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Abstract: This paper is concerned witithomotopy analysis transform technique to investigatéesyof differential equations (DE)
of arbitrary order. The proposed technique describes timergence range at large domain, by appropriate selecfionit@l
approximation, auxiliary parameter and asymptotic pateme (n > 1). The proposed technique provides infinitely many more
options for solution series and converge rapidly compacediomotopy Analysis Method (HAM) and Homotopy Perturbation
Transform Algorithm (HPTA) in same term iterations. A comgitave study of suggested scheme with exact, HAM and HPTAehav
been done and Maple package is used to enhance the poweffiaimhey of proposed technique.

Keywords: Laplace transform algorithng;HATM, System of time fractional homogeneous linear equratj System of time-fractional
inhomogeneous nonlinear equations.

1 Introduction

A system of differential equations plays a very crucial rimilenodeling of problems appearing in numerous field of
science and engineering. In recent years these types di@gsiare numerically solved such as predator-prey system a
rabies model of arbitrary ordet], mathematical description of computer viruses assodiaiéh fractional calculusy],

SIR model describing the dengue fever dise&effactional vibration equationd], a mathematical model occurring in
the chemical system§], the convection-diffusion equation€][ etc. The theory of fractional calculus is modulation and
extension of integer order; providing a very good tool toe@the out-of-sight and genetic aspects of various méateria
and processes. A logistic, remarkable and conceptual wdteifield of fractional calculus and its utilities has beenel

in several studiess}8,9,10,11].

The present work adoptg-Homotopy Analysis Transform MethodiHATM), which is a mixed form of two
efficient methodsg-HAM [12,13] and Laplace transform algorithm to compute system of tiaetional homogeneous
and inhomogeneous DE. TleHAM based on classical homotopy analysis method (HAM), dl-lweown term in
topology [L4]. Theg-HAM is a modification of HAM by generalizing the embedding@aeter occurring in HAM. The
HAM is an analytic scheme and was initially given and emptbyy Liao [15/16,17]. In recent years, HAM is
successfully applied in various linear, nonlinear and mathtical modeling arising in science, finance and engingeri
[18,19,20,21]. In recent times standard analytical schemes have also m@eed with Laplace transform to produce
highly efficient techniques such as LDMZ], HPTM [23,24,25] and homotopy analysis transform scherag, 27,28
to compute the solution of nonlinear equations occurringgientific and engineering applications. It is open fact tha
combination of classical analytical approaches such-&\M with Laplace transform yielding time saving resultsdan
less C.P.U. time to investigate nonlinear mathematical efsodhaving usability in science and engineering.The
organization of this article is as constructed: In Sectigisd@ne definitions of fractional integrals and derivatives a
discussed. In Section 3, tlieHATM is proposed. In Part 4, numerical examples showingetfieiency ofg-HATM are
studied. Finally in the Part 5 the conclusions are discussed
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2 Basic definitions
The fractional derivative of(t) due to Caputo is written a29]:
DY/(t) = J2ID¥(t)

1

t a—a—1ja d
:7r(a_a)/()(t—r) 3(1)dr, @)

fora—1l<a<aaeN,t>0,/¢ecC?,.
Lemma:ifa—-1<a<aaeN,leCh, u> -1, then

D9J%(t) ¢ t>0. 2
)3,
Definition 2. The Laplace transform d@ft), represented b&(s) is written as
L{0(t),s} = i(s) = / e S(t) dt. 3)
0
If a€ N, then Laplace transform is expressed as
{da Y a_lsa r—1,(r) o+
— 0 s} s'(s) — 0. (4)
e 2
In the similar manner the Laplace transfornff¢(t) is presented a2p,30]
a—1
L[D&¢(t)) =L [¢ 205" ~L00"),a~1<a<a (5)

3 Analysis of method
In order to present the main procesgiglATM, we take a NFDE, which is written below:

D (x,t) + Al(x,t) + HL(x,t) =B(xt), a—1l<a<a (6)

In Eq. (6)Df¢(x,t) is representing the arbitrary order derivative’0f,t), A is denoting the linear differential operatét,
is representing the nonlinear differential operator ofegahform and is representing the source term.
On making use the Laplace transform on (6), we have

L[Df () +L[Al+L[H{=LIB. @)

By utilizing a result of the Laplace transform for fractiddarivatives, it gives

7L — afs“—k—le('o (x,0)+L[A€] +L[H 7] = L[B]. )
k=0
On simplification, we get
1a ls” k=1p(k) (x,0) 4 [ [Afl 4+ L[H (] —L[B]]=0. 9)

Let us record the nonlinear operator as follows
W[H(X,t,q)] = [ Xﬂt!q - z Sa k= 1 X7t!q)(o+)

