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Abstract: The crux of this paper is to obtain predictors of the futureeshation under multiply type Il censored sample from
exponential distribution. Bayes point predictors are inted under asymmetric loss function (linear) as well as usgiemmetric loss
function (squared error) using nature conjugate priordietie risks are calculated under each loss. Predictersampared for the
smallest ordered future observation on the basis of piiedidgsk efficiencies for 1000 randomly generated samplegisonte Carlo
simulation technique as well as for real informative dafmesenting failure times for electric insulation.
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1 Introduction

The use of predictive inference got its appearance in rgzasttin which one wishes to infer about future sample on the
basis of results obtained from the past sample of the samelatam. For example, a factory owner wishes to predict
about lifetimes of certain type of machine tools to know atlmest inspection and replacement policy on the basis of
recorded life time of machine tools of similar type. Suchety inference is known as predictive inference. A good deal
of literature is available on the predictive inference fée time models using both classical and Bayesian approsesh (
for example, 6],[7], [9].[4], [1], [3]). Aitchen and Dunsmore?] is a text exclusively devoted to this topic. Kaminsky and
Nelson p] described computational approach for obtaining inteavel point prediction of ordered statistics.

The most frequent area of discussion under prediction istpoediction and interval prediction. When point prediatis
under discussion, the consequence of being wrong must tvedidviost of the above literature has assumed that loss due
to consequence of being wrong is proportional to the squiaeeror i.e. equal weightage has given for positive error or
negative error. But this seems unjustified in the case iftip@serror is more serious than negative error or vice vdrsa.
the example mentioned above if actual lifetime of machirezexrls inspection time the overhead scrapping loss is iedurr
for unused productive capacity. In contrary to it if inspectime exceeds the actual lifetime of machine there is a.dds
production time. So under prediction and over predictianrast of equal importance in many practical situations, benc
use of symmetric loss function is not justified.

The simplest asymmetric loss function for the predictioobbpems is the linear loss function suggested Blywhich
associates unequal weights to under prediction and ovdigpien errors of equal magnitude. The loss function shbeld
such that if we predicty] correctly, the loss incurred must be zero, otherwise iuthbe proportional to the difference
between predicted valug*) and the actual valugy). The constant of proportionality are chosen accordingetative
importance of under-prediction and over prediction. Tharasetric linear loss function can be given as

_JEWy -y ify<y
L(yk’y)_{n(y—y*) ify>y" .
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whereé is the loss per unit time for under prediction ands the loss per unit time for over prediction. rif and
¢ both are equal, then above loss function reduces to a symeniegs function. Using this loss functiod]] derived
point predictors for exponential distribution where&6][obtained point predictors under asymmetric loss for Rigyle
distribution when data were doubly type Il censored, buhimgf has appeared in literature about point predictors when
data is multiply type Il censored.
To illustrate the use of linear loss function, we have cosi®d the problem of point prediction for the future ordered
observation from one parameter exponential distributibemthe data available is multiply type Il censored.

2 Proposed Procedure

Let us consider that N itenyg, xo,...,Xy are put on test having exponential failure time distribaitieith probability
density function (pdf)

f(x,@):%exp(—g) x>0, >0 @)

with cumulative distribution function (cdf)
F(x,@):l—exp(—g) x>0, >0 @3)
be subjected to a life test. Due to unforeseen event expetéaneould record only two groups of observations, i.e.

Xt 41, X425 -5 Xk @NA X ieq 141, Xk 1425 - - -, XN—g, then this constitute a multiply type Il censored obseorai Its
likelihood function can be written as

NI r+k N—q
L(>_<,9)=W[F(Xr+1)]r[F(Xr+k+l+1—F(Xr+k)] [1-FOn-o)® [ f6.0) ] f(x.6)
g i=r+1 i=r+ktl+1
TR 1\* Spg+S
L50)= g 3,3, 2%(5) o~ T @

whereA=N-—r—1—-q, Qp= (—1)'“([)), Qq= (—1)9('9),

Spg = PXei1+ (| = Q)X+ Pskiirt, S=PN-g+ T %+ IRDRIEE' S
Let the prior of6 be
a® 1

a
g(e)_mmexp{—é}, 6>0,ac>0 (5)
Combining likelihood function4) with the prior 6) via Bayes theorem, the posterior@fwill be

L(x,0)9(8)
Jo L(x,6)g(6)d6

p(6[S) =
On solving, we get
ro| 1 A+c+1 T,
P90 5 5 asu(5) o) ©
whereTs = Spy+ S aandDs () = I (A+6) ThoTg02p2(T) 4.

