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Abstract: The head-on collision between two dust acoustic solitary waves in an unmagnetized strongly coupled dusty plasma with
dust grains of negative charge and nonextensive ions and electrons are studied through the extended Poincaré-Lighthill-Kuo approach.
Two Korteweg-de Vries equations are derived and accordingly two solitary wave solutions are obtained. In addition, an analytical
expression for the phase shift due to the collision is derived. The nonextensivity effect of both ions and electrons on the characteristics
of the head-on collision and the resulting phase shift due tothe collision is studied. It is found that the characteristics of the head-on
collision and the resulting phase shift strongly depend on the nonextensive parameter, the ratio of ion to electron densities as well as
the ratio of ion to electron temperatures. The obtained results from this study can be used to understand the solitary waves interaction
that may occur in plasma with dust impurities situations.
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1 Introduction

In the last few years, the study of the characteristics of a
strongly coupled dusty (complex) plasma had a great deal
of interest because of its importance in industrial plasma
applications, in laboratory plasmas as well as
astrophysical plasmas. In a strongly coupled dusty
plasma, the inertia is produced by the mass of the charged
dust grains while the restoring force is produced by the
pressures of the inertialess plasma particles (ions and
electrons) [1]. The existence of the inertial dust particles
in plasma can excite new collective modes (e.g., dust
acoustic (DA) waves, dust ion acoustic (DIA) waves, etc)
and nonlinear coherent structures (e.g., DA and DIA
solitary waves) in the dusty plasma medium [2] and [3].

Many researchers are studied the properties and
characteristics of DA solitary and shock waves in a
strongly dusty plasma. For instance, Alinejad and Mamun
[4] studied the nonlinear characteristics of the DA solitary
waves in an inhomogeneous strongly coupled dusty
plasma with negatively charged dust particles are
correlated strongly with each other and Maxwellian

electrons and ions. They are found that the dark solitary
waves only are propagated in such dusty plasma medium.
Also, the properties of DA shock waves in a strongly
coupled unmagnetized dusty plasma with charged dust
particles as well as Boltzmann Distributed ions and
electrons has been studied by Shukla and Mamun [5].
Most of these studies on DA Solitary waves are
concerned with the Maxwellian distributions where the
microscopic interactions and memories are short ranged.
But in the systems where the long range interactions are
existed, the nonextensive distribution is more convenient
than the Maxwellian distribution. It was first proposed by
Renyi [6] and then by Tsallis [7] and observed in many
astrophysics and cosmological environments [8].

On the other hand, the interaction between two
solitary waves is one of the most important problems in
plasma physics. Such interaction may undergo different
two ways. The first one is the overtaking collision which
occurs when the two solitary waves move in the same
direction and can be studied by using the inverse
scattering method [9]. The second one is the head-on
collision which occurs when the two solitary waves move
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in opposite directions causing a change in the trajectories
of motion and phase shifts after the collision. The
head-on collision can be studied by using the extended
Poincare-Lighthill-Kuo (PLK) method [10]. This method
has many applications in physics such as in plasma
physics [11], in Boes-Einstein condensates [12] and in
nonlinear lattice dynamics [13]. Many authors used this
method to study the solitary waves interaction in different
dusty plasma systems. For example, El-Labany et al. [14]
studied the properties of the head-on collision of two
colliding DA solitary waves in an adiabatic dusty plasma
with variable dust particles of negative charged, two
temperature Maxwellian ions and Maxwellian electrons
in the existence of an external magnetic field. Also,
Jaiswal et al. [15] investigated the propagation properties
of two interacting DA solitary waves in a strongly
coupled dusty plasma with charged dust grains and
thermal ions and electrons. In their paper, they are found
that the resulting phase shift due to the collision is
affected by the compressibility of the strongly coupled
dusty plasma medium.

The aim of this study is to investigate the effect of
nonextensive electrons and ions on the nonlinear
properties of the DA solitary waves interaction (via the
head-on collision between them) in a strongly coupled
unmagnetized dusty plasma with negatively charged dust
particles. For this purpose, the extended PLK method has
been used and a couple of Korteweg de-Vries equations
are derived. In addition, expressions for the trajectories
and the resulting phase shifts of the colliding DA solitary
waves are deduced and the effect of the nonextensivity of
ions and electrons on the phase shifts and on the
characteristics of head-on collision is also discussed. The
manuscript is organized as follows. In Sec.2, the model
equations governing our strongly coupled dusty plasma
system are presented. In Sec.3, two Korteweg–de Vries
(KdV) equations and phase shifts are derived while our
results are discussed in section4 and a brief conclusion is
given in Sec.5.

