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Abstract: It is difficult to find optimal scheduling solutions for abstract scheduling problems with mass parallel tasks on multi-
processors because they are NP-complete. In this paper, a solution searching strategy called solution characteristicextraction is proposed
as a multi-objective optimizer for solving flexible job shopproblems (FJSP). These problems are concerned with finishing assigned
jobs with minimal critical machine workload, total workload, and completion times. A suitable job assignment must consider processor
performance, job complexity, and job suitability for each individual processor simultaneously. To test the efficiencyand robustness
of the proposed method, the experiments will contain two groups of benchmarks; with, and without release time constraints. Each
benchmark includes numbers of heterogeneous processors and different jobs for execution. The results indicate the proposed method
can find more potential solutions, and outperform related methods.
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1 Introduction

In the last decade, the functional requirements of
embedded systems have greatly increased. Relying on
single processor platforms to meet all expected functions
has become unreasonable and unrealistic. In recent times,
most advanced embedded systems consist of an
implementation of different types of processors. The
system architecture is modified to achieve higher
productivity, more cost-effectiveness, and more flexibility
at implementing applications. Embedded systems today
will include different kinds of processor units, such as
general microprocessors, digital signal processors
(DSPs), and graphics processing units (GPUs), or more,
in a single computational platform. Each processing unit
is specialized to perform specific functions with high
efficiency. Such complex platforms are commonly
referred to as heterogeneous platforms [1].

The efficient scheduling of parallel tasks is essential
to achieving high performance in multiprocessor systems.
However, the complexity of the multiprocessor

scheduling problem stems from the existence of many
interrelated factors that directly or indirectly contribute to
the execution time of the program. To effectively schedule
parallel tasks, these competing factors must be considered
in the scheduling objective function. Many different
scheduling algorithms have been proposed but most
consider only a few of these factors simultaneously.

Most current employable techniques of scheduling
algorithms are specific to a particular class of problems
and work for only a limited range of tasks and system
parameters. Little research has been done on employing
optimization techniques for dynamic task scheduling, due
to the perception that the prohibitive computational cost
of these techniques will render them ineffective for
dynamic scheduling. The Self-Adjusting Dynamic
Scheduling (SADS) class of algorithms utilizes a unified
cost model to explicitly account for processor load
balance, memory locality, and scheduling overhead at
runtime.[2] In [3] and [4], ILP (integer linear
programming) is adopted to solve partitioned scheduling
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problems, in which each task is exclusively assigned to a
particular processor. Although the studies show that ILP
can be used for finding an efficient way for task
scheduling, they only consider the computing capacity of
each individual processor, which makes the results too
vague to accurately express a system module.
Furthermore, they fail to mention how much time is spent
to find a reasonable solution.

In 2005, Xia et al. [5] proposed a method which
hybridized PSO and simulated annealing (SA). It
involved a variable inertia weightw and adopted a
weighted concept to transform triple objectives into single
objective problems. After the evolution of PSO is
complete, SA is employed to adjust operation order. In
2007, Jiaet al. [6] proposed a method called HPSO to
solve FJSP. After the evolution of PSO and a fitness
evaluation, the elitism policy of GA keeps healthier
particles. Particles with poorer performance were less
desirable and regenerated as initializations. The HPSO
did not produce significant results and did not attempt to
solve large scale problems (such as 10M*15J).

In 2008, Luo et al. [7] adopted the Ant Colony
method (ACO) to solve FJSP. Its results on the 10M*15J
problem was also inconclusive. Hoet al. [8] later
proposed a method to estimate bounds. In reality, there
may exist different schematics that correspond to the
optimal fitness value, but Ho’s method can find only one.
Recently, Zhanget al. [9] proposed an interested method
namedNVGA which combined variable neighborhood
search (VNS) and GA to solve the multi objective FJSP. It
can generate good offspring and keep their diversity
during solution searching process. In contrast to the
previously mentioned methods, in this paper, a solution
searching strategy called solution characteristic
extraction is proposed to assist a multi-objective genetic
algorithm in searching for optimal scheduling solutions. It
can significantly improve the solution searching abilities
of multi-objective optimizers for solving non-continuous
problems. Multiple solutions with the same fitness value
can be found, providing various choices.

This paper is organized as follows: Section 2 contains
the definition of job scheduling problems. Section 3
briefly introduces the definition of multi-objective
optimization. Section 4 introduces the genetic algorithm.
Section 5 presents the proposed methods. Section 6
includes the experiment results and compares the
proposed method to related works. Section 7 of the paper
contains the conclusion.

2 Problem Definition

The Flexible Job Shop Problem (FJSP) is an extension of
the classical job shop scheduling problem which allows
an operation to be processed by any machine from a given
set. The problem is to assign each operation to a machine,
order the operations on the machines, and ensure the
maximum completion time (Makespan), critical machine

Fig. 1: An example of flexible job shop problem

Fig. 2: A schematic example of job assignment

workload (Max(Wk)) and total workload (Wtd) of all
operations are minimized [10]. Scheduling strategies can
be classified as either static or dynamic, depending on
when the task assignment decisions are made. Static
scheduling is also referred to as pre-scheduling and
determines on compilation-time which tasks should be
executed by which processors. Dynamic scheduling
strategies move the locus of control from the compiler to
one or more processors that distribute work to themselves
and/or to other processors as needed at runtime to balance
the system load.