Letys,Y2,....ym be an independent future sample of size m fr@nthen the pdf of i ordered future observation,where
1< n<m isobtained from

m!

FOmI®) = m—rmomi F V)]™ " (i) [ F ()] ™"

whereF (.) is the cdf given in 8). On solving we obtain

n—-1 M . .
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whereQ; = (—1) (”71), M=m-n+1.
Hence using?), the predictive pdf of thetRordered future observation can be derived as

h(ynlS) = [ f (0 /6) p(6 S0

using 6) and (7), it becomes

r |1 n-1
h(ywIS) =B (M) (A+AD (9 5 5 5 QpQe [Tot (M +i)y(n] et ©)
p=0g

whereD (x) = 5o 3o 2pQg (Ts) "
Further suppose that loss associated W|th the point pardigtinear, as given inlj, then the optimal value of point
predictor may be obtained by differentiating the expeotasd Ww.r.ty*. The expected loss can be written as

L) = E L) =& [ 07 =) N S+ [ (1 =) n 3 S ©
Differentiating w.r.t.y* and simplifying, we get
y*
L) = (n+8) [ 1yl —n (10)
L' (y) = (n+&h(y*|S), (>0

which implies that the solution ofLQ) when equated to zero provides the optimal valug‘dbr which expected loss is
minimum. Hence point predictor, sgy,«, under linear loss is the solution of

Y(n)L* n
h S)d =— 11
/O (Y [S)dy(n) 7+ 0 (11)
On substituting value df (y(,)|S) from (8) in (11) and simplifying, we have
r | n-1 ) (A+c) (Ts+(M+i)Y(n)L*)_(A+C) n
B~ (n,M)D Qp Q40 — _ = (12)
A N oy P | T (M+1) n+8)

Above equation is solved fof, « by using Bisection method.

It is well known that point predictor under quadratic losstie mean of predictive pdf. Thus fofrordered future
observation, the predictor is given by

018 = [ Yorh e 19 e (13)
On solving, we get
r | n-1 Ts)f(AJrC)Jrl
Yo =B (n,M QpQ . (14)
me =P~ (nM)D” pogzozo P A M)

Thus the point predictoy, o+ is available in a nice closed form but its usage is justifiety dnunder-prediction and
over-prediction are of equal importance. Contrary to inéeprediction and under-prediction are of unequal imgrace,

the use ofy, o+ may not be appropriate and one might consider predictorrlivazr loss. Naturally, a question arises
whether we lose enough due to the usg@fo- if the appropriate loss is linear. Similarly, it would be@lsorthwhile

to investigate whether we lose enough éue to the usg,pf instead ofy, - if over-prediction and under prediction
are of equal importance. To get an answer to these querigs,opese to comparng, o- andy, - under both linear and
guadratic loss function. The comparison can be carried nuhe basis of predictive risk which may be defined as the
average loss incurred by the use of a particular predictoafspecified loss function. The predictor corresponding to
which the predictive risk is minimum, may then be recommeifde use. The predictive risk may be defined as

PR(Ym ") = E [L{Ym" Y }]

whereyp,)* is the predictor of/,) andL {y(m*,y(n)} denotes the specified loss. Naturally, the expectation&hbg taken
over whole informative as well as future sample space. Thus
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sl 5] 3

