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Abstract: Investigating the properties of the new fractional opesaie an important issue within the fractional calculus. hist
manuscript a continuous family of solutions for a fractibimegro-differential inclusion involving Caputo-Katampola fractional
derivative is obtained.
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1 Introduction

A strong development of the theory of differential equasiand inclusions of fractional order can be seen during tte la
years [1,2,3,4,5] . We recall that fractional differential equations can rabletter many physical phenomena.

Recently, a generalized Caputo-Katugampola fractionaivalive was suggested ing] by Katugampola and
afterwards he provided the existence of solutions for foaet differential equations defined by this derivative.isTh
Caputo-Katugampola fractional derivative extends thd Webwn Caputo and Caputo-Hadamard fractional derivatives
Recently, several qualitative properties of solutionsratfional differential equations defined by Caputo-Katapala
derivative were obtained]8].

In the present paper we study the following Cauchy problem

DIPX(t) € F(t,x(t),W(X)(t)) ae ([0,T]), xX(0)=5xo, (1.1)

wherea € (0,1], p > 0,J = [0,T], D& is the Caputo-Katugampola fractional derivati#e] x R x R — Z(R) is a
set-valued mapyV : C(J,R) — C(J,R) is the nonlineaWV(x)(t) = S v(t,s,x(s))ds V(.,.,.) : Ix R x R — R andxg € R.

The goal of this paper is to prove the existence of soluti@méicuously depending on a parameter for problem (1.1).
Our main theorem is, at the same time, a continuous versidilippov’s theorem 9] for problem (1.1). On the other
hand, as a consequence of this result we obtain a continetetion of the solution set of problem (1.1). The proof is
essentially based on the Bressan-and Colombo selectioreting1q].

We note that similar results for other classes of fractidiifé@rential inclusions defined by Riemann-Liouville, Cap
or Hadamard fractional derivatives exists in the literat[irl,12,13] . The present paper extends and unifies all these
results in the case of the more general problem (1.1).

The manuscript is organized as follows: in Section 2 we preseme preliminary results and Section 3 is devoted to
our main results. The conclusions are presented in Section 4
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2 Preliminaries

LetT >0,J:=[0,T]. Inwhat follows.#(J) is theg-algebra of all Lebesgue measurable subselsXfis a real separable
Banach space. As usual’ (X) is the set of all nonempty subsets of X as{X) is the set of all Borel subsets &f. If
C c Jthenxc(.) : J— {0,1} is the characteristic function &@. If C C X, its closure is denoted by(€).

The Hausdorff distance between the closed el C X is dy(C,D) = max{d*(C,D),d*(D,C)}, whered*(C,D) =
sup{d(c,D); ce C} andd(y,C) = inf{]y—c|;ce€ C}.

By C(J,X) we understand the Banach space of all continuous fungiohsJ — X. Its normis|y(.)|c = sugc;|x(t)|.
L1(J,X) is the Banach space of all (Bochner) integrable functigns J — X endowed with the nory(.)|; = fOT ly(t)|dt.

Some preliminary results that needed the sequel are pegkériie following lemma is proved iri4].

Lemma 2.1.Consider x J — X a measurable function and consider H — £?(X) set-valued which has closed values
and is measurable.
Then, ife : 3 — (0,) is measurable, there exists a measurable selectiah-k X of H(-) which satisfies

X(t) — h(t)] < d(x(t),H()) + £(t) ae (J).

Definition 2.2. The setA c L%(J,X) is calleddecomposabl# for any b(-),c(-) € A and any subsdd € .Z(J) one has
ax +bxaa €A

2(3,X) denotes the set of all decomposable closed subsefg &fX).

In what follows(S,d) is a separable metric space. The next two lemmas are proy&d]in

Lemma 2.3.Consider H.,.) : I x S— Z(X), .Z(J) ® #(S)-measurable set-valued map with closed values such that
H(t,.) is lower semicontinuous for all¢ J.
Then the set-valued map*t) : S— Z(J,X)

H*(s) = {f e LY(3,X); f(t)eH(t,s) ae (J)}
has nonempty closed values and is lower semicontinuotreit exists (1) : S— L1(J, X) continuous that verifies
d(0,H(t,s)) <q(s)(t) ae (J),VseS

Lemma 2.4. Consider H.) : S — 2(J3,X) a set-valued map with closed decomposable values that igrlow
semicontinuous, consider(.a: S — LY(J,X), b(.) : S— LY(J,R) continuous functions such that the values of the
set-valued map E) : S— 2(J,X) defined by

F(s)=cl{f eH(s); [f(t)—a(s)(t)]<b(s)(t) ae (I)}

are nonempty.
Then K.) has a continuous selection.