A perfectly balanced load does not imply that all
processors must execute the same number of parallel
tasks since tasks typically have variable execution times.
Hence, it is not enough to simply divide the total number
of tasks evenly amongst each processor. A well scheduled
strategy will increase system performance, fully utilize
system computation ability and reduce total execution
time and reduce power consumption.

An example of FJSP is illustrated in Fig. 1. In the
figure, there are three Jobs that require execution and
three machines to complete them. Each Job may contain
several operations. Job 1 can be separated intoO1.1, O1.2
andO1.3; Job 2 can be separated intoO2.1 andO2.2, and
Job 3 containsO3.1. The required completion times of the
operations as executed by each machine are represented
in the table. For example, it takes machine 1 (M1) 5
seconds to executeO3.1.

The goal is to finish all jobs with minimal critical
machine workload (Max(Wk)), total workload (Wtd) and
completion times (Makespan). After Job assignment, each
operation will be appropriately distributed and executed
by the assigned machine. The schematics of Job
assignment is illustrated in Fig. 2.

Thus,O1.1 is assigned toM3; O1.2 is assigned toM1;
O1.3 is assigned toM2; O2.1 is assigned toM1 andO2.2 is
assigned toM2; andO3.1 is assigned toM3. It can be seen
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Fig. 3: An example of MOP - buying a processor

in Fig. 2 that the Max(Wk) is 4 seconds; the Wtd is 12
seconds; and the Makespan is 7 seconds. The solution in
the example above may not be the optimal one; there may
exist more potential (better) solutions. It is also possible in
FJSP for different solutions to have corresponding fitness
values. Therefore, a capable optimizer is needed to explore
the solution space to find potential solutions.

3 Multi-Objective Optimization

The main difference between single-objective problems
(SOPs) and multi-objective problems (MOPs) is MOPs
contain more than one objective that needs to be
accomplished simultaneously. Such problems are
encountered in many applications, where two or more,
sometimes competing and/or incommensurable objective
functions have to be minimized concurrently. In other
words, problems must arrive at a single optimal solution
which satisfies all objectives simultaneously. Even if a
problem contains more than one objective to be solved, it
is still considered a SOP. A MOP must contain competing
objectives; i.e. the objectives cannot be optimized
simultaneously. For example, suppose costumers want to
buy a processor with a lower cost and higher performance
for their computer. The two objectives (low cost and high
performance) are conflicting. The choices of processors
are illustrated in Fig. 3. The three options A, B, and C
marked in Fig. 3 are all non-dominated optimal solutions.
These optimal solution sets can constitute a continuous or
non-continuous curve. This curve is called the Pareto
front. All solutions located on it are considered optimal
solutions. In other words, unlike SOPs, which have only
one optimal solution, MOPs have a set (more than one) of
optimal solutions.

Due to the multi-criteria nature of MO problems, the
“optimality” of a solution has to be redefined, giving rise
to the concept of Pareto optimality. In contrast to the
single–objective optimization case, MO problems are
characterized by trade–offs and thus, a multitude of
Pareto optimal solutions [11].

4 Genetic Algorithm

The genetic algorithm (GA) is used to evolve one
population of chromosomes into a new population by
employing a principle similar to Darwin’s “natural
selection”; together with the genetics-inspired operators
of selection, cross-over, mutation, and inversion. The
basic principles of GA were first introduced by John
Holland in 1975[12]-[13]. Holland’s GA was the first
evolutionary computation (EC) paradigm developed and
applied.

In genetic algorithms, the fitter chromosome is more
likely to be selected for reproduction. The objective of
cross-over is to choose random loci and exchange the
subparts of chromosomes to create offspring. Mutation
randomly flips the allele values of some locations in the
chromosome; and inversion reverses the order of a
contiguous section of the chromosome [14]. The term
chromosome typically refers to a candidate solution to a
problem. Through the progress of genetic evolution,
genetic algorithms can find solutions efficiently without
derivative information; an optimal solution will be
represented by a final chromosome winning the genetic
competition.

The traditional GA (TGA) has the following features:
(1) a bit string representation; (2) proportional selection;
(3) cross-over as the primary method to produce new
individuals; (4) mutation for disturbing evolution to
prevent solutions being bounded to local search; and (5)
the application of elitism policies. In this section, a brief
introduction of genetic algorithm will be described.

4.1 Chromosome Representation

Consider that a problem is presented asf (x1, x2, x3,...,
xN),which consists of N tunable parameters to be
optimized. In GA, it can be encoded in vector
representation (i.e., chromosome)Cm=(x1, x2, x3,..., xN),
m=1, 2, ..., p,where p denotes the population size. For
high-dimension or complex problems, GA will require a
larger population for a uniform distribution of population
in the search space; otherwise, it may be unable to
discover all possible solutions. The valuep is always
given experimentally. Thus, the chromosomes
representation is shown in Fig. 4.

4.2 Initial Population

For most optimal techniques, the final solutions are
usually restricted by the initialization. However, GA is
able to overcome this drawback with the cross-over and
mutation operation. Therefore, chromosomes can be
scattered in an area of first generation. The initial
population will be used to generatep chromosomes
which will be distributed over the searching space
uniformly.
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Fig. 4: Chromosome representation

4.3 Cross-over

The cross-over operation produces new chromosomes
(offspring) by selecting two random parent chromosomes,
but it doesn’t guarantee that all offspring are better than
the parents. However, after adopting “exploration” and
“exploitation” during the performance of the cross-over
[15], good results can be ensured because the offspring
will be generated around better parents. The details of
“exploration” and “exploitation” are described in next
section. The number of individuals joined during
cross-over is based on a pre-defined parameterrc which is
called cross-over rate. Thus, there will beround(p× rc)
individuals (parents) joined during cross-over.