//L{y * Yoy }h (v |S) (S| 8) ddy

PR(y(n)*)zﬁil( rl\? A—|—C< ) / / L{y ,y }D r_ogi:o:]g_Qp.Qg.Qi

(15)
: - _ AS
< [Ts+ (M+1)ym) (ArerlA-lep (_?> dsdyn,
AssumingL {y(n)*,y(n)} to be linear, the predictive risks fgy,) - andyn - can be obtained as
“1(n,M)(A+c) Apo [ Y o
PRL (YnL+) = A 5 /0 E/O (YL —Y) +'7/y( . (V) — YoL+)
1 AS ot (A+c+1) (o
xp| -3 20 20 Z}QPQQQ. [Ts+M+i)ym| dsdy(
and
B (M) (A+c) (A A/oo /y<n>o* /
PR (Y(n)Q*) = A ] 0 3 0 (y +’7 *)
1 AS ot (Atct1) a0
x S exp( 6) ZOZOEOQ pQgQi[Ts+ (M +i)ym] dsdy(n
Similarly, the predictive risks of the predictoyg, - andy o+ under quadratic loss are
n,M) (A+c)
o) — LML) (AY 1
AS r | n-1 (18)
xS texp (—?) D~ ( ZO Z} QpQQi[Ts+ (M+i)ym] ™ (AtetD) dsdy,
p—Og
and
B~1(n,M)(A+c)
PRa (Yime') = ——F(a) / /
AS r | n-1 (Atct1) (19)
XSA_j-@(p (—F) D_ ZO % QpQgQ| [Ts+ (M + |)y( )} d&jy(n)
p—Og
respectively.

3 Comparison of Predictorsfor the smallest observation

In this section, comparison of the predictors for the snsallgbservation from a future sample has been made. The
predictors and their corresponding risks, for this patéicaase, may be obtained by putting n=112); (14), (16), (17),
(18) and (9). The predictor under linear loss is obtained as

Z QpQg[ Ao (T8+W(1>L*)7(A+C>]:(n’l£) (20)
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Similarly, the predictor under quadratic loss comes outto b

D1 (X) ro| TS—(A+C)+1
« =——" QpQy— 21
Y1)Q o= pZOg= N yr— (21)

The predictive risks of the predictoyg), - andy(1)q- under linear loss are

PRL (YayL+) = % (%)A/Om D 1(x) i I QpQ4S  texp (—%S>

p=0g=

(22)
T~ (A+o)+1 (Ts+my, *)‘(A+C)+1
w —(Atc) _ _Is (HL
X l‘f {y<1>L Ts m(A+c—1) } ) Aty |%
and
PR ( )—i@)A/‘”D—l(x) S S 0,0, Tex (_A_S>
Yoo ) =Fay\a) Jo pZOg: p€2g Pl—5 -
T~ (A+0)+1 (Ts+my, *)‘(A+C)+1
w1 —(At+c) _ _Is 1
X l‘z {me Ts m(A+c—1)}+(n+E) m(A+c—1) ds
respectively.
In the same way, the predictive risks of the predicipyg - andy;)o- under quadratic loss function are
1 (AP e D] = AS
PRG (Y1)L:) = m<5) /0 D 1(x) pZoQ: QpQsS texp (_F> o
2y * T, —(A+c)+1 2T~ (A+c)+2
x21 —(A+c) _ YL s s
le“)L Ts mAtc—1) | mAtc-D(Arc—2) |
and
1 (A [ ro AS
P )=——(= D 1(x QpQy St tex (——)
Rolime) = i (5) [ 003 3 s ten (g i}
«27 ~(Ato) 2y() Ts” Ao 2Ts~(Aro+2 q (29
Y T TmAtc—1)  mPAtc-D(Atc—2)|*®
respectively.

It may be noted here that as the predictors and predictils Ege not in closed form, therefore can be evaluated using
15-point Gauss-Laguerre quadrature formula.
Now thePRELn Of y(1).« W.I.t. y(1)q- May be defined as

PRL(Y(1)0+)
PRE N = —————— 26
LN = B V) (26)
Similarly, thePREqrp Of y(1).+ W.I.t. y(1)q+ May be defined as
PRq(Y(1)0)
PREoRD = (27)
R0 PRo(Y(1)L+)

4 Discussion

In this section, we have obtained numerical results foriptedunder linear loss and predictor under quadratic |tmsg
with the predictive risks. Results have been obtained foukited data as well as for real data set.
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4.1 Smulation study

In the present section we compare the point predictor unaead loss for the smallest order future observation with th
point predictor obtained under quadratic loss, on the lidiseir predictive risk efficiency. For the comparison pesp

a Monte Carlo study of 1000 randomly generated samples foquorential distribution was conducted for different
values off. We considered a number of values for the different constianblved in 6) and @7), but the results have
been reported only for some of the considered values, beadw@snumber of reasons. For example, we considered three
different values 0B, namely 0.5, 1.0 and 2.0 and it was found that although rigfexrsl by varying6, the risk efficiencies
remains mostly unchanged 8o= 2.0 has been reported. Similarly, three different samplessizanely 6,10 and 25 were
taken for both informative and future samples but N=m=2iy ceported because no significant change observed in the
results with variation in sample sizes.

