

2
and i =

√
−1. (29)

Applying initial and boundary conditions we get,

R

[

sα ˜̄C(k,s)− sα−1 f̃ (k)
]

=−ivk ˜̄C(k,s)+DL ψθ
β (k)

˜̄C(k,s), (30)

˜̄C(k,s) =
sα−1 f̃ (k)

sα +Λ(k)
, (31)

where Λ(k) =−ik v
R
+ DL

R
ψθ

β (k). Inversion of Laplace transform of equation (31), using the result in [42, Eq. 18]

L−1

(

sβ−1

sα + a

)

= tα−β Eα , α−β+1(−atα), Re(s)> 0, Re(α)> 0, Re(α −β )>−1, (32)

gives

C̃(k, t) = Eα [−Λ(k)tα ] f̃ (k). (33)

Further, taking inverse Fourier transform of (33), we get

C(x, t) =
1

2π

∫ ∞

−∞
e−ikxEα [−Λ(k)tα ] f̃ (k)dk. (34)

=
1

2π

∫ ∞

−∞
e−ikxEα [−Λ(k)tα ]

∫ ∞

−∞
eiky f (y)dydk. (35)

=

∫ ∞

−∞

(

1

2π

∫ ∞

−∞
e−ik(x−y)Eα [−Λ(k)tα ]dk

)

f (y)dy. (36)

=

∫ ∞

−∞
Gθ

α ,β (x− y, t) f (y)dy, (37)

where

Gθ
α ,β (x, t) =

1

2π

∫ ∞

−∞
e−ikxEα [−Λ(k)tα ]dk, (38)

is the Green function and Λ(k) =−ik v
R
+ DL

R
ψθ

β (k).
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3 Composition rule for the Green function

Here we present composition of two Green functions in the integral form corresponding to space-fractional and time-
fractional diffusion equations. Equation (38) can be written as (see, [19])

˜̄Gθ
α ,β (k,s) =

sα−1

sα + DL

R
ψθ

β (k)− ik v
R

(39)

=sα−1
∫ ∞

0
e
−u

(

sα+
DL

R ψθ
β
(k)−ik v

R

)

du (40)

=2

∫ ∞

0
G̃θ

1,β

(

k,
uDL

R

)

F

(

δ
(

k+
vu

2πR

))

Ḡ0
2α ,2 (u,s)du, (41)

where G̃θ
1,β (k,

uDL

R
) = e

− uDL
R ψθ

β
(k)

is the Fourier transform w.r.t. space variable x, F
(

δ
(

k+ vu
2πR

))

is the Fourier transform

of the Dirac-delta function and Ḡ0
2α ,2(u,s) = sα−1e−usα

is the Laplace transform w.r.t. time variable t given in [43].

By inverting the Laplace and Fourier transforms and using the convolution theorem for Fourier transform, we obtain

Gθ
α ,β (x, t) =

1

2π

∫ ∞

0

{

∫ ∞

−∞
Gθ

1,β

(

p,
uDL

R

)

δ
(

x− p+
vu

2πR

)

d p

}

G0
2α ,2(u, t)du, (42)

where Gθ
1,β is the Green function for the space fractional advection dispersion equation of order β and G0

2α ,2 is the

Green function for the time fractional advection dispersion equation of order 2α . Thus, the general Green function of the
fractional space time advection dispersion equation with retardation can be expressed as an integral involving the Green
functions: one corresponding to space fractional advection dispersion equation with retardation and other corresponding
to time fractional advection dispersion equation with retardation.
The M function denoted by Mν(z), ν ∈ (0,1) and z ∈C defined as

Mν(z) =
∞

∑
n=0

(−z)n

n!Γ [−νn+(1−ν)]
(43)

=
1

π

∞

∑
n=1

(−z)n−1

(n− 1)!
Γ (νn)sin(πνn), (44)

which is in the Wright function form. The Green function can be interpreted in terms of M function according to (Eq. 4.4,
4.23 [43]) as

G0
2,2α (u, t) =

1

2

(

uDL

R

)−α

Mα

( u

tα
.
)

(45)

The L function defined as according to equation (11)

L̃θ
β (k) = e

−ψθ
β
(k)
, (46)

and the Green function given in [43, eq. 4.4] can be written in L function form as