4.4 Mutation

The mutation operator randomly changes some subparts
of a chromosome. When GA is adapting, the
chromosomes will move to the closest optimal solution to
itself, but that may not be a global optimization.
Therefore, disturbances to extend the search range are
quite important. In general, the offspring of mutationOm
is generated inside the search space, randomly asOm = β ,
where β denotes a mutation vector with random
components of uniform distribution in the searching
space. The number of parents which joins mutation is
based on a predefined parameterrm which is called
mutation rate. Thus, there are mutationround(p× rm)
individuals (parents) that will be joined during mutation.

In general, the fitness of mutated offspring may
randomly be better or worse than their parents and/or any
cross-over offspring. On the other hand, adopting the
mutation operation will extend the search range to survey
unexplored areas in the search space, and find potential
optimal solutions.

4.5 Selection

After cross-over and mutation operations, the number of
all chromosomes, including parents and offspring in a
population, will be larger than the number during
initialization. In order to produce better offspring, the
elitism operation is adapted to selectp better
chromosomes to survive the next generation.

GA optimization is combined with operations
mentioned above, and repeats the evolution process until
it reaches the pre-defined terminating conditions.

5 The Proposed Method

Because the solutions of job shop problems are
non-continued, such MO problems may have a mass of
solutions which correspond to the same fitness value.
Preserving these solutions can provide additional optimal
selections. The solution characteristic extraction is
proposed for enhancing the solution searching ability for
non-continued MO problems, especially for flexible
job-shop scheduling problems.

It is important for offspring generated by cross-over
or mutation during multi-objective genetic algorithm to
offer more potential information and diversity. Offspring
with higher potential information and diversity (which
equals more available optimal solutions), will be found
and then kept in each generation while an offspring with
lower potential will decrease GA’s solution searching
ability. An improved GA is proposed to increase the
solution searching capabilities of MOGA, for solving
non-continuous MO problems.

Table 1: An example for probability table
Machines Completion Completion Probability

Time Time
M1 1 1 0.55
M2 3 0.33 0.18
M3 2 0.5 0.27

5.1 Initialization

First, a probability table is generated for the distribution
of each operation because an operation will have different
completion times when executed by different machines.
The probability table of an operation is generated
according to their completion time (reciprocal). A
machine with shorter completion time for executing an
operation will have a higher probability of being chosen
for the task. An example of probability table is listed in
Table 1. The probability ofM1, M2, andM3 are calculated
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Fig. 5: An example of jobs’ content

by 1/(1+0.33+0.5), 0.33/(1+0.33+0.5), and
0.5/(1+0.33+0.5) respectively.

An example of the contents of the jobs is illustrated in
Fig. 5. Job 1(J1), job 2(J2), and job 3(J3) can be separated
into 3 operations, 2 operations, and 1 operation
respectively. In other words,J1 consists of operations
1.1(O1.1), 1.2(O1.2) and 1.3(O1.3); J2 consists of
operations 2.1(O2.1) and 2.2(O2.2); J3 consists of
operation 3.1(O3.1). Furthermore, operations belonging to
the same job must follow an order of execution. For
example, operation 1.1 must be finished before the
execution of operation 1.2, and operation 1.2 must be
finished before the execution of operation 1.3, and so on.

Assume there are 3 machines to execute the three jobs
mentioned above. The operation assignment and their
corresponding completion times are shown in Fig. 1.
Different machines may perform at different efficiencies
when executing each operation; from this table, for
example,M1 (machine 1) needs 5 seconds to finishO3.1
but M3 needs only 3 seconds. Thus, the probability table
of O3.1 is shown as Table 2.

Table 2: An example probability table forO3.1

Machines Completion 1 Probability
Time Completion Time

M1 5 0.2 0.25
M2 4 0.25 0.32
M3 3 0.33 0.43

An initialization example for FJSP is listed in Table 3.
First row represents operation number and second row
represents operation assignment information. The
information consists of two parts, the integer, and the
float. The integer, which is generated by the probability
table, represents the machine to be assigned. And the
float, which is a random number between 0 and 1,
represents operations’ order number.

In Table 3, the number 3.65 corresponds to operation
1.1 (O1.1). This means operation 1.1(O1.1) is assigned to
machine 3 (M3) and its order number is 65. An operation
with a bigger order number has a higher priority to be
assigned to a machine. The consecutive relation between
each operation is also taken into consideration. In Table 3,

Table 3: An initialization example for FJSP
Operations O1.1 O1.2 O1.3 O2.1 O2.2 O3.1
Assigned 3.65 1.18 2.39 1.77 2.57 3.26

Information

Fig. 6: The operations assignment and their execution time-line

O2.1 is assigned to machine 1 (M1) andO1.1 is assigned to
machine 3 (M3). Later, O2.2 is assigned to machine 2
(M2) andO3.1 is assigned to machine 3 (M3). Finally,O1.2
is assigned to machine 1 (M1) and O1.3 is assigned to
machine 2 (M2). In other words, the executing sequence
can be rewritten as follows:

1.O2.1 is assigned toM1: becausemax(J1, J2, J3) =
max(O1.1, O2.1, O3.1) = max(65, 77, 26) = 77.