The following notions were introduced]f Let p > 0.

Definition 2.5. a) The generalized left-sided fractional integral of order> 0 of a Lebesgue integrable functidn:
[0,0) — R is defined by

10Pf (1) — l‘fl(;; /Ot(tp _ )01 1 (g)ds (2.1)

providing the right-hand side is pointwise defined(0reo) and/l™ (.) is Gamma function.
b) The generalized fractional derivativeorresponding to the generalized left-sided fractiontddral in (2.1) of a
functionf : [0,0) — R is defined by

a—n+1 -1
Pt = (P e = Bt dy [ IO s

if the integral exists and = [a].
c¢) The Caputo-Katugampolgeneralized fractional derivative is defined by

s

i¥(0)
!

n—1
DIPf(t) = (DUP[f(s) —
6= 0[5~ 5 —
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We note that ifp = 1, the Caputo-Katugampola fractional derivative becorhesvtell- known Caputo fractional
derivative. On the other hand, passing to the limit with— 0+, the above definition yields the Hadamard fractional
derivative.

In what followsp > 0 anda < [0, 1].

Lemma 2.6.For a given integrable function(h) : [0, T] — R, the unique solution of the initial value problem
DIPx(t) =h(t) ae ([0.T]), x(0)=xo,

is given by

pl—a t p_gP)a 1Sp 1
X(t) =Xo+ / tP — “ 7 h(s)ds
0 =%+ oy |, =) (9

For the proof of Lemma 2.6, se6][ namely, Lemma 4.2.

By a solution of the problem (1.1) we mean a functioa C(J,R) for which there exists a function € L*(J,R)
satisfyingh(t) € F(t,x(t),W(x)(t)) a.e. (J), D¢ ’x(t) = h(t) a.e. (J) andx(0) = xo.

The solution set of (1.1) is then denoted wi#y(xp).

3 Main results
Below we assume the following hypotheses.

Hypothesis 3.1i) F(.,.) : IxRxR— Z(R) is Z(J) ® #(R x R) measurable with nonempty closed values.
ii) There existd (.) € L*(J,(0,)) in such a way that, for almost dlic J

dH(F(t,ul,Vl),F(t,Uz,Vz)) < I(t)(|u1— LI2| + |V1—V2|) ¥V up,U2,V,Vo € R.

iif) The mappingv(.,.,.) : I x R x R — R verifies:¥y € R, (s,t) — v(S,t,y) is measurable.
iv) v(sit,y) —v(st,X)| <I(t)ly—x ae(st)eIxd, VyxeR.

Hypothesis 3.2(i) Sis a separable metric space, the mappa(gs: S— R andg(.) : S— (0,) are continuous.
(i) There existgy(.),q(.) : S— LY(J,R), y(.) : S— C(J,R) continuous that satisfy

(Dy(s))3P(t) =g(s)(t) aeteld, VseS
d(g(s)(t), F(ty(s)(t), W(y(s)(.))(t)) <a(s)(t) aeted VseS
We utilize below the following notation
K(t) = I(t)(1+/otl(u)du), ted,

£(9) = T 1209~ ¥(S(0)| + £(5) +17P0(s)), s S

wherel “Pk := sup.y [l *Pk(t)| andl *Pq(s) := supy |1 7Pq(s)(t)].

Theorem 3.3.Hypotheses 3.1 and 3.2 are verified.
If 1 %Pk < 1, then there exists(¥ : S— C(J,R) continuous, {s)(.) denotes a solution of

D Pz(t) € F(t,z(t),W(2)(t), 20) =a(s)

such thatVv(t,s) € Jx S,
Y(8)(t) =x()(1)] < £(9)-

Proof. In what follows we consider the notatiohgs) = |a(s) — y(s)(0)| + &(), gn(s) := (19PK)"(b(s) + 19Pq(s)),
n>1,%(s)(t) =y(s)(t), Vs € S. Define the set-valued maps

Ao(9) = {f eL'Q.R); f(t) e F(LY(S)O),W(Y(S()(E) ae@)},
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poI (o +1)
WE(S)}-

By our assumptionsl(g(s)(t), F (t,y(s)(t),W(y(s)(.))(t)) <q(s)(t) < q(s)(t) + pa’}%*l) £(s), so according with Lemma
2.1,Bp(s) is not empty.
PutGo(t,s) = F(t,y(s)(t),V(y(s)(.))(t)) and one has

d(0,Go(t;8)) < [g(s)(t)[+a(s)(t) =a (s)(t)

with g*(.) : S— L*(J,R) being continuous.
Taking into account Lemmas 2.3 and 2.4 we deduce that th&ts by a selection 0By that is continuous, i.e.