A number of values 2.0, 4.0, 6.0 were assigned to the hypanpetesa, but less variation in predictive risk efficiencies
was noticed, therefore we have fixed hyperparanas¢ 2.0 everywhere. As the variation in hyperparameteas found
significant, five different values, namely 0.50, 1.0, 2.@ dnd 6.0 were considered for hyperparametekppropriate
values were assigned tol andq so as to cover different censoring schemes, i,e. multigybtly, mid, left and right.
Number of observed lifetimes kept fixed i.e. at 6 for thesesoeng schemes except multiply. For multiply censoring
schemes results were reported for different numbers ofrebddifetimes. A number of values were assigned to linear
loss parameterry, £) so as to keep the ratip/& fixed at 0.25, 0.50, 1.0, 1.5 and 2.0. The results are sumathirztables
1-10.

Tables 1-5 shows the relative efficiencies/gf), ) W.r.t. y((1)q+) under linear loss. It is deduced from the tables that,
in most of the caseg 1)L+ performs better than that of(1)0)- It is observed thaPRE| |y decreases as the rati/ &
increases. Hence fay/& < 1.5 predictor under linear loss performs better than predistaler quadratic loss. Though
PRE, |\ is less than unity fon /& > 1.5 but seems close to unity, so it can be inferred that predigider linear loss
performs equally as good as predictor under quadratic lossy be observed from tables that as we increase the value
of hyperparametar, PRE, |y decreases almost everywhere exceptin the case of mid aegpsoheme where it increases.
For multiply censoring similar trend in the results is netiovhere number of observed life times are more but with less
number of observed lifetimes somewhere trend is reversed.

Table 6-10 summaries relative efficiencies gfi1).«) W.r.t y(1)o+) under squared error loss function. As expected the
PREgrp is observed to be more than unity everywh&REqrp decreases with the increase in the ragj . Forn /& <

1.5, itis found that predictor under linear loss performséduetihan predictor under quadratic loss but fpté > 1.5 it
seems that one can use predictor under linear loss overcpwednder quadratic loss without any significant loss efen i
quadratic loss seems to be more appropriate. It may be notBREqrp decreases with increase in hyperparameter
almost everywhere.

4.2 Real data study

The following data represent failure times (in minutes)dtectric insulation in an experiment in which insulationswa
subjected to a continuously voltage stress (Lawksp[138)

12.3,21.8,24.4,28.6,43.2,46.9, —, 75.3,95.5,98.1,1386, —

Since the experimenter failed to record the failure time tf init hence 7th observation is censored. Similarly the
experimenter could not wait till the last observation gaikefl, hence he stopped recording after 11th failure, dileito
12th observation get censored. Therefore, we have follgwinltiply type Il censoring parameters

N=12r=0k=6,=1,q=1

Predictive risk under quadratic loss were obtained usingeBastimator of parameter under multiply type Il censoring
whereas quantile estimator under multiply type 1l cengpignused to obtain predictive risk under linear loss. Fovabo
data, the predictive risk efficiencies are calculated féfedgnt ratio ofn /& and since no significant variation is seen of
changing hyperparameters in simulation study, we have fiypaérparameters as a=1300.0, c=27 is summarized in table
11 From tablell, itis to be noted that ag/¢ increase$RE| |y decreases. It is evident tHaRE, |\ is greater than unity
everywhere which implies that predictor under linear las$qrms better than predictor under quadratic loss evestiifa

loss is symmetric. From tablkl it is seen thaPREggrp first increases with increase in / up to 1.0 then it decredses.
meansPREqrp attains its maximum ay /& = 1.0 and decreases on either side oPREgrp is maximum for symmetric
loss that is atj /& = 1.0. PREqrp is slightly greater than unity fan /& less than equal to 2, but even though it is smaller
thanPRE_ . It seems that predictor under linear loss can be used safelypredictor under quadratic loss everywhere.
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5 Conclusion

As per the discussion of previous section it may be concltiggidvith more number of observed life time under multiply
type Il censoring one can safely use the predictor obtaimeibulinear loss because it is either more efficient (in case
when asymmetric loss is actual loss) or almost equally efiicfin case when quadratic loss is actual loss) compared to

the usual predictor obtained under quadratic loss. It neeble pointed out here that the use of quadratic loss is daleisa

if one is quite sure about its sustainability. However, inotther cases one may safely use the proposed linear loss as it

provides both symmetric and asymmetric loss functions.