[LIAu(t a)] + L[H p(x t;q)] - L[B]], (10)

‘%IH
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In the above equatiog € [0, 1/n] and p(x,t;q) is a function of x, t and g. With the aid of the HAM, we present a
homotopy as follows15,16,17]

(L=nq)L{p(x,t;0) —Lo(x,t)] =ha# [u(x,t;q)], (11)

U(X,t;0) = lo(x,1), u(x,t;%) =/l(x,t), (12)

respectively. It can be noticed that@shanges from 0 t(%, the solutionu(x,t ;q) changes from the initial approximation
£o(x,t) to the solutior/(x,t). With the aid of the theory of Taylor series, we expand the fioncu (x,t ; g) in series form
as

H(Xat 1q) = ZO(Xat) + z Zm(xvt) qma (13)
m=1
where
1 9"u(xt;q)
ém(x,t) = HT ‘q:O- (14)

On suitable choice of various parameters and operatorseties (13) converges t= % then we get
C=1{lp+ 3 4 Lym (15)
=lo+ ) ()™
m=1
The above result must be one of the solutions of the congidesalinear fractional problem. According Eq. (15), the

governing equation can be derived from Eq. (11).
Let us define the vectors as

[m = {éo, [l, ceey [m} (16)
Differentiating the Eq. (11) m-times w.rd.and then dividing them bgn! and finally puttingg = 0, we get

L [fm - kmém—l] =hO m(ém—l)- (17)
Operating with the inverse Laplace transform, it yields

= kmlm-1+ AL {Om(lm_1)], (18)
where
1 0™ [u(xt;q)
Dm(gm—l) = (m_ 1)| 0qm71 |q:07 (19)
and
0, m<l1,
km:{n, m> 1. (20)

Theorem 1. Let us assume thd& x F C R x R Banach space having a suitable ndfri over which the series
sequence of thg-HATM solution of nonlinear fractional problem (6) is deftheand the operatd® (/) = ¢m+1 defining
the series solution (15) holds the Lipschitzian condititwad is|| Q (¢;) — Q(4r)|| < €]|¢; — 4| forall (x,t,r) e ExF xN,
then theg-HATM solution (15) is unique.

Proof. If £ and¢* are the series solutions satisfying nonlinear fractiompl(E), ther/(x,t,n) = S 7o ¢m(1/n)™ with
the initial approximatiorfo and/*(x,t,n) = S m_ofm(1/n)M also with initial approximatiorp(x,t), so for the uniqueness
we show that

165, — fm|| =0, for m=0,1,2,---. (21)

The result (21) is to be proved by the method of mathematichlétion. Fom=0,¢;;, = {m = (o , SO it is clear that the
result (21) is true. Next, let the result be true fo®@ < mi.e.

[[¢F — r]| = 0. (22)
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Now, we have
HZ:erl_érJrlH = ||Q(€;F) - Q(Zr)”

<&l — || =0. (23)
Hence the g-HATM solution (15) is unique.

4 Implementation of the method

In this part, we consider three different types of systeméngapartial differential equations of arbitrary order. ety
HATM haveq € |0, %], (n>1) is the embedding parameter. We choose the vallewith respect to arbitrary defined
value ofn from the absolute convergence rangéafurve.

Example 1 In this system we examine the subsequent time-fracticoraldgeneous linear differential equations

Zu +‘7" ( +v)=0, O<a<l,
dﬁv (24)
along with
u(x,0) = up = N1(X) = sinh(x), v(x,0) = vo = N2(X) = coshx). (25)
In view of Egs. (24) and (25), we express the nonlinear operatthe following manner
W g, )
= L))~ (1) 2na00 +5 9L[%2 — (b + e, 5)
W[, o]
=Lk = (1~ ““) Na(x) + s PLIGE — (Hat b
and the Laplace operator as
L [Um — kintim1] = Ry U, V],
m-1 m-1
-1 m- (27)
L [Vm - kam—l] = HRZ m[mL—jl’ m\il]’
where
Ruml U, V] =L{um-1} — (1= ) Lsinh() +57OL{ 282 — (un-1+ V1)
m;l m;l ko 1 u (28)
Rz’m[mlﬂl’ m\ll] =L{Vmn-1} — (1— ) scoshx) +s- 5L{ —nl (um_1+vm_1)}.
Obviously from equation (27), we get
Un = kmum—1+ﬁLil{Rl7m[ a B 7 ]}7
m_—}l m_—)l
Vim = KmVm_1+ AL H{Rom[ U, V ]}. (29)
m-1 m-1
On solving system of Egs. (29), we have
Uo = sinh(x), Vo = cosh(x),
—hcosh(x)t? —hsinh(x)tA
Uy = ,V1 = )
Ma+1) rp+1)
_ —R(A+n)costixt® to+h
Uy = Fla+D) +ﬁsmh(x)l_(a+B+1)
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ﬁZ tC{+B ﬁZ tZCI