2 Basic Equations

In order to study the interaction between two DA solitary
waves (the case of head-on collision), we consider an
unmagnetized strongly coupled dusty plasma system with
negatively charged inertial dust fluid and inertialess
q-nonextensive distributed electrons and ions. Due to high
temperatures and smaller electric charges of both
electrons and ions, they are assumed to be weakly
coupled while dust grains are strongly coupled as a result
of their lower temperature and larger electric charge. In
general, strong coupling effects in a phenomenological
manner is takes into account by introducing visco-elastic
effects and a modified compressibility. Here, we retain
the compressibility effect and neglect dissipative effects
arising from viscosity and dust neutral collisions. The
neglect of dissipative effects is a valid approximation in

the so called ”kinetic regime” whenωτm >> 1, whereω
is the mode frequency andτm is the relaxation time. Thus,
the dynamics of the nonlinear DA waves in the given
dusty plasma system are governed by the well-known
generalized hydrodynamic model [16]

∂nd

∂ t
+

∂ (nd ud)

∂x
= 0, (1)

∂ud

∂ t
+ ud

∂ud

∂x
−

∂φ
∂x

+
µd

nd

∂nd

∂x
= 0, (2)

∂ 2φ
∂x2 − nd − ne+ ni = 0, (3)

wherend is the dust grain number density,ud is the dust
fluid velocity, φ is the electrostatic potential,ne is the
electron number density andni is the ion number density.
The following normalizationx → x/λDd , t → t ωpd,
nd → nd/nd0, ud → ud/Cd, φ → eφ/KBTi, ne → ne/Zdnd0
and ni → ni/Zdnd0 have been applied into Eqs.(1-3).

λDd =
(

KBTi/4πZdnd0e2
)1/2

is the dust Debye length
with KB, nd0 and e being the Boltzmann constant, the
unperturbed dust grain number density and the magnitude
of the electron charge, respectively.

ωpd =
(

4πZ2
dnd0e2/md

)1/2
is the dust plasma frequency

with md being the dust grain mass and
Cd = (KBTiZd/md)

1/2 is the DA speed. The contribution
due to the compressibilityµ appears in terms ofµd in Eq.
3 whereµd = µTd/ZdTi. Td , Ti and Zd refer to the dust
temperature, the ion temperature and the number of
electrons residing on the surface of the negatively charged
dust grains, respectively. The compressibilityµ , [16] is
defined as

µ = 1+
u(Γ )

3
+

Γ
9

∂u(Γ )

∂Γ
, (4)

in which Γ is the Coulomb coupling parameter andu(Γ )
is a measure of the excess internal energy of the system
and can be expressed as
u(Γ ) =−0.89Γ +0.95Γ 1/4+0.19Γ−1/4−0.81.

The normalized number densities ofq-nonextinsive
distributed electrons and ions, [17] and [18] can be
expressed as

ne = µe (1+(qe −1)σiφ)
qe+1

2(qe−1) , (5)

ni = µi (1− (qi −1)φ)
qi+1

2(qi−1) , (6)

whereµe = ne0/Zdnd0 andµi = ni0/Zdnd0 andσi = Ti/Te
with Te is the temperature of electrons. By using the
quasineutrality condition,neo = nio − Zdndo, one can
write µe = 1/(δ −1) andµi = δ/(δ −1) whereδ is the
ratio of equilibrium ion to electron densities. The real
number parameter qe,i stands for strength of
nonextensivity. In the limiting case (qe,i → 1) Eqs. (5) and
(6) reduces to the well known Maxwellian distribution.
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3 KdV Equations and Phase Shifts