2.O1.1 is assigned toM3: becausemax(J1, J2, J3) =
max(O1.1, O2.2, O3.1) = max(65, 57, 26) = 65.

3.O2.2 is assigned toM2: becausemax(J1, J2, J3) =
max(O1.2, O2.2, O3.1) = max(18, 57, 26) = 57.

4.O3.1 is assigned toM3: becausemax(J1, J3) =
max(O1.2, O3.1) = max(18, 26) = 26 (J2 complete).

5.O1.2 is assigned toM1: becausemax(J1) = max(O1.2)
= max(18) = 18 (J3 completion).

6.O1.3 is assigned toM2: becausemax(J1) = max(O1.3)
= max(39) = 39 (All Jobs are complete).

These assigned operations and their execution time-lines
are exhibited in Fig. 6.

There are three steps to transform a system job
scheduling into a schematic.

1.Estimate completion time of previous operations
which belong to the same job.

2.Estimate the available time for the machine to join the
next unexecuted operation.

3.The maximum time of the two items above is the
timing to join subsequent operations.

An operation’s execution and assignment must take into
account both the order of execution and rationality of
execution by a machine. The proposed method ensures
that once an operation is finished, a subsequent operation
can be executed immediately by an idle machine. For
example, according to the order of operations,M3will
finish the execution ofO1.1 by the 2nd second; thusO1.2
can be executed since the 2rd second. On the other hand,
taking into account the rationality of execution by a
machine, becauseM1 is occupied processingO2.1 during
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the first 2 seconds, the machine is available only after the
3rd second. The maximum time between the next
operation’s availability and the machine’s availability is 3
seconds (max(2, 3) = 3); therefore,O1.2 can be executed
since the 3rd second.

It seems that the proposed initialization step is a little
bit complex. But, it comes with the advantage of ensuring
that each combination of job assignment can be reversed
because different codes may correspond to the same
schematic. The chromosome initialization is based on a
probability table to assign each job to a corresponding
machine. This is the “integer” of the proposed coding
method mentioned above. A randomly generated fraction
is then added to each integer, as its order number.

5.2 Cross-over

A population in GA consists of a number of
chromosomes. Each chromosome represents a potential
solution of the optimization task. All of the chromosomes
iteratively discover a probable solution. In the cross-over
operation, each chromosome will be generated based on
its parents. This combines the information from two
chromosomes that were also generated by chromosomes
in previous generations and evaluated by the cost
function; finally, better (fitter) chromosomes are kept in
the population. If a chromosome discovers a new
probable solution, its offspring will move closer to it to
explore the region in more detail during the cross-over
process.

In the proposed method, the real-coded genetic
algorithm is adopted to perform cross-over between
chromosomes. For example, assume that two
chromosomes,C1, and C2 are randomly picked from a
population for cross-over, andC1 is better thanC2. The
offspring OC can be obtained by exploration cross-over
using:

OC =C1+α (C1−C2) (1)

whereα is a random value between [0, 1]. On the other
hand, the offspringOC can also be obtained by exploitation
cross-over using:

OC =C1−α (C1−C2) (2)

In the proposed method, both the exploration and the
exploitation methods are adopted. Interpolation will
restrict the search range to a smaller area, but
extrapolation will extend the search range. The
exploration and exploitation cross-over strategies are
showed in Fig. 7.

In traditional GA, cross-over is performed to discover
additional potential solutions. In machine assignment of
FJSP, such solution space is non-continued; the traditional
cross-over approach is not of much use at finding
solutions. Thus, in the proposed method, the cross-over
for the integer-part of the chromosome (for machine

Fig. 7: Exploration and exploitation strategies of cross-over

assignment) is performed by integer-exchange, and the
float-part of the chromosome (for executing sequence) is
performed by traditional cross-over.

5.3 Mutation

In general, mutation is adopted to generate new
chromosomes, mutating one or more genes, to salvage
chromosomes that have been trapped in the local
minimum through random process, and to discover other
potential searching spaces. It will allow additional
potential solutions to be produced during solution
exploration, and explore unsearched solution space.

Mutation in the proposed method is performed at
initialization to selected chromosomes. The chosen
chromosomes are assigned to a new corresponding
machine (integer part) according to the probability table
and also given a randomly generated order number
(fraction part).

Table 4: Two simply job assignment

Operations O1.1 O1.2 O2.1 O2.2 O3.1
Assigned Probabilities 3.65 1.72 2.58 4.99 4.80

(a)

Operations O1.1 O1.2 O2.1 O2.2 O3.1
Assigned Probabilities 3.15 1.23 2.04 4.50 4.39

(b)

5.4 Normalization

In order to prevent the evolution process from driving
chromosomes toward unreasonable solution spaces, after
cross-over and mutation all contents in chromosomes
need to be normalized. For example, there are two simple
job assignments presented in Table 4. Each table presents
a decoded result from a chromosome.
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Fig. 8: An example of job assignment schematic

It seems the contents are different between Table 4 (a)
and (b). The two represent the same job assignment and
executing sequence from two different chromosomes. If
two chromosomes are selected for cross-over, the fraction
part of the offspring will increase if they are generated by
exploration, and decrease if generated by exploitation.
This will influence the evolution process towards the right
direction. In some cases, the solution searching may stand
still. Normalization in the proposed method can solve this
issue; the details of which are as follows.

