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Abstract: We propose a scheme to direct implementation the four-qubitphase gate by passing a five-level atom (which is initially in
the lower state) across a multi-mode cavity QED. The four qubit are represented by the photons in the four modes of the cavity field. In
particular, the four-qubit quantum phase gate can be implemented if certain conditions for transition strength, detuning and interaction
time are better satisfied. Subsequently we will discus this phase gate scheme.
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1 Introduction

The essential element of a computer is the logic gate,
either in a classical computer or a quantum computer [1].
The important work of quantum computer architecture is
to find an effective physical realization of quantum logic
gates. In fact, almost any gate which can entangle two
qubits can be used as a universal gate [2,3]. The quantum
phase gate is one of them. Particularly, a quantum phase
gate can be directly used in the implementation of
Grover’s search algorithm [5], quantum Fourier
transformation [22], quantum error correction [23], and
arbitrary superposed state preparation [24].

Some work has been done on the realization of
quantum logic gates through the interaction of multi-level
atom with the multi-mode cavity [4,6,7,8,9], but I will
only mention two interesting references. In the work of
Zubairy et al [8], a scheme to implement a two qubit
quantum phase gate and one-qubit unitary operation
implementation based on cavity QED was described; the
logical states of a qubit are represented by the Fock states
|0〉 and|1〉 of a high Q cavity mode; the two -qubit phase
gate is accomplished by passing a ground state three-level
atom through a three mode optical cavity. In the same
way, Jun-Tao Chang et al[9] had also described a
three-qubit quantum phase gate which is implemented by
passing a four-level atom in a cascade configuration

initially in its ground states through a three optical modes
of the cavity. In this paper, we extended their method to
realize a four-qubit quantum phase gate, since the
decomposition of multiqubit gates into the elementary
gates become mores complicated with the number of
qubits increasing. Moreover It has been shown that a
multiqubit quantum phase gate, can lead to faster
computing. For example, according to Diao et al.[25] a
four-qubit quantum phase gate needs a network of eight
one-bit quantum gates and five two-qubit quantum phase
gates. In our scheme that based on cavity QED, the four
qubits are represented by four modes of the field inside
the cavity. We will discuss the conditions on the coupling
coefficients between the cavity modes and atomic
transitions to complete this phase gate. The choice of
interaction time and detuning will be also discussed and
finally fidelity will be determined in order to examine
these conditions.

2 Four-qubit quantum phase gate

The system that we consider here consists of a cascade
five energy levels atom passing through an optical cavity.
The relevant atomic level structure is shown in Figure1(b)
The atom which is initially in the lower state|e〉, interact
with four modes of the cavity with frequencyω1, ω2, ω3
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andω4 Figure1(a). The cavity field frequenciesω1 andω2
are assumed to be far detuned from the atomic transition
respectively from the|e〉 state to the|d〉 state and from the
|d〉 state to the|c〉 state; likewise the modes cavityω3 and
ω4 are far detuned from the atomic transition respectively
from the|c〉 state to the|b〉 state and from the|b〉 state to
the|a〉 state.

Fig. 1: (a): Frequencies of the four modes of the cavity. (b):
Illustration of the different detunings between the high Q cavity
mode frequencies and the transition between the five energy
levels of the atom.

If we suppose initially one photon in each mode of the
cavity and if we represent the four qubits by the quantum
states of the field inside the cavity, the 24 states possible for
the cavity modes are:{|α1α2α3α4〉}, where|α1α2α3α4〉=
|α1〉⊗ |α2〉⊗ |α3〉⊗ |α4〉 and|αi〉 stand for the basis state
|0〉 or |1〉 of the qubit|i〉 (i = 1,2,3 and 4).

The transformation of a four qubit quantum phase gate
with phaseη is then defined as:

Qη |α1α2α3α4〉= exp(iηδα1,1δα2,1δα3,1δα4,1) |α1α2α3α4〉
(1)

Since the quantum phase gate introduces a phaseη
only when all the qubits in input state are 1, we can write
Qη as:

Qη = |01020304〉〈01020304|+ |01020314〉 〈01020314|
+ |01021304〉〈01021304|+ |01021314〉 〈01021314|
+ |01120304〉〈01120304|+ |01120314〉 〈01120314|
+ |01121304〉〈01121304|+ |01121314〉 〈01121314|
+ |11020304〉〈11020304|+ |11020314〉 〈11020304|
+ |11021304〉〈11021304|+ |11021314〉 〈11021314|
+ |11120304〉〈11120304|+ |11120314〉 〈11120314|
+ |11121304〉〈11121304|
+exp(iη) |11121314〉 〈11121314| (2)

In the following, we takeη = π .
It is seen that the following states remain unchanged

during the passage of the atom within the cavity:
- The |01020304〉 states since there is no photon in the

cavity
- Likewise all the states for which there is no photon

in the cavity with frequencyω1, in view of the atom is
initially in the lower state |e〉 (It is |01020304〉,
|01020314〉 , |01021304〉 , |01021314〉, |01120304〉,
|01120314〉, |01121304〉 and|01121314〉).

-Else the states|11020304〉, |11020314〉, |11021304〉
and |11021314〉 since the cavity field frequencies are far
detuned from the atomic transition frequencies.

Subsequently we will discus this phase gate scheme.