ho(s)(t) € F(t,y(s)(t), W(y(s)(.))(1)) ae(J),VseS

Iho(s)) g8 < a0 + P L0 Ves) we s ses

Bo(s) =cl{f € Ao(s); [f(t) —g(s)(t)| <a(s) +

Setx(s)(t) = a(s) + % 5 (tP —uP)@—1uP—1hy(s)(u)duand we have

l1-a
x1(s)(t) —Xo(s)(t)[ < |a(s) — y(s)(0)| + ,‘3(—0) /0t (tP — uP) TP Hho(s) (v) — g(9) (V) dv < [a(s) — Y(5)(0) |+

1—

Q

[t tae ) + EL T eg)dusats) - y(s)0) 197019 + L E D et

he)

-

(a

~—

/ot (tP —uP)* P~ Tdu < b(s) +19Pq(s) = au(s).

Following an idea in [7], we define the sequenbgs) : S— L1(J,R), xa(.) : S— C(J,R) such that

a)Xn(.) : S— C(J,R), hn(.) : S— LY(J,R) are continuous.

b) ha(s)(t) € F(t,xn(S)(t),W(Xn(s)(.))(1)), s€ S a.e.(J).

¢) [hn(S)(t) — hn-1(8)(t)] < k(t)an(s), S € S a.e.(J).

d) Xa11(s)(t) = a(s) + % Jo(t? —uP) 1P~ thn(s) (u)du.

If we assume thalti(.),x(.) are already constructed with a)-c) and defige; (.) as in d). It follows from c) and d)
that

X a(91) XS O] < B [5(t2 — 1) 0P () ) — by, 1(5)() o
< £ 1810 — )e 1P () (9 < 19PK- Go(S) = e (9). |
Also we have

d(hn($)(1), F (1, X0+1(8) (1), W 1 (S) () (1) < T (D) ([Xn+2(8) (1) = Xn(S) (1) + Jol (W xni2(8) (V) = Xa() (V)]dV) <
1(t)(1+ Jol(U)du)dnya(s) = K(t)anya(s)-

Forse Swe define
Ania(s) = {f € LX(I,R); (1) € F(t,Xns1() (1), W (Xnz1(9)(.)(1)) ae. (3)},

Broa(S) = I{f € Ana(8): [f(t) —hn(9)(1)] < k(t)nsa(S) 2 ()}

In order to prove thaB,, 1(s) is nonempty we point out that functidn- pn(s)(t) = ((19Pk)"~1 — (19Pk)")(b(s) +
19:Pq(s))l(t) is strictly positive and measurable for asmye have

d(hn(8)(t), F (t;Xn41(8) (1), W(Xn11(8) () (1)) < K(t)[Xn42(S)(t) —Xn(S)(t)] — Pn(S)(t) < k(t)dn+a(S)
With Lemma 2.1 we findv(.) € L1(J,R) such thawv(t) € F(t,%n(S)(t),W (xa+1(S)(.))(t)) a.e.(J) and
W(t) = hn(s) ()] < d(Mn()(t),F (t,xn(S)(t), W (Xn+1(S)(-)) (1)) + Pn(S)(t)

i.e.,Bns1(S) is nonempty.
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PutGni1(t,s) = F(t,X1(9)(t),W(Xn+1(S)(.))(t)). One may estimate
d(0,Gre1(t,9)) < [hn(8)(1)] + k() xn2(S)(1) = Xa(8) (V)] < |ha(S) (1)) + k(D) 2(S) = Gy a(S)(1)  ae (1)

with g7, ;(.) : S— L*(J,R) being continuous.
As above we find,1(.) : S— L*(I,R) being continuous such that

hni1(S)(t) € F(t,Xn12(9) (1), W(Xa12(s)(.))(t)) Vs S ae(J),
[hnt1(s)(t) —ha(s)(t)| < k(t)an+1(s) Vse S a.e (J).
Taking into account conditions c), d) and (3.1) one has
Xas1(8) () = Xn(8) (e < 19PKap(S) = Gnea(s) = (19PK)"(b(s) +19Pq(s)) (3.2)

[Pn2(8)(-) = Pn(S) () |2 < [K()|2an(s) = [K() |2 (19PK)" (b(s) +1Pq(s)). (33)

Therefore sequencesn(s)(.), xn(s)(.) are Cauchy in spacek'(J,R) and C(J,R), respectively. Denote by
h(.) : S— LY(J,R), x(.) : S— C(J,R) with their limits. The mapping — b(s) + ||%Pq(s)| is continuous, therefore
locally is bounded. Thus from (3.3) we deduce the contineiity— h(s)(.) from Sinto L1(J,R).