1.Because each chromosome has 5 genes, the fraction
part is equally divided into 5 numbers. They are 0.0,
0.2, 0.4, 0.6 and 0.8.

2.All genes are sorted according to their fraction part.
The genes with the smallest fraction have it replaced
by 0.0, the genes with the median fraction have it
replaced by 0.4, and genes with the largest fraction
have it replaced by 0.8, and so on.

After normalization, the genes from Table 4 (a) and (b) can
be treated as the same genes, as shown in Table 5.

Table 5: The normalized genes

Operations O1.1 O1.2 O2.1 O2.2 O3.1
Assigned Probabilities 3.20 1.40 2.00 4.80 4.60

This process reduces situations where different
chromosome contents correspond to the same job
assignment, and streamlines the evolution process.

5.5 Solution Characteristic Extraction

After cross-over and mutation, all job assignments can be
stored as a two dimensional matrix. Because there is an
amassing of solutions reserved in the external repository,
the computational consumption is also increasing. The
solution characteristic extraction is proposed to lighten
computational consumption during matrix comparison.

For example, there are 3 jobs, which consist of several
operations, and need to be executed by 3 available
machines. The job assignment schematic is expressed in

Fig. 9: An re-organized schematic of job assignment

Fig. 10: Using symbols to replace elements in Fig. 9

Fig. 11: The weighted elements

Fig. 8. Each operation will be fitted into a time slot by job
assignment. In order to assign each time slot with a
unique weight, the schematic can be re-organized as
expressed in Fig. 9. The natural number of operations is
labeled on time slots and empty time slots are assigned as
0.

Further explanation of the weight calculation can be
found in Fig. 10, which replaces Fig. 9. The elements
(natural number) are replaced with symbols. For example,
A replaced 2.1,E replaced 2.1 andK replaced 0, etc.

Then, each symbol in Fig. 10 is multiplied by its own
weight value according to its location on the matrix. The
weighted elements are listed in Fig. 11.

After that, the two-dimensional matrix is then
transformed to one-dimensional, which is listed in Fig.
12.

Each element of this new matrix is further multiplied
by its own weighted value. It is also according to its
location of the table. The further weighted elements are
listed in Fig. 13.

Finally, the proposed characteristic extraction is
applied to find the Euclid distance of this weighted matrix
to find its characteristic-value. LetQ denotes the
characteristic-value, theQ value is calculated by

Q=
(

W2
1 +W2

2 +W2
3 +W2

4 +W2
5 +W2

6 +W2
7

)0.5
(3)

The proposed characteristic extraction can rapidly
compare two job assignments regardless if whether they
are different or the same.
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Fig. 12: The transformed one-dimensional matrix

Fig. 13: The further weighted elements

Fig. 14: Possible case for archive controller

5.6 External Repository

An external repository is utilized in the proposed method
in order to reserve non-dominated solutions which are of
the same fitness value but correspond to unique job
assignments. The function of the repository controller is
to make a decision for whether or not certain solutions
should be included in the archive. After completing the
evolutionary process in the current generation, all new
solutions are compared to previous results. New solutions
which have the same characteristic-value as the solutions
reserved in the external repository will be eliminated.
After a quick characteristic-value comparison, the
remaining new solutions will be further assessed in before
being deposited in the external repository. The
decision-making process is as follows.

1.If the external archive is empty, the non-dominated
solutions found currently will always be accepted
(Case 1, in Fig. 14).

2.If the new solution is dominated by any individual in
the external repository, then such a solution will be
discarded (Case 2, in Fig. 14).

3.Otherwise, if none of the solutions contained in the
external repository dominates the new solution, then
such a solution will be stored in the external
repository. If there are solutions in the external
repository that are dominated by the new solution,
then such dominated solutions will be removed from
the external repository (Case 3 and 4, in Fig. 14).

Table 6: Problem 8 X 8 with 27 operations (partial flexibility)

M1 M2 M3 M4 M5 M6 M7 M8

J1

O1.1 5 3 5 3 3 X 10 9
O1.2 10 X 5 8 3 9 9 6
O1.3 X 10 X 5 6 2 4 3

J2

O2.1 5 7 3 9 8 X 9 X
O2.2 X 8 5 2 6 7 10 9
O2.3 X 10 X 5 6 4 1 7
O2.4 10 8 9 6 4 7 X X

J3

O3.1 10 X X 7 6 5 2 4
O3.2 X 10 6 4 8 9 10 X
O3.3 1 4 5 6 X 10 X 7

J4

O4.1 3 1 6 5 9 7 8 4
O4.2 12 11 7 8 10 5 6 9
O4.3 4 6 2 10 3 9 5 7

J5

O5.1 3 6 7 8 9 X 10 X
O5.2 10 X 7 4 9 8 6 X
O5.3 X 9 8 7 4 2 7 X
O5.4 11 9 X 6 7 5 3 6

J6

O6.1 6 7 1 4 6 9 X 10
O6.2 11 X 9 9 9 7 6 4
O6.3 10 5 9 10 11 X 10 X

J7

O7.1 5 4 2 6 7 X 10 X
O7.2 X 9 X 9 11 9 10 5
O7.3 X 8 9 3 8 6 X 10

J8

O8.1 2 8 5 9 X 4 X 10
O8.2 7 4 7 8 9 X 10 X
O8.3 9 9 X 8 5 6 7 1
O8.4 9 X 3 7 1 5 8 X
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Table 7: Problem 10 X 10 with 30 operations (total flexibility)
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1