—R(A+n)sinh(x)tf ta+B
FBry SN e

a+pB 5 . 2B

+ﬁ S|nr‘(x)m,

Vo =

m%mrmm

(30)

Thus the remaining terms can be evaluated. SogtHATM solution of the system (24) is

U=Uo+ 3 mqUm(F)™,
{V:VO_Fz?To):le(ﬁ)m- (1)

Ifitis takenthator =1, 3 =1,n=1andh= —1thenitis converted to the HPTA solution obtained by Khaal 81]. We
can observed thgth,_oum(:)™andy_oVm(2)™ whenN — o, it converges to the closed form solutiams- sinh(x+t)
andv = cosh{x+1t) of system of equation (24). Figs. 1-2 represent the abselut# which reveal that thg-HATM
solution tends to the exact solution rapidly. From Figs., 1+2s observed that oug-HATM solution converges very
speedily to the closed form solutions in 4th-order iteragiol he correctness of tigeHATM solution can be enhanced by
increasing more components of the solution. It is also deteftom Fig. 3-4 that as the values @fand 3 increase up,
the values of u and v decrease down. Fig. 5 repregentsirve for distinct ordeg-HATM approximation of system of
fractional problems (24), the line segments parallal ttemonstrate the absolute convergence randevadth different
values ofa & 3 and the justifiable range d&ffor uis —2.01 < h < 0. Fig. 6 presentd—curve atx = 0.5, t = 0.02 for
non-identical ordeg-HATM approximation of system of equations (24), line segitseparallel tov show the absolute
convergence range bfwith diverse values oft& (3 and the justifiable range éffor vis —2.048< h < 0.

Fig. 1: Absolute erroiE4(u) = |Uexa. — Uappr.| fOr System of equations (24), when=1, 3 =1,n=1, andh = —1.

Example 2 Next, we examine the subsequent system of inhomogeneowo$ fkctional order

U N _(u-v)=2, O0<a<l,
Py u_(y_y)=2, 0<B<1 (32)
atF T ox =4 sS4
with
u(x,0) = up = N1(X) = 14 €,v(x,0) = Vo = Na(x) = —1+ €. (33)

Solving the above system (32) and (33) by usipigATM, we get

u0:1+e?‘,v0:—1+e?‘,
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Fig. 2: Absolute erroiE4(V) = |Vexa. — Vappr.| for system of equations (24), when=1, 3 =1,n=1, andh= —1.

o Exact solution
w=f=1 -
a=p=095 S
—— a=p=0385 K

354

Fig. 3: Comparative nature of 4th-ordgrHATM solution with exact solution of system of equationgtY2itx = 0.5 with different
order of derivatives.
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Fig. 4. Comparative behavior of 4th-ordgfHATM solution with exact solution of system of equationg)atx = 0.5 with different
order of derivatives.
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Fig. 5: h—curve for diverse ordey-HATM approximation for system of equations (24).
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Fig. 6: h—curve for diverse ordeg-HATM approximation of system of equations (24).

_ —hA(A+net? SR
B=—rgrn AT e T ey

_R(A+n?et? 2P 5, 3P

V3_7r([3+1) +2ﬁ(ﬁ+n)e?<r(2[3+1)+ﬁexl_(3ﬁ+1), (34)

and so on.
Making use of the similar process the further iterations loavaluated. Thus, tlteHATM solution of the system (32)
is presented as

U=Up+ 3 meq Um(F)™,
{ V=Vo+ ¥ me1Vm(7)™ (39)

Whena =1, 8 =1,n=1 andh = —1 then it is converted to the HPTA solution obtained by Khaalef31], we can
observe that the solutiorg,_oum(2)™ and $_oVim(£)™ whenN — o tends to the exact solutiom= 1+ ' and
v= —1+¢et for system of fractional differential equations (32). Figs8 depict the absolute error which reveal that the
g-HATM solution converges to the exact solution very fast lsing only third or fourth terms of-HATM solution. It is

to be noted from Fig. 9 that as the valuesxadnd are enhanced, the value of u decreases. From Fig. 10, we e#émese
as the values off andf3 enhance, the values of v increase but after some time itsicteauis contrary to previous result.
Fig. 11 showh—curve atx= 0.5, t = 0.02 forg-HATM approximation of system fractional equations (32)rikontal-line
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segments display the absolute convergence rangeind the justifiable range dffor uis —2.02< h < 0. Fig. 12 depicts
h—curve atx = 0.5, t = 0.02 for g-HATM approximation of system (32), horizontal-line segrteedisplay the absolute
convergence range bfand the justifiable range @ffor vis —1.98<h < 0.