Gθ
1,β (x, t) = t

− 1
β Lθ

β

(

x

t
1
β

)

, x ∈R, t ≥ 0. (47)

Relationship between M and L functions is given by [43, Eq. 4.32]

1

c
1
ν

L−ν
ν

(

r

c
1
ν

)

=
cν

rν+1
Mν

( c

rν

)

, 0 < ν < 1, c > 0, r > 0. (48)

Now composition of Green function (42), that involve L and M functions, for x > 0 is obtained as

Gθ
α ,β (x, t) =

1

2π

∫ ∞

0
t−α

{

∫ ∞

−∞

(

uDL

R

)− 1
β

Lθ
β

(

p

(

uDL

R

)− 1
β

)

δ
(

x− p+
vu

2πR

)

d p

}

Mα

( u

tα

)

du. (49)
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Gθ
α ,β (x, t) =

1

2π

∫ ∞

0

{

∫ ∞

−∞

(

uDL

R

)− 1
β

Lθ
β

(

p

(

uDL

R

)− 1
β

)

δ
(

x− p+
vu

2πR

)

d p

}

[

t

uα
u−

1
α L−α

α

(

t

u
1
α

)]

du. (50)

By putting y = u−
1
α and t = 1 (50) can be written in reduced Green function Kθ

α ,β (x) as

Gθ
α ,β (x,1) = Kθ

α ,β (x) =
1

2π

∫ ∞

0

{

∫ ∞

−∞
y

α
β

(

DL

R

)− 1
β

Lθ
β

(

py
α
β

(

DL

R

)− 1
β

)

δ

(

x− p+
vy−α

2πDL

)

d p

}

L−α
α (y)dy. (51)

For v = 0, one obtain

Gθ
α ,β (x,1) = Kθ

α ,β (x) =
1

2π

∫ ∞

0
y

α
β

(

DL

R

)− 1
β

Lθ
β

(

xy
α
β

(

DL

R

)− 1
β

)

L−α
α (y)dy, (52)

which is similar to the form obtained by Mainardi et al. [43]

4 Special cases

1.On taking θ = 0, as an particular case of Theorem 1, the solution of symmetric fractional advection dispersion with
retardation

R C
a Dα

t C(x, t) =−vDxC(x, t)+DL xD
β
0 C(x, t), (53)

subject to initial and boundary conditions

C(x,0) = f (x), C(x, t) = 0 as |x| → ∞, (54)

is obtained as

C(x, t) =
1

2π

∫ ∞

−∞
e−ikxEα

[(

ik
v

R
− DL

R
|k|β
)

tα

]

f̃ (k)dk. (55)

2.In equation (53), if we take v = 0,
DL

R
= η and f (x) = δ (x), we get the solution of the fractional diffusion equation

discussed by Saxena et al. [44] as

C(x, t) =
1

β |x|H
2,1
3,3





|x|
η

1
β t

α
β

∣

∣

∣

∣

∣

∣

(1, 1
β ),(1,

α
β )(1,

1
2
)

(1,1)(1, 1
β )(1,

1
2
)



 . (56)

Taking β = 2 in equation (56), Debnath [45, p. 152] obtained explicit form of the solution as

C(x, t) = 1
2|x|H

1,0
1,1





|x|
η

1
2 t

α
2

∣

∣

∣

∣

∣

∣

(1, α
2
)

(1,1)





3.When α = 1, f (x) = δ (x) and R = 1 in (53), then by properties of the H-function given in [46], equation (56) changes
to the following form given in [47,48] as

C(x, t) =
1

β |x|H
1,1
2,2





|x|
η

1
β t

1
β

∣

∣

∣

∣

∣

∣

(1, 1
β ),(1,

1
2
)

(1,1),(1, 1
2
)



 , β > 0. (57)

5 Applications

Corollary 1.Consider the space time fractional advection dispersion equation

R C
a Dα

t C(x, t) =−vDx C(x, t)+DL xD
β
θ C(x, t), x ∈ R, t ∈R

+, (58)
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with initial and boundary conditions

C(x,0) = δ (x), C(x, t) = 0 as |x| → ∞, (59)

where δ (x) is Dirac-delta function and

0 < α ≤ 1, 0 < β ≤ 2, |θ | ≤ min{β , 2−β}.