O1.1 1 4 6 9 3 5 2 8 9 5
O1.2 4 1 1 3 4 8 10 4 11 4
O1.3 3 2 5 1 5 6 9 5 10 3

J2

O2.1 2 10 4 5 9 8 4 15 8 4
O2.2 4 8 7 1 9 6 1 10 7 1
O2.3 6 11 2 7 5 3 5 14 9 2

J3

O3.1 8 5 8 9 4 3 5 3 8 1
O3.2 9 3 6 1 2 6 4 1 7 2
O3.3 7 1 8 5 4 9 1 2 3 4

J4

O4.1 5 10 6 4 9 5 1 7 1 6
O4.2 4 2 3 8 7 4 6 9 8 4
O4.3 7 3 12 1 6 5 8 3 5 2

J5

O5.1 7 10 4 5 6 3 5 15 2 6
O5.2 5 6 3 9 8 2 8 6 1 7
O5.3 6 1 4 1 10 4 3 11 13 9

J6

O6.1 8 9 10 8 4 2 7 8 2 10
O6.2 7 3 12 5 4 3 6 9 2 15
O6.3 4 7 3 6 3 4 1 5 1 11

J7

O7.1 1 7 8 3 4 9 4 13 10 7
O7.2 3 8 1 2 3 6 11 2 13 3
O7.3 5 4 2 1 2 1 8 14 5 7

J8

O8.1 5 7 11 3 2 9 8 5 12 8
O8.2 8 3 10 7 5 13 4 6 8 4
O8.3 6 2 13 5 4 3 5 7 9 5

J9

O9.1 3 9 1 3 8 1 6 7 5 4
O9.2 4 6 2 5 7 3 1 9 6 7
O9.3 8 5 4 8 6 1 2 3 10 12

J10

O10.1 4 3 1 6 7 1 2 6 20 6
O10.2 3 1 8 1 9 4 1 4 17 15
O10.3 9 2 4 2 3 5 2 4 10 23

5.7 Algorithm Flow of Proposed Method

The flowchart of the proposed method is shown in Fig.
15. After initialization new chromosomes (offspring) will
be generated by either cross-over or mutation of MOGA
to generate probability tables for each operation. Both
“exploration” and “exploitation” strategies of cross-over
are adopted for both widespread and comprehensive
searches of the solution space. Cross-over will randomly
choose two chromosomes (parents) to exchange their
information and try to generate a better chromosome.
Mutation is also introduced in preventing chromosomes
from falling into local optimal and pointing them to
explore unsearched solution space. All contents of
chromosomes, which are generated by cross-over and
mutation, will then be normalized. The fitness values are
then calculated and better chromosomes are kept. Each
chromosome will represent a unique job assignment case;
their characteristics will be extracted to rapidly compare
them with the external repository. All non-dominated
solutions are then reserved in external repository.

Fig. 15: The flowchart of proposed method
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Table 8: Problem 15 X 10 with 56 operations (total flexibility
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1

