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Abstract: The crux of this paper is to obtain predictors of the future observation under multiply type II censored sample from
exponential distribution. Bayes point predictors are obtained under asymmetric loss function (linear) as well as under symmetric loss
function (squared error) using nature conjugate prior. Predictive risks are calculated under each loss. Predictors are compared for the
smallest ordered future observation on the basis of predictive risk efficiencies for 1000 randomly generated sample using Monte Carlo
simulation technique as well as for real informative data representing failure times for electric insulation.
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1 Introduction

The use of predictive inference got its appearance in recentpast in which one wishes to infer about future sample on the
basis of results obtained from the past sample of the same population. For example, a factory owner wishes to predict
about lifetimes of certain type of machine tools to know about best inspection and replacement policy on the basis of
recorded life time of machine tools of similar type. Such type of inference is known as predictive inference. A good deal
of literature is available on the predictive inference for life time models using both classical and Bayesian approach (see
for example, [6],[7], [9],[4], [1], [3]). Aitchen and Dunsmore [2] is a text exclusively devoted to this topic. Kaminsky and
Nelson [5] described computational approach for obtaining intervaland point prediction of ordered statistics.
The most frequent area of discussion under prediction is point prediction and interval prediction. When point prediction is
under discussion, the consequence of being wrong must be viewed. Most of the above literature has assumed that loss due
to consequence of being wrong is proportional to the square of error i.e. equal weightage has given for positive error or
negative error. But this seems unjustified in the case if positive error is more serious than negative error or vice versa.In
the example mentioned above if actual lifetime of machine exceeds inspection time the overhead scrapping loss is incurred
for unused productive capacity. In contrary to it if inspection time exceeds the actual lifetime of machine there is a loss of
production time. So under prediction and over prediction are not of equal importance in many practical situations, hence
use of symmetric loss function is not justified.
The simplest asymmetric loss function for the prediction problems is the linear loss function suggested by [2] which
associates unequal weights to under prediction and over prediction errors of equal magnitude. The loss function shouldbe
such that if we predict (y) correctly, the loss incurred must be zero, otherwise it should be proportional to the difference
between predicted value (y∗) and the actual value (y). The constant of proportionality are chosen according to relative
importance of under-prediction and over prediction. The asymmetric linear loss function can be given as

L(y∗,y) =

{

ξ (y∗− y) i f y ≤ y∗

η (y− y∗) i f y > y∗
(1)
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whereξ is the loss per unit time for under prediction andη is the loss per unit time for over prediction. Ifη and
ξ both are equal, then above loss function reduces to a symmetric loss function. Using this loss function [11] derived
point predictors for exponential distribution whereas [10] obtained point predictors under asymmetric loss for Rayleigh
distribution when data were doubly type II censored, but nothing has appeared in literature about point predictors when
data is multiply type II censored.
To illustrate the use of linear loss function, we have considered the problem of point prediction for the future ordered
observation from one parameter exponential distribution when the data available is multiply type II censored.

2 Proposed Procedure

Let us consider that N itemsx1,x2, . . . ,xN are put on test having exponential failure time distribution with probability
density function (pdf)

f (x,θ ) =
1
θ

exp
(

−
x
θ

)

; x ≥ 0, θ > 0 (2)

with cumulative distribution function (cdf)

F (x,θ ) = 1−exp
(

−
x
θ

)

; x ≥ 0, θ > 0 (3)

be subjected to a life test. Due to unforeseen event experimenter could record only two groups of observations, i.e.
xr+1,xr+2, . . . ,xr+k and xr+k+l+1,xr+k+l+2, . . . ,xN−q, then this constitute a multiply type II censored observations. Its
likelihood function can be written as

L(x,θ ) =
N!

r!l!q!
[F(xr+1)]

r[F(xr+k+l+1−F(xr+k)]
l [1−F(xN−q)]

q
r+k

∏
i=r+1

f (xi,θ )
N−q

∏
i=r+k+l+1

f (xi,θ )

L(x,θ ) =
N!

r!l!q!

r

∑
p=0

l

∑
g=0

ΩpΩg

(

1
θ

)A

exp

(

−
Spg + S

θ

)

(4)

whereA = N − r− l− q, Ωp = (−1)p
(

r
p

)

, Ωg = (−1)g
(

l
g

)