Then from Theorem 1, solute concentration C(x, t) is given by

C(x, t) =
1

2π

∫ ∞

−∞
e−ikxEα [−Λ(k)tα ]dk, (60)

where Λ(k) =−ik v
R
+ DL

R
ψθ

β (k).

If we take R = 1, above example, reduces to the result derived by Huang and Liu [49]. When we take θ = 0 and suitable
substitution for constants above example reduces to the result given by Camargo et al. [50, p. 043514-7].

Corollary 2.Consider the space time fractional advection dispersion equation

R C
a Dα

t C(x, t) =−vDx C(x, t)+DL xD
β
θ C(x, t), x ∈ R, t ∈ R

+, (61)

with initial and boundary conditions

C(x,0) = e−x, C(x, t) = 0 as |x| → ∞, (62)

and

0 < α ≤ 1, 0 < β ≤ 2, |θ | ≤ min{β , 2−β}.

Then from Theorem 1, solute concentration C(x, t) is given by

C(x, t) =
1

2π

∫ ∞

−∞
e−ikxEα [−Λ(k)tα ]

∫ ∞

−∞
eikye−ydydk. (63)

C(x, t) =
1

2π

∫ ∞

−∞
e−ikxEα [−Λ(k)tα ]g(k)dk. (64)

where g(k) = 1
2π

[

e−(1+ik)−1
1+ik

]

. and Λ(k) =−ik v
R
+ DL

R
ψθ

β (k).

For α = 1, R = 1 and β = 2, (61) reduces to the advection - dispersion transport equation considered by Pandey et al.
[51].

6 Illustration and discussions

To obtain the effect of the fractional order derivatives to the advection dispersion transport equation with retardation, we
compare the analytic solution obtained with the experimental data. The figures are plotted via MATLAB. Figures are the
simulation of the concentration of the NH+

4 –N as a function of time and distance from a point or line source in an aquifer

with known properties. The aquifer properties are: DL = 6.50 cm2/h, v = 1.689 cm/h, R = 7.220, for reference purpose
have been taken from [17, p. 299]. Typical values for R for organics, often encountered in field sites, range from 2 to 10
[52]. Graphs are plotted for fractional and integer order values of α and β in the advection - dispersion equation (23) for
x = 32.5, f (x) = δ (x).
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Fig. 1: Concentration profile of NH+
4 –N varying with time for β = 2.
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Fig. 2: Concentration profile of NH+
4 –N varying with time for α = 1.
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Fig. 3: Graphical interpretation of the solution of space time fractional advection dispersion equation with retardation for α =
0.85, 0.95, 1 with β = 2 and θ = 0 respectively.
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Fig. 4: Graphical interpretation of the solution of space time fractional advection dispersion equation with retardation for α =
0.90, 0.95, 1 with β = 2 and θ = 0.25 respectively.
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Fig. 5: Graphical interpretation of the solution of space time fractional advection dispersion equation with retardation for α =
0.85, 0.95, 1 with β = 2 and θ = 0.50 respectively.
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Fig. 6: Graphical interpretation of the solution of space time fractional advection dispersion equation with retardation for β =
1.90, 1.98, 2 with α = 1 and θ = 0 respectively.

7 Conclusion

In this paper, we obtain solution of space time fractional advection-dispersion equation with retardation by applying
Caputo and Riesz-Feller fractional derivative. Compared to advection - dispersion equation model, fractional advection -
dispersion equation model provide better simulation for the concentration in breakthrough curves for adsorbing
contaminant NH+

4 –N. To show the effect of the Riesz - Feller space fractional derivative, we have obtained graphs for
different values of θ which are symmetric for θ = 0 and skewed for θ 6= 0. The advantage of applying Riesz-Feller
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derivative to obtain the solution of the fractional advection dispersion equation is that, it includes the fundamental
solution for space-time fractional diffusion equation. The Riesz fractional derivative includes both left and right
Riemann-Liouville derivatives that allow the modeling of flow systems from either side of the domain. Since in our
model, the space variable is varying over R, use of Riesz-Feller derivative is justified to cover both sides of the domain.
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