O1.1 1 4 6 9 3 5 2 8 9 4
O1.2 1 1 3 4 8 10 4 11 4 3
O1.3 2 5 1 5 6 9 5 10 3 2
O1.4 10 4 5 9 8 4 15 8 4 4

J2

O2.1 4 8 7 1 9 6 1 10 7 1
O2.2 6 11 2 7 5 3 5 14 9 2
O2.3 8 5 8 9 4 3 5 3 8 1
O2.4 9 3 6 1 2 6 4 1 7 2

J3

O3.1 7 1 8 5 4 9 1 2 3 4
O3.2 5 10 6 4 9 5 1 7 1 6
O3.3 4 2 3 8 7 4 6 9 8 4
O3.4 7 3 12 1 6 5 8 3 5 2

J4

O4.1 6 2 5 4 1 2 3 6 5 4
O4.2 8 5 7 4 1 2 36 5 8 5
O4.3 9 6 2 4 5 1 3 6 5 2
O4.4 11 4 5 6 2 7 5 4 2 1

J5

O5.1 6 9 2 3 5 8 7 4 1 2
O5.2 5 4 6 3 5 2 28 7 4 5
O5.3 6 2 4 3 6 5 2 4 7 9
O5.4 6 5 4 2 3 2 5 4 7 5

J6
O6.1 4 1 3 2 6 9 8 5 4 2
O6.2 1 3 6 5 4 7 5 4 6 5

J7
O7.1 1 4 2 5 3 6 9 8 5 4
O7.2 2 1 4 5 2 3 5 4 2 5

J8

O8.1 2 3 6 2 5 4 1 5 8 7
O8.2 4 5 6 2 3 5 4 1 2 5
O8.3 3 5 4 2 5 49 8 5 4 5
O8.4 1 2 36 5 2 3 6 4 11 2

J9

O9.1 6 3 2 22 44 11 10 23 5 1
O9.2 2 3 2 12 15 10 12 14 18 16
O9.3 20 17 12 5 9 6 4 7 5 6
O9.4 9 8 7 4 5 8 7 4 56 2

J10

O10.1 5 8 7 4 56 3 2 5 4 1
O10.2 2 5 6 9 8 5 4 2 5 4
O10.3 6 3 2 5 4 7 4 5 2 1
O10.4 3 2 5 6 5 8 7 4 5 2

J11

O11.1 1 2 3 6 5 2 1 4 2 1
O11.2 2 3 6 3 2 1 4 10 12 1
O11.3 3 6 2 5 8 4 6 3 2 5
O11.4 4 1 45 6 2 4 1 25 2 4

J12

O12.1 9 8 5 6 3 6 5 2 4 2
O12.2 5 8 9 5 4 75 63 6 5 21
O12.3 12 5 4 6 3 2 5 4 2 5
O12.4 8 7 9 5 6 3 2 5 8 4

J13

O13.1 4 2 5 6 8 5 6 4 6 2
O13.2 3 5 4 7 5 8 6 6 3 2
O13.3 5 4 5 8 5 4 6 5 4 2
O13.4 3 2 5 6 5 4 8 5 6 4

J14

O14.1 2 3 5 4 6 5 4 85 4 5
O14.2 6 2 4 5 8 6 5 4 2 6
O14.3 3 25 4 8 5 6 3 2 5 4
O14.4 8 5 6 4 2 3 6 8 5 4

J15

O15.1 2 5 6 8 5 6 3 2 5 4
O15.2 5 6 2 5 4 2 5 3 2 5
O15.3 4 5 2 3 5 2 8 4 7 5
O15.4 6 2 11 14 2 3 6 5 4 8
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Table 9: Problem 4 X 5 with 27 operations (partial flexibility)
M1 M2 M3 M4 M5

J1

O1.1 2 5 4 1 2
O1.2 5 4 5 7 5
O1.3 4 5 5 4 5

J2

O2.1 2 5 4 7 8
O2.2 5 6 9 8 5
O2.3 4 5 4 54 5

J3

O3.1 9 8 6 7 9
O3.2 6 1 2 5 4
O3.3 2 5 4 2 4
O3.4 4 5 2 1 5

J4
O4.1 1 5 2 4 12
O4.2 5 1 2 1 2

Table 10: Problem 10 X 7 with 30 operations (total flexibility)
M1 M2 M3 M4 M5 M6 M7

J1

O1.1 1 4 6 9 3 5 2
O1.2 8 9 5 4 1 1 3
O1.3 4 8 10 4 11 4 3

J2

O2.1 6 9 8 6 5 10 3
O2.2 2 10 4 5 9 8 4
O2.3 15 4 8 4 8 7 1

J3

O3.1 9 6 1 10 7 1 6
O3.2 11 2 7 5 2 3 14
O3.3 2 8 5 8 9 4 3

J4

O4.1 5 3 8 1 9 3 6
O4.2 1 2 6 4 1 7 2
O4.3 7 1 8 5 4 3 9

J5

O5.1 2 4 5 10 6 4 9
O5.2 5 1 7 1 6 6 2
O5.3 8 7 4 56 9 8 4

J6

O6.1 5 14 1 9 6 5 4
O6.2 3 5 2 5 4 5 7
O6.3 1 4 6 9 3 5 2

J7

O7.1 5 6 3 6 5 15 2
O7.2 6 5 4 9 5 4 3
O7.3 9 8 2 8 6 1 7

J8

O8.1 6 1 4 1 10 4 3
O8.2 11 13 9 8 9 10 8
O8.3 4 2 7 8 3 10 7

J9

O9.1 12 5 4 5 4 5 5
O9.2 4 2 15 99 4 7 3
O9.3 9 5 11 2 5 4 2

J10

O10.1 9 4 13 10 7 6 8
O10.2 4 3 25 3 8 1 2
O10.3 1 2 6 11 13 3 5

6 Experiments

6.1 Benchmarks of Job Shop Problems

In the experiments, two groups of benchmarks (G-1 and
G-2) are included. The main difference between the two
groups of benchmarks is that G-1 does not put into

consideration release time. It includes three sets of
benchmarks, which are 8 x 8, 10 x 10 and 15 x 10, and are
listed in Table 6 to 8. Note that the 15 x 10 problem
indicates that there are 10 available processors to perform
15 Jobs. The “X” marks present that some operations
cannot be executed on specific machines. For example, in
table 6, theO1.1 cannot be executed onM6. Thus, this
operation (O1.1) can be assigned to any machines except
M6. The G-2 does take release time into consideration. It
also includes three sets of benchmarks, which are 4 x 5,
10 x 7 and 15 x 10, and are listed in Table 9, 10 and 8.
Because both G-1 and G-2 contain 15 x 10 problems, they
are listed under the same table (Table 8). The release time
is an executing constraint which limits jobs in a
benchmark to release after a few seconds. For example, a
job release time is assigned forr2 = 3. It means job 2 will
be released after three seconds. In other words, job 2 only
becomes available for execution after the third second.
The release times of G-2 are listed in Table 11.