,

Spg = pxr+1+(l− g)xr+k + gxr+k+l+1, S = qxN−q +∑r+k
i=r+1 xi +∑N−q

i=r+k+l+1 xi.
Let the prior ofθ be

g(θ ) =
ac

Γ (c)
1

θ c+1 exp
[

−
a
θ

]

; θ > 0, a,c > 0 (5)

Combining likelihood function (4) with the prior (5) via Bayes theorem, the posterior ofθ will be

p(θ |S) =
L(x,θ )g(θ )

∫ ∞
0 L(x,θ )g(θ )dθ

On solving, we get

p(θ |S) = D1
−1(x)

r

∑
p=0

l

∑
g=0

ΩpΩg

(

1
θ

)A+c+1

exp

(

−
Ts

θ

)

(6)

whereTs = Spg + S+ a andD1 (x) = Γ (A+ c) ∑r
p=0∑l

g=0 ΩpΩg (Ts)
−(A+c).

Let y1,y2, . . . .ym be an independent future sample of size m from (2), then the pdf of nth ordered future observation,where
1≤ n ≤ m is obtained from

f
(

y(n)|θ
)

=
m!

(n−1)! (m− n)!

[

F
(

y(n)
)]n−1

f
(

y(n)
)[

1−F
(

y(n)
)]m−n

whereF(.) is the cdf given in (3). On solving we obtain

f
(

y(n)|θ
)

= β−1 (n,M)
1
θ

n−1

∑
i=0

Ωiexp

[

−
(M+ i)y(n)

θ

]

(7)
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whereΩi = (−1)i
(

n−1
i

)

, M = m− n+1.

Hence using (7), the predictive pdf of the nthordered future observation can be derived as

h
(

y(n)|S
)

=
∫ ∞

0
f
(

y(n)|θ
)

p(θ | S)dθ

using (6) and (7), it becomes

h
(

y(n)|S
)

= β−1(n,M)(A+ c)D−1 (x)
r

∑
p=0

l

∑
g=0

n−1

∑
i=0

ΩpΩgΩi
[

Ts +(M+ i)y(n)
]−(A+c+1)

(8)

whereD(x) = ∑r
p=0∑l

g=0 ΩpΩg (Ts)
−(A+c).

Further suppose that loss associated with the point predictor is linear, as given in (1), then the optimal value of point
predictor may be obtained by differentiating the expected loss w.r.t.y∗. The expected loss can be written as

L(y∗) = E
(

L
(

y∗,y(n)
))

= ξ
∫ y∗

0

(

y∗− y(n)
)

h
(

y(n)|S
)

dy(n)+η
∫ ∞

y∗

(

y(n)− y∗
)

h
(

y(n)|S
)

dy(n) (9)

Differentiating w.r.t.y∗ and simplifying, we get

L′ (y∗) = (η + ξ )
∫ y∗

0
h
(

y(n)|S
)

dy(n)−η (10)

L
′′
(y∗) = (η + ξ )h(y∗ | S) , (> 0)

which implies that the solution of (10) when equated to zero provides the optimal value ofy∗ for which expected loss is
minimum. Hence point predictor, sayy(n)L∗ , under linear loss is the solution of

∫ y(n)L∗

0
h
(

y(n)|S
)

dy(n) =
η

(η + ξ )
(11)

On substituting value ofh
(

y(n)|S
)

from (8) in (11) and simplifying, we have

β−1(n,M)D−1 (x)
r

∑
p=0

l

∑
g=0

n−1

∑
i=0

ΩpΩgΩi

[

(Ts)
−(A+c)

(M+ i)
−

(Ts +(M+ i)y(n)L
∗)−(A+c)

(M+ i)

]

=
η

(η + ξ )
(12)

Above equation is solved fory(n)L∗ by using Bisection method.
It is well known that point predictor under quadratic loss isthe mean of predictive pdf. Thus for nth ordered future
observation, the predictor is given by

y(n)Q∗ = E
[

y(n)|S
]

=

∫ ∞

0
y(n).h

(

y(n)|S
)

dy(n) (13)

On solving, we get

y(n)Q∗ = β−1 (n,M)D−1 (x)
r

∑
p=0

l

∑
g=0

n−1

∑
i=0

ΩpΩgΩi
(Ts)

−(A+c)+1

{(A+ c)−1}(M+ i)2
(14)