Now, let us assume that there are two opposite
propagating solitary wavesR and L which are far apart
from each other in the initial states where one of them
propagates in the positivex direction (solitary waveR)
and the other is in the negativex direction (solitary wave
L). After some time they interact and collide with each
other and then depart. Also, we assume that the solitary
waves have small amplitudes∼ ε (whereε is a smallness
formal perturbation parameter measuring the strength of
nonlinearity, i.e., 0< ε << 1) and the interaction
between two solitary waves is weak. Therefore, it is
expected that the collision will be quasielastic and will
only cause shifts of the post collision trajectories (phase
shift). Here, we are interested to investigate the dynamics
of these solitary waves in the presence of superthermality
effect in the strongly coupled dusty plasma. In order to
analyze the effects of collision, the extended PLK
perturbation method is used [19]. Following the extended
PLK perturbation method, the dependent variables should
be expanded as

nd = 1+ ε2nd1+ ε3nd2+ ε4nd3+ ..., (7)

ud = ε2ud1+ ε3ud2+ ε4ud3+ ..., (8)

φ = ε2φ1+ ε3φ2+ ε4φ3+ ..., (9)

while the independent variables are expressed as

ξ = ε(x−λ t)+ ε2P0(ξ , τ)+ ..., (10)

η = ε(x+λ t)+ ε2Q0 (η , τ)+ ..., (11)

τ = ε3t, (12)

whereξ andη refer to the trajectories of the two solitary
wavesR andL, respectively. The wave velocityλ and the
variablesP0 andQ0 are to be determined. From Eqs. (10-
12), one gets

∂
∂ x

= ε
(

∂
∂ ξ

+
∂

∂ η

)

+ ε3

(

P0η
∂

∂ ξ
+Q0ξ

∂
∂ η

)

+ ..., (13)

∂
∂ t

= ελ
(

−
∂

∂ ξ
+

∂
∂ η

)

+ ε3

(

∂
∂ τ

+λP0η
∂

∂ ξ
−λQ0ξ

∂
∂ η

)

+ ..., (14)

∂ 2

∂ x2 = ε2

(

∂
∂ ξ

+
∂

∂ η

)2

+ ε4

(

∂
∂ ξ

+
∂

∂ η

)(

P0η
∂

∂ ξ
+Q0ξ

∂
∂ η

)

+ε4

(

P0η
∂

∂ ξ
+Q0ξ

∂
∂ η

)(

∂
∂ ξ

+
∂

∂ η

)

+ ..., (15)

where P0η = ∂P0/∂η and Q0ξ = ∂Q0/∂ξ . Then, by
substituting Eqs. (7-15) into Eqs. (1-6) and equating the
quantities of equal power ofε, one gets a set of coupled
equations for each order ofε. At the lowest order ofε,
one obtains

λ
(

−
∂

∂ ξ
+

∂
∂ η

)

nd1+

(

∂
∂ ξ

+
∂

∂ η

)

ud1 = 0, (16)

λ
(

−
∂

∂ ξ
+

∂
∂ η

)

ud1−

(

∂
∂ ξ

+
∂

∂ η

)

φ1+µd

(

∂
∂ ξ

+
∂

∂ η

)

nd1 = 0, (17)

nd1+
1
2
[µe (qe +1)σi +µi (qi +1)]φ1 = 0. (18)

Solving Eqs. (16-18) gives

φ1 = Φ1 (ξ , τ)+Φ2 (η , τ) , (19)

nd1 = −
1
2
[µe (qe +1)σi +µi (qi +1)] [Φ1 (ξ , τ)+Φ2 (η , τ)] , (20)

ud1 = −
1
λ

(

1+
1
2
[µe (qe +1)σi +µi (qi +1)]µd

)

× [Φ1 (ξ , τ)−Φ2 (η , τ)] , (21)

and with the solvability condition, i.e., the condition to
obtain a uniquely definednd1 andud1 from Eqs. (16-18)
when φ1 is given by Eq. (19)], the phase velocityλ is
found to be as

λ =

[

2
µe (qe +1)σi + µi (qi +1)

+ µd

]1/2

(22)

It is clear that the phase velocityλ depends obviously
on the nonextensive parametersqe andqi.