Table 1: Predictive risk efficiencies of (1)L* ) w.r.ty(1)Q" ) under linear loss fon /& = 0.25,

Censoring Scheme¢ rklq | ¢=0.5 c=1.0 c=2.0 c=4.0 c=6.0

2622 7.79063| 7.78322| 7.76926| 7.74680| 7.72854

3632 | 7.41671| 7.41340| 7.40736| 7.39848| 7.39265

Multiply 3634 | 7.12186| 7.11859| 7.11387| 7.10741| 7.10449
4644 6.04679] 6.04945| 6.05563| 6.06998 | 6.08578

3338 | 6.83862| 6.83238| 6.82276| 6.80977| 6.80291

3358 5.66046| 5.66266 | 5.66871| 5.68433| 5.70345

Right 0606 | 7.81920| 7.80480| 7.77927| 7.73778| 7.70587
Left 6600 | 7.70134| 7.69118| 7.67256| 7.63885| 7.60944
Doubly 3603 | 7.73734| 7.72666 | 7.70627 | 7.67201| 7.64438
Mid 0660 | 7.23222| 7.23405| 7.23803| 7.24691 | 7.25660

Table 2: Predictive risk efficiencies of (1)L*) w.r.ty (1)Q") under linear loss fon /§ =0.5,a= 2.0

Censoring Scheme rklq | ¢=0.5 c=1.0 c=2.0 c=4.0 c=6.0

2622 3.32367| 3.32090| 3.31603| 3.30887 | 3.30333

3632 | 3.17528| 3.17349| 3.17057| 3.16651| 3.16388

Multiply 3634 | 3.06346| 3.06167 | 3.05861| 3.05435| 3.05173
4644 2.73732| 2.73701| 2.73669| 2.73754 | 2.73938

3338 2.92315| 2.91999| 2.91468| 2.90715| 2.90218

3358 | 2.57619| 2.57507 | 2.57354| 2.57260| 2.57351

Right 0606 | 3.36408| 3.35919| 3.35045| 3.33705| 3.32731
Left 6600 | 3.37042| 3.36797 | 3.36336| 3.35609 | 3.35125
Doubly 3603 3.38141| 3.37762| 3.37119| 3.36112| 3.35363
Mid 0660 | 3.12307| 3.12285| 3.12276| 3.12367 | 3.12591

Table 3: Predictive risk efficiencies of (1)L*) w.r.ty(1)Q") under linear loss fon /§ =1,a= 2.0

Censoring Scheme rklq | ¢=0.5 c=1.0 c=2.0 c=4.0 c=6.0

2622 1.64685| 1.64532| 1.64260| 1.63780| 1.63360

3632 1.61790| 1.61666| 1.61449| 1.61070| 1.60733

Multiply 3634 | 1.59738| 1.59605| 1.59352| 1.58936| 1.58597
4644 151543| 151464 | 1.51317| 1.51099 | 1.50928

3338 1.57240| 1.57015| 1.56628| 1.55981 | 1.55505

3358 1.47619| 1.47483| 1.47249| 1.46894 | 1.46652

Right 0606 | 1.66373| 1.66117 | 1.65652| 1.64859 | 1.64243
Left 6600 | 1.64833| 1.64704 | 1.64448| 1.64002| 1.63619
Doubly 3603 1.65684| 1.65498| 1.65154| 1.64569 | 1.64070
Mid 0660 | 1.60212| 1.60140| 1.60017| 1.59797| 1.59617
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Table 4: Predictive risk efficiencies of (1)L*) w.r.ty(1)Q") under linear loss fon /§ =1.5,a=2.0