Thus the point predictory(n)Q∗ is available in a nice closed form but its usage is justified only if under-prediction and
over-prediction are of equal importance. Contrary to it if over-prediction and under-prediction are of unequal importance,
the use ofy(n)Q∗ may not be appropriate and one might consider predictor under linear loss. Naturally, a question arises
whether we lose enough due to the use ofy(n)Q∗ if the appropriate loss is linear. Similarly, it would be also worthwhile
to investigate whether we lose enough due to the use ofy(n)L∗ instead ofy(n)Q∗ if over-prediction and under prediction
are of equal importance. To get an answer to these queries, wepropose to comparey(n)Q∗ andy(n)L∗under both linear and
quadratic loss function. The comparison can be carried out on the basis of predictive risk which may be defined as the
average loss incurred by the use of a particular predictor for a specified loss function. The predictor corresponding to
which the predictive risk is minimum, may then be recommended for use. The predictive risk may be defined as

PR(y(n)
∗) = E

[

L
{

y(n)
∗,y(n)

}]

wherey(n)
∗ is the predictor ofy(n) andL

{

y(n)
∗,y(n)

}

denotes the specified loss. Naturally, the expectation E is to be taken
over whole informative as well as future sample space. Thus
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p(S|θ ) = SA−1exp

[

−
AS
θ

]

1
Γ (A)

(

A
θ

)A

PR
(

y(n)
∗
)

=

∫ ∞

0

∫ ∞

0
L
{

y(n)
∗,y(n)

}

h
(

y(n)|S
)

p(S | θ )dSdy(n)

PR
(

y(n)
∗
)

=
β−1 (n,M)(A+ c)

Γ (A)

(

A
θ

)A ∫ ∞

0

∫ ∞

0
L
{

y(n)
∗,y(n)

}

D−1(x)
r

∑
p=0

l

∑
g=0

n−1

∑
i=0

ΩpΩgΩi

×
[

Ts +(M+ i)y(n)
]−(A+c+1)

SA−1exp

(

−
AS
θ

)

dSdy(n)

(15)

AssumingL
{

y(n)
∗,y(n)

}

to be linear, the predictive risks fory(n)L∗ andy(n)Q∗ can be obtained as

PRL
(

y(n)L∗
)

=
β−1 (n,M) (A+ c)

Γ (A)

(

A
θ

)A ∫ ∞

0

[

ξ
∫ y(n)L∗

0

(

y(n)L∗ − y(n)
)

+η
∫ ∞

y(n)L∗

(

y(n)− y(n)L∗
)

]

×SA−1exp

(

−
AS
θ

)

D−1 (x)
r

∑
p=0

l

∑
g=0

n−1

∑
i=0

ΩpΩgΩi
[

Ts +(M+ i)y(n)
]−(A+c+1)

dSdy(n)

(16)

and

PRL
(

y(n)Q∗

)

=
β−1 (n,M) (A+ c)

Γ (A)

(

A
θ

)A ∫ ∞

0

[

ξ
∫ y(n)Q∗

0

(

y(n)Q∗ − y(n)
)

+η
∫ ∞

y(n)Q∗

(

y(n)− y(n)Q∗

)

]

×SA−1exp

(

−
AS
θ

)

D−1 (x)
r

∑
p=0

l

∑
g=0

n−1

∑
i=0

ΩpΩgΩi
[

Ts +(M+ i)y(n)
]−(A+c+1)

dSdy(n)

(17)

Similarly, the predictive risks of the predictorsy(n)L∗ andy(n)Q∗ under quadratic loss are

PRQ
(

y(n)L∗
)

=
β−1(n,M) (A+ c)

Γ (A)

(

A
θ

)A ∫ ∞

0

∫ ∞

0

(

y(n)L∗ − y(n)
)2

×SA−1exp

(

−
AS
θ

)

D−1 (x)
r

∑
p=0

l

∑
g=0

n−1

∑
i=0

ΩpΩgΩi
[

Ts +(M+ i)y(n)
]−(A+c+1)

dSdy(n)

(18)

and

PRQ
(

y(n)Q∗

)

=
β−1(n,M) (A+ c)

Γ (A)

(

A
θ

)A ∫ ∞

0

∫ ∞

0

(

y(n)Q∗ − y(n)
)2

×SA−1exp

(

−
AS
θ

)

D−1 (x)
r

∑
p=0

l

∑
g=0

n−1

∑
i=0

ΩpΩgΩi
[

Ts +(M+ i)y(n)
]−(A+c+1)

dSdy(n)

(19)

respectively.