The unknown functionsΦ1 (ξ , τ) and Φ2 (η , τ) in
Eqs.(19-21) will be determined later from the higher
orders. These two functions represent two solitary waves
(one travels to the right,Φ1 (ξ , τ), and the other travels to
the left,Φ2 (η , τ)). At the next order, we obtain

λ
(

−
∂

∂ ξ
+

∂
∂ η

)

nd2+

(

∂
∂ ξ

+
∂

∂ η

)

ud2 = 0, (23)

λ
(

−
∂

∂ ξ
+

∂
∂ η

)

ud2−

(

∂
∂ ξ

+
∂

∂ η

)

φ2+µd

(

∂
∂ ξ

+
∂

∂ η

)

nd2 = 0, (24)

nd2+
1
2
[µe (qe +1)σi +µi (qi +1)]φ2 = 0. (25)

By simply inspection, the structure of the above system
of equations is similar to that of the lowest order, then the
solutions can be written in the same manner as

φ2 = Ψ1 (ξ , τ)+Ψ2 (η, τ) , (26)

nd2 = −
1
2
[µe (qe +1)σi +µi (qi +1)] [Ψ1 (ξ , τ)+Ψ2 (η, τ)] ,(27)

ud2 = −
1
λ

(

1+
1
2
[µe (qe +1)σi +µi (qi +1)]µd

)

× [Ψ1 (ξ , τ)−Ψ2 (η, τ)] . (28)
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The inclusion of the next higher order leads to the
following

λ
(

−
∂

∂ξ
+

∂
∂η

)

nd3+

(

∂
∂τ

+λP0η
∂

∂ξ
−λQ0ξ

∂
∂η

)

nd1

+

(

∂
∂ξ

+
∂

∂η

)

ud1+

(

∂
∂ξ

+
∂

∂η

)

nd1ud1

+

(

P0
∂

∂ξ
+Q0

∂
∂η

)

ud1 = 0, (29)

λ
(

−
∂

∂ξ
+

∂
∂η

)

ud3+

(

∂
∂τ

+λP0η
∂

∂ξ
−λQ0ξ

∂
∂η

)

ud1

+ud1

(

∂
∂ξ

+
∂

∂η

)

ud1−

(

∂
∂ξ

+
∂

∂η

)

φ3

−

(

P0
∂

∂ξ
+Q0

∂
∂η

)

φ1+µd

(

∂
∂ξ

+
∂

∂η

)

nd3

−µdnd1

(

∂
∂ξ

+
∂

∂η

)

nd1+µd

(

P0
∂

∂ξ
+Q0

∂
∂η

)

nd1 = 0,

(30)
(

∂
∂ξ

+
∂

∂η

)2

φ1−nd3−
1
2
[µe (qe +1)σi +µi (qi +1)]φ3

−
1
8

[

µe (qe +1) (−qe +3)σ2
i −µi (qi +1) (−qi +3)

]

φ2
1 = 0.

(31)

From Eqs. (29-31), we can deduce

λ
∂ 2ud3

∂ξ ∂η
=

ρ
2λ

(

∂Φ1

∂τ
+αΦ1

∂Φ1

∂ξ
+β

∂ 3Φ1

∂ξ 3

)

+
ρ
2λ

(

∂Φ2

∂τ
−αΦ2

∂Φ2

∂η
−β

∂ 3Φ2

∂η3

)

+(ρPoη + γΦ2)
∂ 2Φ1

∂ξ 2

−
(

ρQoξ + γΦ1
) ∂ 2Φ2

∂η2 , (32)

where

α =
1

2ρ

(

−
3ρ2

λ
+

1
4

λ µd [µe (qe +1)σi +µi (qi +1)]2

−
1
2

λ
µe (qe +1) (−qe +3)σ2

i −µi (qi +1) (−qi +3)
µe (qe +1)σi +µi (qi +1)

)

,

β =
λ

ρ [µe (qe +1)σi +µi (qi +1)]
,

γ =
−1
4λ

(

1
2

λ
µe (qe +1) (−qe +3)σ2

i −µi (qi +1) (−qi +3)
µe (qe +1)σi +µi (qi +1)

−
1
4

λ µd [µe (qe +1)σi +µi (qi +1)]2−
ρ2

λ

)

,

ρ = 1+
1
2
[µe (qe +1)σi +µi (qi +1)]µd . (33)

Upon integrating Eq. (32) with respect toξ andη , one gets

λ ud3 =
ρ
2λ

(

∂Φ1

∂τ
+αΦ1

∂Φ1

∂ξ
+β

∂ 3Φ1

∂ξ 3

)

dη

+
ρ
2λ

∫

(

∂Φ2

∂τ
−αΦ2

∂Φ2

∂η
−β

∂ 3Φ2

∂η3

)

dξ

+

∫ ∫

(

ρ
∂Po

∂η
+ γΦ2

)