As above, from (3.2), we obtain that the Cauchy conditiomtséed for the sequeneg(s)(.) locally uniformly with
respect te. Thus, the mapping— x(s)(.) is continuous. At the same time, since the convergengg(sf(.) to x(s)(.) is

uniform and
d(hn(s)(t), F (t,X()(t),W(X(s)(.))()) < M(t)[xa(s)(t) —x(s)(t)| a.e (J),
Vs e Swe may pass to the limit and deduce that
h(s)(t) € F(t,x(s)(t),W(x(s)(.))(t)) VseS ae (J).
We have

ol
r(

R T R (C UL ‘r’:; IR CITR

h(s)(u)|du< Iel(ac; /ot (tP —uP) TP k(U)X 1(8) () = Xa(8) () [cdU < 19PK X4 1(8) () —Xn(S) () -

Passing to the limit in d) we find

We add for alln > 1 inequalities (3.1) and we get
X2 (S)(t) —¥(8) ()] < IZW (8) <<(9).

Finally, passing to the limit in the last inequality we end firoof of the theorem.
From Theorem 3.3 we may find a selection of the solution setatflpm (1.1) that is continuous.
Hypothesis 3.4Hypothesis 3.1 is fulfilled,*Pk < 1, go(.) € L1(J,R;) exists and (0, F (t,0,W(0)(t)) < qo(t) a.e.(J).

Corollary 3.5. Hypothesis 3.4 is verified.
Then there exists a functiof.s) : J x R — R such that
a) s.,x) € .(x), ¥xe R.
b) x— s(.,x) fromR into C(J,R) is continuous.

Proof. It is enough to put in Theorem 38=R, a(x) = x, Vx€ R, &(.) : R — (0,) a given continuous mapping,
9(.)=0,y(.) =0,9(x)(t) = go(t) Yxe R, t € J.
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4 Conclusion

We discussed the existence of solutions continuously dépgmn a parameter corresponding to the problem which can
be seenin (1.1). The theorem 3.3 contains the main resutlssoianuscript. Besides, we obtain a continuous selection
of the solution set of problem (1.1).

References

[1] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujilfsactional Calculus Models and Numerical Method&orld Scientific,
Singapore, 2012.
[2] K. Diethelm, The Analysis of Fractional Differential EquationSpringer, Berlin, 2010.
[3] A. Kilbas, H. M. Srivastava and J. J. Trujilldheory and Applications of Fractional Differential Equattis Elsevier, Amsterdam,
2006.
[4] K. Miller and B. RossAn Introduction to the Fractional Calculus and Differertiaquations John Wiley, New York, 1993.
[5] I. Podlubny,Fractional Differential EquationsAcademic Press, San Diego,1999.
[6] U. N. Katugampola, A new approach to generalized fraalalerivative Bull. Math. Anal. Appl6, 1-15 (2014).
[7]1 R. Almeida, A. B. Malinowski and T. Odzijewicz, Fractiahdifferential equations with dependence on the Caputaf@npola
derivative,J. Comput. Nonlin. Dynl1, ID 061017, 1-11 (2016).
[8] S. Zeng, D. Baleanu, Y. Bai and G. Wu, Fractional diffeifal equations of Caputo-Katugampola type and numeriglaitions,
Appl. Math. Comput315 549-554 (2017).
[9] A. F. Filippov, Classical solutions of differential egfions with multivalued right hand sid8JAM J. Contr5, 609-621 (1967).
[10] A. Bressan and G. Colombo, Extensions and selectionsapls with decomposable valu&udia Math90, 69—86 (1988).
[11] A. Cernea, Continuous version of Filippov’'s theoremffactional differential inclusiondNonlinear Anal.72, 204—-208 (2010).
[12] A. Cernea, On the existence of solutions for a class oicnavex Hadamard-type fractional differential inclusipNonlinear
Anal. Forum19, 237-245 (2014).
[13] A. Cernea, Continuous selections of solutions setsamtional integrodifferential inclusioncta Math. Sci35B, 399—406 (2015).
[14] Q. J. Zhu, On the solution set of differential inclussan Banach spacé, Differ. Equ.93213-237 (1991).
[15] R. M. Colombo, A. Fryszkowski, T. Rzezuchowsk and V.i@iaContinuous selections of solution sets of Lipschitzeidferential
inclusions,Funkcial. Ekvac34, 321-330 (1991).

(@© 2019 NSP
Natural Sciences Publishing Cor.



	 Introduction
	 Preliminaries
	 Main results
	Conclusion