3 Comparison of Predictors for the smallest observation

In this section, comparison of the predictors for the smallest observation from a future sample has been made. The
predictors and their corresponding risks, for this particular case, may be obtained by putting n=1 in (12), (14), (16), (17),
(18) and (19). The predictor under linear loss is obtained as

D−1 (x)
r

∑
p=0

l

∑
g=0

ΩpΩg

[

Ts
−(A+c)−

(

Ts +my(1)L
∗
)−(A+c)

]

=
η

(η + ξ )
(20)
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Similarly, the predictor under quadratic loss comes out to be

y(1)Q∗ =
D−1(x)

m

r

∑
p=0

l

∑
g=0

ΩpΩg
Ts

−(A+c)+1

(A+ c−1)
(21)

The predictive risks of the predictorsy(1)L∗ andy(1)Q∗ under linear loss are

PRL
(

y(1)L∗
)

=
1

Γ (A)

(

A
θ

)A ∫ ∞

0
D−1 (x)

r

∑
p=0

l

∑
g=0

ΩpΩgSA−1exp

(

−
AS
θ

)

×

[

ξ

{

y(1)L
∗Ts

−(A+c)−
Ts

−(A+c)+1

m(A+ c−1)

}

+(η + ξ )
(

Ts +my(1)L
∗
)−(A+c)+1

m(A+ c−1)

]

ds

(22)

and

PRL
(

y(1)Q∗

)

=
1

Γ (A)

(

A
θ

)A ∫ ∞

0
D−1 (x)

r

∑
p=0

l

∑
g=0

ΩpΩgSA−1exp

(

−
AS
θ

)

×

[

ξ

{

y(1)Q
∗Ts

−(A+c)−
Ts

−(A+c)+1

m(A+ c−1)

}

+(η + ξ )
(

Ts +my(1)Q
∗
)−(A+c)+1

m(A+ c−1)

]

ds

(23)

respectively.
In the same way, the predictive risks of the predictorsy(1)L∗ andy(1)Q∗ under quadratic loss function are

PRQ
(

y(1)L∗
)

=
1

Γ (A)

(

A
θ

)A ∫ ∞

0
D−1 (x)

r

∑
p=0

l

∑
g=0

ΩpΩgSA−1exp

(

−
AS
θ

)

×

[

y(1)L
∗2 T s

−(A+c)−
2y(1)L

∗Ts
−(A+c)+1

m(A+ c−1)
+

2Ts
−(A+c)+2

m2 (A+ c−1)(A+ c−2)

]

ds

(24)

and

PRQ
(

y(1)Q∗

)

=
1

Γ (A)

(

A
θ

)A ∫ ∞

0
D−1(x)

r

∑
p=0

l

∑
g=0

ΩpΩgSA−1exp

(

−
AS
θ

)

×

[

y(1)Q
∗2Ts

−(A+c)−
2y(1)Q

∗Ts
−(A+c)+1

m(A+ c−1)
+

2Ts
−(A+c)+2

m2 (A+ c−1)(A+ c−2)

]

ds

(25)

respectively.
It may be noted here that as the predictors and predictive risks are not in closed form, therefore can be evaluated using
15-point Gauss-Laguerre quadrature formula.
Now thePRELIN of y(1)L∗ w.r.t. y(1)Q∗ may be defined as

PRELIN =
PRL(y(1)Q∗)

PRL(y(1)L∗)
(26)

Similarly, thePREQRD of y(1)L∗ w.r.t. y(1)Q∗ may be defined as

PREQRD =
PRQ(y(1)Q∗)

PRQ(y(1)L∗)
(27)

.