Censoring Scheme rklq | ¢=0.5 c=1.0 c=2.0 c=4.0 c=6.0

2622 1.15378| 1.15271| 1.15078| 1.14736| 1.14449

3632 | 1.14793| 1.14697| 1.14516| 1.14207| 1.13950

Multiply 3634 | 1.14628| 1.14515| 1.14307| 1.13951| 1.13660
4644 1.12704| 1.12617| 1.12454| 1.12179| 1.11960

3338 1.14869| 1.14680| 1.14349| 1.13812| 1.13400

3358 1.12391| 1.12247| 1.11997| 1.11600| 1.11294

Right 0606 | 1.16515| 1.16342| 1.16019| 1.15486| 1.15060
Left 6600 | 1.15113| 1.15026| 1.14857 | 1.14564 | 1.14315
Doubly 3603 1.15733| 1.15604| 1.15383| 1.14993| 1.14667
Mid 0660 | 1.14229| 1.14158| 1.14026| 1.13792| 1.13593

Table5: Predictive risk efficiencies of (1)L*) w.r.ty (1)Q*) under linear loss fon /§ =2.0 ,a=2.0.

Censoring Scheme rklq | ¢=0.5 c=1.0 c=2.0 c=4.0 c=6.0

2622 0.92194| 0.92111| 0.91958| 0.91695| 0.91476

3632 0.92498| 0.92412| 0.92260| 0.91997| 0.91779

Multiply 3634 | 0.93169| 0.93066| 0.92882| 0.92566 | 0.92308
4644 0.94085| 0.93993| 0.93821| 0.93526| 0.93280

3338 0.94675| 0.94506| 0.94208| 0.93724| 0.93349

3358 | 0.95613| 0.95469| 0.95209| 0.94788| 0.94453

Right 0606 | 0.93082| 0.92944 | 0.92695| 0.92290| 0.91964
Left 6600 | 0.91819| 0.91753| 0.91628| 0.91416| 0.91234
Doubly 3603 0.92313| 0.92218| 0.92048| 0.91760| 0.91522
Mid 0660 | 0.92317| 0.92246 | 0.92117| 0.91892| 0.91695

Table 6: Predictive risk efficiencies of (1)L*) w.r.ty (1)Q")under Quadratic loss fgy/§ = 0.25,a=2.0

Censoring Scheme rklq | ¢=0.5 c=1.0 c=2.0 c=4.0 c=6.0

2622 13.48227| 13.53450| 13.63262| 13.81049| 13.96707

3632 7.40479 | 7.44742 | 7.52944 | 7.68229 | 7.82271

Multiply 3634 | 547138 | 5.50736 | 5.57608 | 5.70321 | 5.81908

4644 2.69043 | 2.70949 | 2.74656 | 2.81722 | 2.88405

3338 4.25656 | 4.29457 | 4.36542 | 4.49152 | 4.60220

3358 2.12220 | 2.14185 | 2.17978 | 2.25176 | 2.31977
Right 0606 | 18.64233| 18.70007| 18.80303| 18.96922| 19.10026
Left 6600 | 21.14014| 21.25642| 21.48313| 21.90586| 22.29466
Doubly 3603 | 21.42228| 21.48066| 21.58621| 21.77445| 21.94114

Mid 0660 | 6.55624 | 6.61722 | 6.73733 | 6.96971 | 7.19170
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Table 7: Predictive risk efficiencies of (1)L*) w.r.ty((1)Q") under Quadratic loss fgy/¢§ = 0.50 ,a=2.0

Censoring Scheme rklq | ¢=0.5 c=1.0 c=2.0 c=4.0 c=6.0

2622 5.88108| 5.88977 | 5.90592| 5.93503 | 5.96053

3632 4.34306| 4.35583| 4.38000| 4.42391| 4.46326

Multiply 3634 | 3.53645| 3.55002| 3.57551| 3.62108| 3.66127
4644 2.24169| 2.25204| 2.27188| 2.30848 | 2.34205

3338 2.79035| 2.80646 | 2.83581| 2.88559 | 2.92706

3358 1.79885| 1.80990| 1.83068| 1.86816| 1.90173

Right 0606 | 6.27519| 6.28356 | 6.29806 | 6.32120 | 6.34004
Left 6600 | 7.13074| 7.14041| 7.15894 | 7.19477 | 7.23088
Doubly 3603 7.04031| 7.04437| 7.05204| 7.06628 | 7.08017
Mid 0660 | 4.06447| 4.08256 | 4.11767 | 4.18433 | 4.24684