∂ 2Φ1

∂ξ 2 dξ dη

−
∫ ∫

(

ρ
∂Qo

∂ξ
+ γΦ1

)

∂ 2Φ2

∂η2 dξ dη . (34)

The first term in the right hand side of Eq. (34) will be
proportional toη because the integrand is independent of
η and the second term will be proportional toξ because
the integrand is independent ofξ . Hence, they are secular
terms and must be eliminated to avoid spurious
resonances. Accordingly, we obtain the following two
KdV equations

∂Φ1

∂τ
+αΦ1

∂Φ1

∂ξ
+β

∂ 3Φ1

∂ξ 3 = 0, (35)

∂Φ2

∂τ
−αΦ2

∂Φ2

∂η
−β

∂ 3Φ2

∂η3 = 0, (36)

for Φ1 andΦ2 with the same coefficients of nonlinear and
dispersionα andβ , respectively.

In addition, the third and fourth terms in Eq. (34) are
not secular terms in this order but they will be secular in
the next order. Hence, we get

ρ
∂Po

∂η
+ γΦ2 = 0, (37)

ρ
∂Qo

∂ξ
+ γΦ1 = 0. (38)

The effect of the nonextensive parametersqe andqi is
clearly involved in the nonlinear coefficientα, the
dispersion coefficientβ and also in the coefficientsγ and
ρ .

Eqs. (35) and (36) represent the two side traveling
wave KdV equations in the reference frames ofξ andη ,
respectively. Such KdV equations have the following
solitary wave solutions

Φ1 = ΦRSech2

[
√

αΦR

12β

(

ξ −
1
3

αΦRτ
)

]

, (39)

Φ2 = ΦLSech2

[
√

αΦL

12β

(

η +
1
3

αΦLτ
)

]

, (40)

whereΦR = 3u0/α andΦL = 3U0/α are the amplitudes of
the two solitary wavesR andL, respectively with velocities
u0 andU0. Inserting Eqs. (39) and (40) into Eqs. (37) and
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(38), the phase changes due to the collision are given by

P0(η, τ) = −
γ
ρ

√

12βΦL

α

×

{

tanh

[
√

αΦL

12β

(

η +
1
3

αΦLτ
)

]

+1

}

, (41)

Q0(ξ , τ) = −
γ
ρ

√

12βΦR

α

×

{

tanh

[
√

αΦR

12β

(

ξ −
1
3

αΦRτ
)

]

−1

}

. (42)

The trajectories of the two solitary waves for weak
head-on interactions in the presence of strong coupling
and nonextensivity effects are

ξ = ε(x−λ t)− ε2 γ
ρ

√

12βΦL

α

×

{

tanh

[
√

αΦL

12β

(

η +
1
3

αΦLτ
)

]

+1

}

+O(ε3), (43)

η = ε(x+λ t)− ε2 γ
ρ

√

12βΦR

α

×

{

tanh

[
√

αΦR

12β

(

ξ −
1
3

αΦRτ
)

]

−1

}

+O(ε3). (44)

In order to obtain the phase shifts due to a head-on
collision of the two solitary wavesR and L, we assume
that they are asymptotically far from each other at the
initial time (t = −∞), i.e., solitary waveR is at (ξ = 0,
η = −∞) while solitary waveL is at (η = 0, ξ = +∞).
Then after the collision (t =+∞), solitary waveR is far to
the right of solitary waveL, i.e., solitary waveR is at
(ξ = 0, η = +∞) while solitary waveL is at (η = 0,
ξ = −∞). Using Eqs. (43) and (44), the corresponding
phase shifts∆R and∆L follow

∆R = ε(x−λ t)|ξ=0,η=+∞ − ε(x−λ t)|ξ=0,η=−∞ , (45)

∆L = ε(x+λ t)|η=0,ξ=−∞ − ε(x+λ t)|η=0,ξ=+∞ , (46)

by which the phase shift in the solitary wavesR andL can
be expressed as

∆R = 2ε2 γ
ρ

√

12β ΦL

α
, (47)

∆L = −2ε2 γ
ρ

√

12β ΦR

α
. (48)

Since the solitary waveR travels to the right and the
solitary waveL travels to the left, one can observe from
Eqs. (47) and (48) that as a result of the collision each
solitary wave has a positive phase shift in its traveling
direction.