4 Discussion

In this section, we have obtained numerical results for predictor under linear loss and predictor under quadratic loss along
with the predictive risks. Results have been obtained for simulated data as well as for real data set.
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4.1 Simulation study

In the present section we compare the point predictor under linear loss for the smallest order future observation with the
point predictor obtained under quadratic loss, on the basisof their predictive risk efficiency. For the comparison purpose
a Monte Carlo study of 1000 randomly generated samples from exponential distribution was conducted for different
values ofθ . We considered a number of values for the different constants involved in (26) and (27), but the results have
been reported only for some of the considered values, because of a number of reasons. For example, we considered three
different values ofθ , namely 0.5, 1.0 and 2.0 and it was found that although risks differs by varyingθ , the risk efficiencies
remains mostly unchanged soθ = 2.0 has been reported. Similarly, three different sample sizes namely 6,10 and 25 were
taken for both informative and future samples but N=m=20 is only reported because no significant change observed in the
results with variation in sample sizes.

A number of values 2.0, 4.0, 6.0 were assigned to the hyperparametera, but less variation in predictive risk efficiencies
was noticed, therefore we have fixed hyperparametera at 2.0 everywhere. As the variation in hyperparameterc was found
significant, five different values, namely 0.50, 1.0, 2.0, 4.0 and 6.0 were considered for hyperparameterc. Appropriate
values were assigned tor, l andq so as to cover different censoring schemes, i,e. multiply, doubly, mid, left and right.
Number of observed lifetimes kept fixed i.e. at 6 for these censoring schemes except multiply. For multiply censoring
schemes results were reported for different numbers of observed lifetimes. A number of values were assigned to linear
loss parameter (η ,ξ ) so as to keep the ratioη/ξ fixed at 0.25, 0.50, 1.0, 1.5 and 2.0. The results are summarized in tables
1-10.

Tables 1-5 shows the relative efficiencies ofy((1)L∗) w.r.t. y((1)Q∗) under linear loss. It is deduced from the tables that,
in most of the casesy((1)L∗) performs better than that ofy((1)Q∗). It is observed thatPRELIN decreases as the ratioη/ξ
increases. Hence forη/ξ ≤ 1.5 predictor under linear loss performs better than predictor under quadratic loss. Though
PRELIN is less than unity forη/ξ > 1.5 but seems close to unity, so it can be inferred that predictor under linear loss
performs equally as good as predictor under quadratic loss.It may be observed from tables that as we increase the value
of hyperparameterc, PRELIN decreases almost everywhere except in the case of mid censoring scheme where it increases.
For multiply censoring similar trend in the results is noticed where number of observed life times are more but with less
number of observed lifetimes somewhere trend is reversed.
Table6-10 summaries relative efficiencies ofy((1)L∗) w.r.t y((1)Q∗) under squared error loss function. As expected the
PREQRD is observed to be more than unity everywhere.PREQRD decreases with the increase in the ratioη/ξ . Forη/ξ ≤
1.5, it is found that predictor under linear loss performs better than predictor under quadratic loss but forη/ξ > 1.5 it
seems that one can use predictor under linear loss over predictor under quadratic loss without any significant loss even if
quadratic loss seems to be more appropriate. It may be noted thatPREQRD decreases with increase in hyperparameterc
almost everywhere.

4.2 Real data study

The following data represent failure times (in minutes) forelectric insulation in an experiment in which insulation was
subjected to a continuously voltage stress (Lawless[8], p.138)

12.3,21.8,24.4,28.6,43.2,46.9,−,75.3,95.5,98.1,138.6,−

Since the experimenter failed to record the failure time of 7th unit hence 7th observation is censored. Similarly the
experimenter could not wait till the last observation gets failed, hence he stopped recording after 11th failure, due tothis
12th observation get censored. Therefore, we have following multiply type II censoring parameters

N = 12,r = 0,k = 6, l = 1,q = 1.

Predictive risk under quadratic loss were obtained using Bayes estimator of parameter under multiply type II censoring
whereas quantile estimator under multiply type II censoring is used to obtain predictive risk under linear loss. For above
data, the predictive risk efficiencies are calculated for different ratio ofη/ξ and since no significant variation is seen of
changing hyperparameters in simulation study, we have fixedhyperparameters as a=1300.0, c=27 is summarized in table
11. From table11, it is to be noted that asη/ξ increasesPRELIN decreases. It is evident thatPRELIN is greater than unity
everywhere which implies that predictor under linear loss performs better than predictor under quadratic loss even if actual
loss is symmetric. From table11 it is seen thatPREQRD first increases with increase in / up to 1.0 then it decreases.It
meansPREQRD attains its maximum atη/ξ = 1.0 and decreases on either side of it.PREQRD is maximum for symmetric
loss that is atη/ξ = 1.0. PREQRD is slightly greater than unity forη/ξ less than equal to 2, but even though it is smaller
thanPRELIN . It seems that predictor under linear loss can be used safelyover predictor under quadratic loss everywhere.
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5 Conclusion