Table 11: Release time of G-2

Benchmarks Release Time

4 x 5 r1 = 3, r2 = 5, r3 = 1, r4 = 6

r1 = 2, r2 = 4, r3 = 9, r4 = 6, r5 = 7,
10 x 7 r6 = 5, r7 = 7, r8 = 4, r9 = 1, r10 = 0

r1 = 5, r2 = 3, r3 = 6, r4 = 4, r5 = 9,
15 x 10 r6 = 7, r7 = 1, r8 = 2, r9 = 9, r10 = 0,

r11 = 14,r12 = 13,r13 = 11,r14 = 12, r15 = 5

6.2 Experiment Results

In the experiments, two groups of benchmarks are
included to compare the performance of the proposed
method with other related works, such as MOEA-GLS
[8], hybrid PSO & SA [5] and VNGA [9]. The parameters
used in the two comparative methods are defined
according to their original settings. For the proposed
method, population size is set as 1000, cross-over rate is
set as 0.95 and mutation rate is 0.05. The stop criterions
are after 1000 generations or after 10000 solutions are
found.

1) Results of the G-1 problems: Table 12 contains the
solutions found by the three methods on the 8x8, 10x10
and 15x10 benchmarks. Note that the Wtd, Max(Wk) and
Makespan in the results tables represent total workload of
all machines, the critical machine workload and the
maximal completion time, respectively. From the results,
the proposed method performs significantly better than
the hybrid PSO & SA in solving all benchmarks.
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Fig. 16: Part of solutions found by proposed method for G-1 problems
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Fig. 17: Part of solutions found by proposed method for G-2 problems
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Table 12: Experiments results for G-1 benchmarks
Proposed Method

Benchmark Results 8 x 8 10 x 10 15 x 10
Wtd 73 75 77 77 41 42 42 43 91 93

Max(Wk) 13 12 11 12 7 5 6 5 11 10
Makespan 16 15 16 14 8 8 7 7 11 11

Solution count 119 24 5 4 > 104
> 104

> 104 2680 > 104
> 104

MOEA-GLS [8]
Benchmark Results 8 x 8 10 x 10 15 x 10

Wtd 73 75 77 77 41 42 42 43 91 93
Max(Wk) 13 12 11 12 7 5 6 5 11 10
Makespan 16 15 16 14 8 8 7 7 11 11

Solution count 1 1 1 1 1 1 1 1 1 1
Hybrid PSO & SA [5]

Benchmark Results 8 x 8 10 x 10 15 x 10
Wtd 75 77 44 91

Max(Wk) 12 13 6 11
Makespan 15 16 7 12

Solution count 1 1 1 1
VNGA [9]

Benchmark Results 8 x 8 10 x 10 15 x 10
Wtd 73 75 77 77 41 42 42 43 91 93

Max(Wk) 13 12 11 12 7 5 6 5 11 10
Makespan 16 15 16 14 8 8 7 7 11 11

Solution count 1 1 1 1 1 1 1 1 1 1

Table 13: Results for G-2 Benchmarks
Proposed Method

Benchmark Results 4 x 5 10 x 7 15 x 10
Wtd 31 32 33 60 61 62 91 93

Max(Wk) 9 83 7 12 11 10 11 10
Makespan 16 16 16 16 15 15 23 23

Solution count 13 10 4 > 104 > 104 1097 > 104 > 104

MOEA-GLS [8]
Benchmark Results 4 x 5 10 x 7 15 x 10

Wtd 32 33 60 61 62 91 93
Max(Wk) 8 7 12 11 10 11 10
Makespan 16 16 16 15 15 23 23

Solution count 1 1 1 1 1 1 1

Although it appears as if the proposed method performs
similarly to the MOEA-GLS and VNGA on all
benchmarks, the proposed method can find more
solutions. In Ho’s or Zhang‘s method, each optimal
solution is mapped only to one schematic. The solutions
of the G-1 problems found by the proposed method are
shown in Fig. 16. Multiple solutions were discovered by
the proposed method, but only some of them are
exhibited.

2) Results of the G-2 problems: It was obvious from
the results of G-1 problems (without release time
constraints), that hybrid PSO & SA cannot find solutions
located on/nearest to Pareto front. Thus, in this set of
experiments, only the proposed method and MOEA-GLS

were taken into comparison. Table 13 presents the
solutions found by the two methods on the 4x5, 10x7 and
15x10 benchmarks. Note that the Wtd, Max(Wk) and
Makespan in results tables also represent total workload
of all machines, the critical machine workload and the
time with all jobs finished, respectively. From the results,
the proposed method produces better solutions than
MOEA-GLS on the 4x5 benchmark. For the other two
benchmarks, the proposed method performs similarly to
the MOEA-GLS. However, the number of solutions found
by the proposed method greatly surpasses MOEA-GLS.
The solutions of the G-2 problems found by the proposed
method are shown in Fig. 17. The proposed method found
a mass of solutions, but only a few are exhibited.
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The proposed method has the ability to find
more/better solutions which are nearest to/located on the
Pareto set in each benchmark.

7 Conclusions

In this paper, a solution characteristic extraction strategy
is proposed to enhance genetic algorithms for
multi-objective problems. It can significantly improve the
searching abilities of chromosomes and find better
solutions located on/nearest to the Pareto set. Two groups
of benchmarks were adopted for testing through
reasonable experimental conditions and the results are
very reliable. The results of the experiments prove that
the proposed method can provide users with more
solution choices to meet their requirement.
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Appendance

Due to the page limitation, only part of the experiment
results is listed in this paper. The complete experiment
results can be found in
http://web.csie.ndhu.edu.tw/sjyen/GAFJSP.htm
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