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Abstract: Leibniz fractional (L-Fractional) derivative is used to d&b viscoelastic mechanical systems. Since this derwdias
important physical and mathematical meaning, it would erasting to compare the theoretical with experimenta.dgpecifically
the relaxation behaviour of the Zener fractional visca&asodel is verified by experiment. The experimental ressothe viscoelastic
relaxation behaviour in a polymer mesh used for the surgieatment of female urinary incontinence are used in omleheck the
applicability of fractional modelling in these systems.t®drom relaxation experiments are used in combination wWitoretical
analysis to prove the Zener-model fractional analysis ephc

Keywords: Leibniz L-fractional derivative, fractional analysis, & viscoelastic model, relaxation, experimental dateotétical
results.

1 Introduction

Fractional Calculus is a novel mathematical concept witmynapplications in physics: particle physics, optics and
corrosion, mechanics of materials, electromagneticgtrelehemistry, hydrodynamics, quantum mechanics,rtggolo
viscoelasticity etc. Especially in mechanics we have mamgiss that introduce fractional strain, Lazopoulos ef142]
Drapaca et al.3], Di Paola et al. 4] , Carpinteri et al. p], Atanackovic et al. §], Agrawal [7], etc. There were many
attempts to introduce fractional calculus into viscoétist especially from Atanackovic et. al8] and Mainardi et al.
[9]. To be more specific, Bagley and Torvik(,11] and Koeller [L2] introduced fractional calculus in viscoelasticity
while Atanackovic 8,13,14,15,16] and Mainardi et al.9,17,18] have expanded the idea in many variational problems.
Of course, many other scientists have applied viscoelgsticthe frame of fractional calculus, such as: Meral e8],
Muller et al. [20,21], Sabatier et al.72], Adolfsson et al.23). It is also interesting to underline that many articles
concerning fractional viscoelasticity are connected tnt®dical applications (Craiem et.&4], Djorjevic et.al R5,
Doehring et.al 26], Magin et. Al [27]). Lazopoulos et al. used the Leibnitz Derivative in theoriw on viscoelasticity
[28]. This mathematical novelty has many advantages along mvdthematical and physical meaning: The according
differential is defined and, in contrast to other fractiodativatives, physical dimensions are not altered. In thisla

the viscoelastic behaviour of the Zener model is revisiteidg Leibniz fractional time derivatives. Comparison oé th
proposed model to experimental data is discussed. As a nsydm, a polypropylene-filament mesh is used in the
female urinary incontinence treatment. Experimental diatan stress-relaxation testing were reported in a preWous
published work 82). Furthermore,there is a discussion of the behaviour optioposed model concerning its relaxation
and compared to the existing experimental data. The articlgs with a presentation of the Leibnitz derivative, and
continues with the derivation of fractional Zener modelfelaxation. Finally the model is compared with experimenta
data.
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Fig. 1: The Zener modelH;, E,, C).

2 Fractional Calculus.the Leibniz(-L)derivative.

Using the Adda [29] definition of a fractional differentialddue to Lazopoulos et.al [2,31] the proposed L-fractigimal
honour of Leibniz) derivativeD2f (x) is defined by :
d%f(x) =5 D2 (x)d?x (1)

whered?f (x) is the fractional differential of function f(x) andfx the fractional differential of x. The Leibniz L-fractional
derivative is then defined as the ratio of the correspondeqgu@® derivatives (See Lazopoulos et al.[2,31]):

L0319 = 2% @

It is proven in Lazopoulos et al.[2,31] that among the vasiderivatives only the L-derivative has any geometrical or
physical meaning. Therefore,Leibniz derivative is defihgfl azopoulos & Lazopoulos [2,30, and 31]):

oy < f
Lna _ _ _ a\(a-1)
LDaf(x) = (1— a).(x—a) /a(x—s)ad @3)
for the left Leibniz Fractional derivative, while for thegtit Leibniz fractional derivative it is defined by,
b f'(s)
Lna _ _ _y\(a-1)
LD3f(x) = (1—a).(b—x) /X A )

3 Theoretical Viscoelastic model.

The Zener model is a structure composed of 2 springs E1 anahé&2 dashpot C, as seen in Fig.1. This model is well
described and applied in the international literature #émdadlution as presented in [32] is:
E:.E,
ot)= .
( ) E;+E>

=

g0.(1— 1))+ gp.el 1) (5)
whereE; andE; are the elastic constraints of the springs, t the time) the relaxation stressy the initial strain and
0(0) the stress for = 0 andr the time constant for which the following holds:

~ C
N Ei+E

In Eq. 6) C is the viscosity constant of the dashpot. As far as thetitmaal Zener model is concerned, Leibnitz L-
Fractional model has true physical meaning since it defingiéferential and at the same time does not alter physical
dimensions. Therefore it is most suited for expressing #t@dctional Zener model. Following the steps of Lazopoulos
et.al in fractional viscoelasticity [28] we have:

c t E,
—~_ DG = E; +C5D3g(t). 7
E B e E1+E2[1 CoDrle(t) (7)

T

(6)
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As far as the relaxation behaviour of the Fractional Zenscdglastic model is concerned, the constant se@in= ¢ is
considered. Then Eq. (7) becomes:
ot ot
CED?—i )4 (Ex+ Ez)—i_ ) e, (8)

For the relaxation modulugt) = G(t) = <, the Eq.(8) above takes the form:

C5DRy(t) + (E1+ E2)y(t) = E1Ea. )
Looking for solution of the type
yt) =3 ydk, (10)
2
and substituting in Eq.(9), we get,

o re-—ark+2) ., < k_
kZOCym Fki2—a) t +kZO(E1+ E2)yt“ = E1Eo. (11)

Since Eq.(11) is valid for any t, it is an identity. Hence,

E1+E E/E
= 2y+12.

Yi=——c Yo+t (12)
with
Ei+E;., T(m+2—a
Those relations yield,
Ei+E ., KIr(m+2—a
o= (it B e IimE2-a), ty (14)

|_| (m+2)

m=1

" Cr(2-a)

4 Experimental procedures

The biomaterial used as a model for this study is thorougkdyreéned in stress-relaxation experiments which are report

in full detail in a previous article [32]. Summarizing, a pptopylene- based commercially available mesh, used #or th
treatment of urinary incontinence in females, was studiedry isothermal conditions (3C) and after immersion in

a ringers solution. Experimental isothermal stress-gglar testing is carried out at a strain levelggf= 5%. For the
purposes of the fractional modeling process experimetreds relaxation data of one of the specimens stored foa26 d

in a ringers solution (Casel) and one of the pristine medbasg 2) are used respectively. The results of the fractional
modeling are compared against those from the conventioadytical Zeners model equation.

5 Comparison of the theoretical with experimental data

The solution to the theoretical model of relaxation visesétity for Zener model is given by the formula described in
Eq. (5) [32]. It is evident from paragraph 3 that the soluti@s the form:

=Y yidk. (15)
2

where we must find the coefficientg In case of relaxation, where strain remains constant,at@ding occurs:

Ei1+E 1’ r(m+2-a)
_cr(z—a)) [ r(m+2)

m=1

E,+E E,E
yi = ( yi Vk>2 and yp = 1C 2)yo+ 22- (16)
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Table 1: Values of constants of the Zener model in the Ringer Solutase.
E1l,(MPa) E>(MPa) C(MPa.min)
1043.38 0.22815 9742.43

Stress-Time Diagram (Casel)
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Fig. 2: The stress-time diagram for case 1(Ringer Solution).
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Fig. 3: The stress-time diagram for case 2 (Pristine sample).

With the help of these formulas we are going to examine twesa$relaxation viscoelasticity, as described in pardgrap
4. The first case, that of Ringer Solution has the followinguitdata: The initial deformatiogy is 5%. The diagram of the
stress-time is shown in the figure 2. In this diagram the @lar stress-time is shown. There are the experimental data
points (Scattered points without line), the theoreticaveyuwhich is given by Eq.5, and finally the curve which occurs
by the solution of the fractional Zener model. It is obviotmh the diagram that the fitting of the fractional data is best
Although the differences are not great, these differencesignificant when pictured on the diagram. The diagram show
a completely different picture when the fractional appnaaiion is shown. This proves that fractional analysis gaes
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much more accurate picture of the phenomenon. On the othel; tvnile studying case 2 we can conclude that fractional
analysis is better. The input data is given from Table

Table 2: Values of constants of the Zener model in the Pristine Smiutase.
E1,(MPa) E>(MPa) C(MPa.min)
1235.25 0.40977 7949.81

More specifically, we can see from FiguseFrom this figure we can observe that the fractional dataecgives a
much better picture of the phenomenon that the theoretigakc It is obvious in this second case that fractional asialy
has a better performance than theoretical analysis.

6 Conclusions

Our study indicates that fractional analysis in the visastt Zener model is more accurate and effective. The @ctur
that is presented from cases 1 and 2 is so clear that it makesnder whether the fractional model is accurate and not
the classical model. Is nature best described by fractidedatives? This is a question that could only be answeyed b
thorough investigation of the phenomena.
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