As per the discussion of previous section it may be concludedthat with more number of observed life time under multiply
type II censoring one can safely use the predictor obtained under linear loss because it is either more efficient (in case
when asymmetric loss is actual loss) or almost equally efficient (in case when quadratic loss is actual loss) compared to
the usual predictor obtained under quadratic loss. It needsto be pointed out here that the use of quadratic loss is advisable
if one is quite sure about its sustainability. However, in all other cases one may safely use the proposed linear loss as it
provides both symmetric and asymmetric loss functions.

Table 1: Predictive risk efficiencies ofy((1)L
∗ ) w.r.t y((1)Q

∗ ) under linear loss forη/ξ = 0.25 ,a = 2.0

Censoring Scheme r k l q c=0.5 c=1.0 c=2.0 c=4.0 c=6.0

Multiply

2 6 2 2 7.79063 7.78322 7.76926 7.74680 7.72854
3 6 3 2 7.41671 7.41340 7.40736 7.39848 7.39265
3 6 3 4 7.12186 7.11859 7.11387 7.10741 7.10449
4 6 4 4 6.04679 6.04945 6.05563 6.06998 6.08578
3 3 3 8 6.83862 6.83238 6.82276 6.80977 6.80291
3 3 5 8 5.66046 5.66266 5.66871 5.68433 5.70345

Right 0 6 0 6 7.81920 7.80480 7.77927 7.73778 7.70587
Left 6 6 0 0 7.70134 7.69118 7.67256 7.63885 7.60944

Doubly 3 6 0 3 7.73734 7.72666 7.70627 7.67201 7.64438
Mid 0 6 6 0 7.23222 7.23405 7.23803 7.24691 7.25660

Table 2: Predictive risk efficiencies ofy((1)L
∗) w.r.t y((1)Q

∗) under linear loss forη/ξ = 0.5 , a = 2.0

Censoring Scheme r k l q c=0.5 c=1.0 c=2.0 c=4.0 c=6.0

Multiply

2 6 2 2 3.32367 3.32090 3.31603 3.30887 3.30333
3 6 3 2 3.17528 3.17349 3.17057 3.16651 3.16388
3 6 3 4 3.06346 3.06167 3.05861 3.05435 3.05173
4 6 4 4 2.73732 2.73701 2.73669 2.73754 2.73938
3 3 3 8 2.92315 2.91999 2.91468 2.90715 2.90218
3 3 5 8 2.57619 2.57507 2.57354 2.57260 2.57351

Right 0 6 0 6 3.36408 3.35919 3.35045 3.33705 3.32731
Left 6 6 0 0 3.37042 3.36797 3.36336 3.35609 3.35125

Doubly 3 6 0 3 3.38141 3.37762 3.37119 3.36112 3.35363
Mid 0 6 6 0 3.12307 3.12285 3.12276 3.12367 3.12591

Table 3: Predictive risk efficiencies ofy((1)L
∗) w.r.t y((1)Q

∗) under linear loss forη/ξ = 1, a = 2.0

Censoring Scheme r k l q c=0.5 c=1.0 c=2.0 c=4.0 c=6.0

Multiply

2 6 2 2 1.64685 1.64532 1.64260 1.63780 1.63360
3 6 3 2 1.61790 1.61666 1.61449 1.61070 1.60733
3 6 3 4 1.59738 1.59605 1.59352 1.58936 1.58597
4 6 4 4 1.51543 1.51464 1.51317 1.51099 1.50928
3 3 3 8 1.57240 1.57015 1.56628 1.55981 1.55505
3 3 5 8 1.47619 1.47483 1.47249 1.46894 1.46652

Right 0 6 0 6 1.66373 1.66117 1.65652 1.64859 1.64243
Left 6 6 0 0 1.64833 1.64704 1.64448 1.64002 1.63619

Doubly 3 6 0 3 1.65684 1.65498 1.65154 1.64569 1.64070
Mid 0 6 6 0 1.60212 1.60140 1.60017 1.59797 1.59617
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Table 4: Predictive risk efficiencies ofy((1)L
∗) w.r.t y((1)Q