010 3

Fig. 7: Absolute erroiE4(u) = |Uexa. — Uappr. | fOr System of equations (32), when=1,h=—-1,a =1 andB = 1.

010 03

Fig. 8: Absolute errolE,(V) = |Vexa — Vappr.| for system (32), when=1h=-1,a =1andB =1

Example 3 Lastly, we study the following time-fractional inhomogaus nonlinear differential equations

I+ %yiu=1 O0<a<l,
v ov (36)
m—ﬁ—uﬁ—v_l, 0<pB <1,
with
u(x,0) = up = N1(X) = €,v(x,0) = Vo = Na2(x) = € *. (37)
Solving the above system (36) and (37) by usiAig ATM, we get
Up=¢€evp=¢e%,
U et V<_—ﬁéw u = M n)ete R2ta+h h2 (e )t
YT+t TB+L) % T(a+1) T(a+B+1) TRa+1)’
_ X ﬁ 2. G+B 2 —X __ ZB
vy — h(h+n)e ™t h“t he(e*— 1)t (38)

r@+) F@+B+1)  re+y
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% Exact solution
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Fig. 9: Comparative nature of 4th-ordgrtHATM solution with exact solution of system of equation®)atx = 0.5 v/s with different-
order derivative.

% Exact solution
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Fig. 10: Comparative nature of 4th-ordgrHATM solution with exact solution of system of equation®)&tx = 0.5 with different-
order derivative.
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Fig. 11: h—curve atx = 0.5,t = 0.02 for g-HATM approximation of system of equations (32).
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(nof)=(L1L1 J
08454+ -
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k]

Fig. 12: h—curve atx = 0.5,t = 0.02 for g-HATM approximation of system of equations (32).

01 3

Fig. 13: Absolute erroiE3(U) = |Uexa. — Uappr. | fOr system of equations (36),lif=1,h=-1,a =1andB = 1.

Fig. 14: Absolute erroiEz(V) = |Vexa. — Vappr.| for system of equations (36),if=1,h= -1, a =1 andB = 1.

Thus the rest of the iterative terms can be evaluated. Sa- H®TM solution of the system (36) is written as

U= Up+ 353 Un(3)™,
{v=vo+m1vm<£>m. 39)
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164% < Hxact solution
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Fig. 15: Comparative study of 3rd-ordgrHATM (n = 1) solution with exact solution of system (36) with diffet@emder of derivative.
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Fig. 16: Comparative behavior of 3rd-ordegHATM (n = 1) solution with exact solution of system (36) with diffetesrder of
derivative.
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Fig. 17: h—curve for diverse ordes-HATM approximation of system (36).
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«——— 1d arder approximate
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/' 4———— 3nd order approvimate 5
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Fig. 18: h—curve for distinct ordeq-HATM approximation of system (36).

Therefore, the solution for the system (36), wiees= 1, 3 = 1, h= —1 andn = 1 is converted to the solution of HPTA
[31] and presented as
. 2 2 2 3 3 3 3
U:Mwum(x,t):ex—ext—%+e?“7+‘7—ex%+g—%+ex%
3 3 3
-5,
: _ _ 2 2 2 3 3 3 (40)
V= mwvn;(x,t)sze X—Ia-e X:-i-j-l-e Xi—j-f—e Xg+g - %
+e Xt L x4 Lo
It is obvious that the self-canceling ‘noise’ terms and kegphe non-noise terms in system of Eqgs. (40) yield the exact
solutionu = €tandv = e **! it can be simply verified and formally proved by Khan et &t][ Figs. 13-14 present the
absolute error which display that tiegHATM solution tends to the exact solution very fast. It canrtoted from Fig. 15
that as the values af andp rise, the values of u rises. From Fig. 16 we can note that agallues ofa and rise, the
values of v decreases. Fig. 17 repres@nturve for different-ordeg-HATM approximation of system (36), horizontal
line segments display the absolute convergence rangend the justifiable range &ffor uis —1.98 < h < 0. Fig. 18
present$i— curve for differ-ordeg-HATM approximation of system (36), line segment paraltel displays the absolute
convergence range bfand the justifiable range déffor vis —2.02<h < 0.

5 Conclusions

In this work, theg-HATM is utilized for obtaining the solution of system of te¥fractional linear and nonlinear
equations. The acceptable convergence rangeHATM solution represents the horizontal-line segmentb-turves,
such range is increased to their valid range, if we include shries solution of systensy,_um(x,t)(2)™ and

SN oVm(X,t)()™ whenN — co. Positivism of proposed method to HPTA is demonstrated byparing the absolute
errors and straightforward solution procedures that age from He’s polynomials and assumption of small/large
physical parameters.
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