4 Results and Discussion

In the present study, the head-on collision between two
DA solitary waves in a strongly coupled dusty plasma

containing negatively charged dust particles and
nonextensive distributed electrons and ions has been
investigated. For this purpose, the extended PLK method
has been used and a couple of KdV equations are derived,
Eq.(35) and Eq.(36), and consequently two solitary wave
solutions are obtained, Eq.(39) and Eq.(40). The
nonextensivity effect of both electrons and ions on both
the amplitude and the width of the two colliding DA
solitary wavesR (the wave which moves to right) andL
(the wave which moves to left) has been plotted as in
Figs. (1-4). From Figs.(1) and (2), one can see that the
amplitudesΦR and ΦL of the solitary wavesR and L,
respectively increase with increasing the nonextensivity
of electrons and ionsqe andqi, respectively. In contrast,
Figs.(3) and (4) indicate the decreasing of the widthsWR
andWL of the solitary waves with increasingqe and qi,
respectively. It means that the collision between the DA
solitary waves will be more faster when the
nonextensivity effect increases. In addition, the effect of
the nonextensivity of electrons and ions (qe and qi) and
the temperature ratio of ions to electrons (σi) on the
nonlinear coefficient (α) has been studied and plotted in
Figs.(5) and (6). It is seen from thses figures that the
nonlinear coefficientα decreases when the values ofqe,
qi andσi increase.

3 4 5 6 7 8 9 10
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-0.070

-0.065

-0.060

qe

A
m

pl
itu

de
s
H
F

R
,F

L
L

FL

FR

Fig. 1: Variation of the amplitudesΦR and ΦL of the solitary
wavesR andL with the nonextensive parameter of electronsqe
for µd = 10,σi = 0.1, δ = 1.4 andqi = 2.

As a result of the head-on collision between the
solitary waves, the trajectories of the motion are changed
and hence phase shafts are produced. To investigate the
effect of the amplitudeΦL and the widthWL of the
solitary waveL, the nonextensive parameters (qe andqi),
the temperature ratio of ions to electronsσi and the ratio
of equilibrium ion to electron densitiesδ on the phase
shift ∆R of the solitary waveR, Figs.(7-11) are plotted. It
is shown from Figs.(7) and (8) that the phase shift∆R
decreases with increasing the nonextensivity parameters
qe andqi while it increases with increasing the amplitude
ΦL. On the other hand in Figs.(9) and (10), it is illustrated
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µd = 10,σi = 0.1, δ = 1.4 andqe = 2.
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Fig. 3: Variation of the widthsWR andWL of the solitary wavesR
andL with the nonextensive parameter of electronsqe for µd =
10,σi = 0.5, δ = 1.2 andqi = 2.

that the phase shift∆R decreases with increasing the
width WL of the solitary waveL. Finally in Fig.(11), it is
found that the phase shift∆R decreases with increasingσi
whereas it increases with increasing the values ofδ .
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Fig. 4: Variation of the widthsWR andWL of the solitary waves
R andL with the nonextensive parameter of ionsqi for µd = 10 ,
σi = 0.5, δ = 1.2 andqe = 2.
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Fig. 5: Variation of the nonlinear coefficientα with the ratio
of the ion to electron temperaturesσi at different values of the
nonextensive parameter of electronsqe for µd = 10,δ = 1.4 and
qi = 2.
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Fig. 6: Variation of the nonlinear coefficientα with the ratio
of the ion to electron temperaturesσi at different values of the
nonextensive parameter of ionsqi for µd = 10, δ = 1.4 and
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Fig. 9: Variation of the phase shift∆R of the solitary waveR
with the widthWL of the solitary waveL at different values of
the nonextensive parameter of electronsqe for ε = 0.1, µd = 10,
σi = 0.5, δ = 0.06 andqi = 12.
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5 Summary

In summary, the nonextensive effect of electrons and ions
on the properties of the head-on collision between two
DA solitary waves and the resulting phase shift in a
strongly coupled dusty plasma has been discussed and
found that it fasts the collision between them and
decreases the resulting phase shift. The present results
may be helpful in understanding the properties and
characteristics of the head-on collision between solitary
waves that may occur in astrophysical as well as
laboratory plasmas.
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