∗) under linear loss forη/ξ = 1.5 , a = 2.0

Censoring Scheme r k l q c=0.5 c=1.0 c=2.0 c=4.0 c=6.0

Multiply

2 6 2 2 1.15378 1.15271 1.15078 1.14736 1.14449
3 6 3 2 1.14793 1.14697 1.14516 1.14207 1.13950
3 6 3 4 1.14628 1.14515 1.14307 1.13951 1.13660
4 6 4 4 1.12704 1.12617 1.12454 1.12179 1.11960
3 3 3 8 1.14869 1.14680 1.14349 1.13812 1.13400
3 3 5 8 1.12391 1.12247 1.11997 1.11600 1.11294

Right 0 6 0 6 1.16515 1.16342 1.16019 1.15486 1.15060
Left 6 6 0 0 1.15113 1.15026 1.14857 1.14564 1.14315

Doubly 3 6 0 3 1.15733 1.15604 1.15383 1.14993 1.14667
Mid 0 6 6 0 1.14229 1.14158 1.14026 1.13792 1.13593

Table 5: Predictive risk efficiencies ofy((1)L
∗) w.r.t y((1)Q

∗) under linear loss forη/ξ = 2.0 , a = 2.0.

Censoring Scheme r k l q c=0.5 c=1.0 c=2.0 c=4.0 c=6.0

Multiply

2 6 2 2 0.92194 0.92111 0.91958 0.91695 0.91476
3 6 3 2 0.92498 0.92412 0.92260 0.91997 0.91779
3 6 3 4 0.93169 0.93066 0.92882 0.92566 0.92308
4 6 4 4 0.94085 0.93993 0.93821 0.93526 0.93280
3 3 3 8 0.94675 0.94506 0.94208 0.93724 0.93349
3 3 5 8 0.95613 0.95469 0.95209 0.94788 0.94453

Right 0 6 0 6 0.93082 0.92944 0.92695 0.92290 0.91964
Left 6 6 0 0 0.91819 0.91753 0.91628 0.91416 0.91234

Doubly 3 6 0 3 0.92313 0.92218 0.92048 0.91760 0.91522
Mid 0 6 6 0 0.92317 0.92246 0.92117 0.91892 0.91695

Table 6: Predictive risk efficiencies ofy((1)L
∗) w.r.t y((1)Q

∗)under Quadratic loss forη/ξ = 0.25 ,a = 2.0

Censoring Scheme r k l q c=0.5 c=1.0 c=2.0 c=4.0 c=6.0

Multiply

2 6 2 2 13.48227 13.53450 13.63262 13.81049 13.96707
3 6 3 2 7.40479 7.44742 7.52944 7.68229 7.82271
3 6 3 4 5.47138 5.50736 5.57608 5.70321 5.81908
4 6 4 4 2.69043 2.70949 2.74656 2.81722 2.88405
3 3 3 8 4.25656 4.29457 4.36542 4.49152 4.60220
3 3 5 8 2.12220 2.14185 2.17978 2.25176 2.31977

Right 0 6 0 6 18.64233 18.70007 18.80303 18.96922 19.10026
Left 6 6 0 0 21.14014 21.25642 21.48313 21.90586 22.29466

Doubly 3 6 0 3 21.42228 21.48066 21.58621 21.77445 21.94114
Mid 0 6 6 0 6.55624 6.61722 6.73733 6.96971 7.19170
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Table 7: Predictive risk efficiencies ofy((1)L
∗) w.r.t y((1)Q

∗) under Quadratic loss forη/ξ = 0.50 ,a = 2.0

Censoring Scheme r k l q c=0.5 c=1.0 c=2.0 c=4.0 c=6.0

Multiply

2 6 2 2 5.88108 5.88977 5.90592 5.93503 5.96053
3 6 3 2 4.34306 4.35583 4.38000 4.42391 4.46326
3 6 3 4 3.53645 3.55002 3.57551 3.62108 3.66127
4 6 4 4 2.24169 2.25204 2.27188 2.30848 2.34205
3 3 3 8 2.79035 2.80646 2.83581 2.88559 2.92706
3 3 5 8 1.79885 1.80990 1.83068 1.86816 1.90173