Table 8: Predictive risk efficiencies of (1)L*) w.r.ty (1)Q") under Quadratic loss for/§ = 1.0, a=2.0

Censoring Scheme rklq | ¢=0.5 c=1.0 c=2.0 c=4.0 c=6.0

2622| 250191 | 2.49851 | 2.49251| 2.48172| 2.47213

3632 2.35292| 2.35145| 2.34898| 2.34452| 2.34024

Multiply 3634 | 2.23731| 2.23683| 2.23567| 2.23386 | 2.23232
4644 1.89168| 1.89383| 1.89783| 1.90531| 1.91186

3338 2.06984| 2.07047| 2.07160| 2.07270| 2.07368

3358 1.69796| 1.70169| 1.70857| 1.72034 | 1.73045

Right 0606 | 2.55429| 2.54834 | 2.53745| 2.51854 | 2.50368
Left 6600 | 2.54570| 2.54248 | 2.53608 | 2.52489 | 2.51526
Doubly 3603 2.56606| 2.56122 | 2.55225| 2.53693 | 2.52378
Mid 0660 | 2.29457| 2.29475| 2.29535| 2.29639 | 2.29741

Table 9: Predictive risk efficiencies of (1)L*) w.r.ty (1)Q") under Quadratic loss foy/§ =1.5,a=2.0

Censoring Scheme rklq | ¢=0.5 c=1.0 c=2.0 c=4.0 c=6.0

2622 1.31942| 1.31704| 1.31273| 1.30510| 1.29871

3632 1.30909| 1.30700| 1.30303| 1.29624 | 1.29058

Multiply 3634 | 1.30614| 1.30379| 1.29938| 1.29184| 1.28561
4644 1.26207| 1.26054 | 1.25763| 1.25265| 1.24861

3338 1.30755| 1.30395| 1.29760| 1.28712| 1.27896

3358 1.24482| 1.24277| 1.23920| 1.23333| 1.22864

Right 0606 | 1.34448| 1.34061| 1.33338| 1.32146| 1.31198
Left 6600 | 1.31216| 1.31021| 1.30644| 1.29990| 1.29437
Doubly 3603 1.32618| 1.32331| 1.31835| 1.30965| 1.30237
Mid 0660 | 1.29732| 1.29576| 1.29286| 1.28770| 1.28327
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Table 10: Predictive risk efficiencies of (1)L*) w.r.ty (1)Q") under Quadratic loss fof/§ =2.0 ,a=2.0

Censoring Scheme rklq | ¢=0.5 c=1.0 c=2.0 c=4.0 c=6.0

2622 0.85105| 0.84956| 0.84682| 0.84214| 0.83827

3632 0.85311| 0.85155| 0.84875| 0.84397| 0.84004

Multiply 3634 | 0.86312| 0.86116| 0.85767| 0.85171| 0.84689
4644 0.87479| 0.87289| 0.86936| 0.86336| 0.85839

3338 0.89006 | 0.88662| 0.88060| 0.87090| 0.86343

3358 0.90474| 0.90154| 0.89582| 0.88656| 0.87927

Right 0606 | 0.86744| 0.86493| 0.86043| 0.85311| 0.84727
Left 6600 | 0.84608| 0.84493| 0.84274| 0.83903| 0.83587
Doubly 3603 0.85467| 0.85298| 0.84995| 0.84484| 0.84066
Mid 0660 | 0.84875| 0.84747| 0.84516| 0.84115| 0.83767

Table 11: Predictive risk efficiencies under linear loss and undedcpiic loss for real dataset
n/é | PRELN | PREgrD
0.25 | 4.00657| 1.00896
0.5 | 2.32859| 1.24591
0.75 | 1.77982| 1.40089
1 1.51332| 1.44961
1.25 | 1.35966 | 1.40865
1.5 1.26237| 1.31426
1.75 | 1.19724| 1.19887
2 1.15215| 1.08268
2.5 | 1.09795| 0.88045
3.5 | 1.06079| 0.61335
4 1.05973| 0.52818
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