Right 0 6 0 6 6.27519 6.28356 6.29806 6.32120 6.34004
Left 6 6 0 0 7.13074 7.14041 7.15894 7.19477 7.23088

Doubly 3 6 0 3 7.04031 7.04437 7.05204 7.06628 7.08017
Mid 0 6 6 0 4.06447 4.08256 4.11767 4.18433 4.24684

Table 8: Predictive risk efficiencies ofy((1)L
∗) w.r.t y((1)Q

∗) under Quadratic loss forη/ξ = 1.0 , a=2.0

Censoring Scheme r k l q c=0.5 c=1.0 c=2.0 c=4.0 c=6.0

Multiply

2 6 2 2 2.50191 2.49851 2.49251 2.48172 2.47213
3 6 3 2 2.35292 2.35145 2.34898 2.34452 2.34024
3 6 3 4 2.23731 2.23683 2.23567 2.23386 2.23232
4 6 4 4 1.89168 1.89383 1.89783 1.90531 1.91186
3 3 3 8 2.06984 2.07047 2.07160 2.07270 2.07368
3 3 5 8 1.69796 1.70169 1.70857 1.72034 1.73045

Right 0 6 0 6 2.55429 2.54834 2.53745 2.51854 2.50368
Left 6 6 0 0 2.54570 2.54248 2.53608 2.52489 2.51526

Doubly 3 6 0 3 2.56606 2.56122 2.55225 2.53693 2.52378
Mid 0 6 6 0 2.29457 2.29475 2.29535 2.29639 2.29741

Table 9: Predictive risk efficiencies ofy((1)L
∗) w.r.t y((1)Q

∗) under Quadratic loss forη/ξ = 1.5 , a = 2.0

Censoring Scheme r k l q c=0.5 c=1.0 c=2.0 c=4.0 c=6.0

Multiply

2 6 2 2 1.31942 1.31704 1.31273 1.30510 1.29871
3 6 3 2 1.30909 1.30700 1.30303 1.29624 1.29058
3 6 3 4 1.30614 1.30379 1.29938 1.29184 1.28561
4 6 4 4 1.26207 1.26054 1.25763 1.25265 1.24861
3 3 3 8 1.30755 1.30395 1.29760 1.28712 1.27896
3 3 5 8 1.24482 1.24277 1.23920 1.23333 1.22864

Right 0 6 0 6 1.34448 1.34061 1.33338 1.32146 1.31198
Left 6 6 0 0 1.31216 1.31021 1.30644 1.29990 1.29437

Doubly 3 6 0 3 1.32618 1.32331 1.31835 1.30965 1.30237
Mid 0 6 6 0 1.29732 1.29576 1.29286 1.28770 1.28327
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Table 10: Predictive risk efficiencies ofy((1)L
∗) w.r.t y((1)Q

∗) under Quadratic loss forη/ξ = 2.0 , a = 2.0

Censoring Scheme r k l q c=0.5 c=1.0 c=2.0 c=4.0 c=6.0

Multiply

2 6 2 2 0.85105 0.84956 0.84682 0.84214 0.83827
3 6 3 2 0.85311 0.85155 0.84875 0.84397 0.84004
3 6 3 4 0.86312 0.86116 0.85767 0.85171 0.84689
4 6 4 4 0.87479 0.87289 0.86936 0.86336 0.85839
3 3 3 8 0.89006 0.88662 0.88060 0.87090 0.86343
3 3 5 8 0.90474 0.90154 0.89582 0.88656 0.87927

Right 0 6 0 6 0.86744 0.86493 0.86043 0.85311 0.84727
Left 6 6 0 0 0.84608 0.84493 0.84274 0.83903 0.83587

Doubly 3 6 0 3 0.85467 0.85298 0.84995 0.84484 0.84066
Mid 0 6 6 0 0.84875 0.84747 0.84516 0.84115 0.83767

Table 11: Predictive risk efficiencies under linear loss and under quadratic loss for real dataset
η/ξ PRELIN PREQRD
0.25 4.00657 1.00896
0.5 2.32859 1.24591
0.75 1.77982 1.40089
1 1.51332 1.44961
1.25 1.35966 1.40865
1.5 1.26237 1.31426
1.75 1.19724 1.19887
2 1.15215 1.08268
2.5 1.09795 0.88045
3.5 1.06079 0.61335
4 1.05973 0.52818
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