3 The theoretical model

The system’s Hamiltonian model consists of a
generalized scheme for the interaction between a
five-level atom with a four-mode optical cavity and by
taking into account the dipole and rotating-wave
approximations. The Hamiltonian can be then written in
the Jaynes-Cummings model as [9,10,11]:

H = H0+H1 (3)

with

H0 = h̄ωab |a〉〈a|+ h̄ωbc |b〉〈b|+ h̄ωcd |c〉 〈c|+ h̄ωde |d〉 〈d|
+h̄ω1â+1 â1+ h̄ω2â+2 â2+ h̄ω3â+3 â3+ h̄ω4â+4 â4 (4)

H1 = h̄g1 |d〉〈e| â1+ h̄g2 |c〉〈d| â2+ h̄g3 |b〉〈c| â3 (5)

+h̄g4 |a〉〈b| â4+H.C

where âi and â+i are the annihilation and the creation
operators of the cavity mode i. gi is the Rabi frequency of
the interaction between the field modeωi (i from 1 to 4)
and respectively the atomic transition|d〉⇆ |e〉, |c〉⇆ |d〉,
|b〉⇆ |c〉 and|a〉⇆ |b〉.

In the interaction picture the Hamiltonian can be
written as:

HI = h̄g1 |d〉〈e| â1eit∆ + h̄g2 |c〉〈d| â2e−it∆

+h̄g3 |b〉〈c| â3e−itδ + h̄g4 |a〉〈b| â4eitδ +H.C (6)

whereωde −ω1 = −∆ , ωcd −ω2 = ∆ , ωbc −ω3 = δ
andωab −ω4 =−δ (see Figure1(b)).

Generally if we suppose initially ni photons in each
mode i and the atom is in the lower state|e〉, the initial
state for the system {atom+ cavity}
is: |e,n1,n2,n3,n4〉= |e〉⊗ |n1,n2,n3,n4〉 . Then we can
write the state for the system at time t as:

|Ψ (t)〉=Ce(t) |e,n1,n2,n3,n4〉+Cd(t) |d,n1−1,n2,n3,n4〉
+Cc(t) |c,n1−1,n2−1,n3,n4〉+Cb(t) |b,n1−1,n2−1,n3−1,n4〉
+Ca(t) |a,n1−1,n2−1,n3−1,n4−1〉 (7)
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The Schrödinger equationih̄ ∂ |Ψ (t)〉
∂ t = HI |Ψ (t)〉 , in the

interaction picture give us:























ih̄Ċe(t) = h̄g1Cd(t)e−i∆ t√n1

ih̄Ċd(t) = h̄g1Ce(t)ei∆ t√n1+ h̄g2Cc(t)ei∆ t√n2

ih̄Ċc(t) = h̄g2Cd(t)e−i∆ t√n2+ h̄g3Cb(t)eiδ t√n3

ih̄Ċb(t) = h̄g3Cc(t)e−iδ t√n3+ h̄g4Ca(t)e−iδ t√n4

ih̄Ċa(t) = h̄g4Cb(t)eiδ t√n4

(8)

To solve this system it’s useful to makes a change to
the amplitudes by setting:Ze =Ce, Zd =Cde−i∆ t , Zc =Cc,
Zb =Cbeiδ t , andZa =Ca. The system becomes:



















Że =−ig1
√

n1Zd
Żd =−ig1

√
n1Ze − ig2

√
n2Zc − i∆Zd

Żc =−ig2
√

n2Zd − ig3
√

n3Zb
Żb =−ig3

√
n3Zc − ig4

√
n4Za + iδZb

Ża =−ig4
√

n4Zb

(9)

If we suppose there is no transition to the|b〉 and|d〉
states because of a very large detuning between the cavity
modes frequencies and the transition frequencies to the
|b〉 and|d〉 states(i.eŻb = 0 andŻd = 0) then the system
becomes:






























Żb = 0
Żd = 0

Że = i
g2

1n1
∆ Ze + i

g1g2
√

n1n2
∆ Zc

Żc = i
g1g2

√
n1n2

∆ Ze + i
g2

2n2
∆ Zc − i

g2
3n3
δ Zc − i

g3g4
√

n3n4
δ Za

Ża =−i
g3g4

√
n3n4

δ Zc − i
g2

4n4
δ Za

(10)
that we can rewrite as:































































Żb |b,n1−1,n2−1,n3−1,n4〉= 0 · |Ψ(t)〉
Żd |d,n1−1,n2,n3,n4〉= 0 · |Ψ(t)〉
Że |e,n1,n2,n3,n4〉=

(

i
g2

1
∆ â+1 â1 |e〉 〈e|+ i g1g2

∆ â+1 â+2 |e〉〈c|
)

×|Ψ(t)〉
Żc |c,n1−1,n2−1,n3,n4〉=

(

i g1g2
∆ â1â2 |c〉〈e|

+i
g2

2
∆ â2â+2 |c〉〈c|− i

g2
3

δ â+3 â3 |c〉〈c|
−i g3g4

δ â+3 â+4 |c〉 〈a|
)

|Ψ (t)〉
Ża |a,n1−1,n2−1,n3−1,n4−1〉=

(

−i g3g4
δ â3â4 |a〉〈c|

−i
g2

4
δ â4â+4 |a〉〈a|

)

|Ψ(t)〉
(11)

these evolution equations correspond to the following
Hamiltonian in the interaction picture:

H
′
I = − h̄g2

1

∆
â+1 â1 |e〉 〈e|−

h̄g2
2

∆
â2â+2 |c〉〈c|+ h̄g2

3

δ
â+3 â3 |c〉〈c|

+
h̄g2

4

δ
â4â+4 |a〉〈a|− h̄g1g2

∆
â+1 â+2 |e〉〈c| (12)

− h̄g1g2

∆
â1â2 |c〉〈e|+

h̄g3g4

δ
â+3 â+4 |c〉〈a|

+
h̄g3g4

δ
â3â4 |a〉〈c|

3.1 Conditions for implementation of the phase
gate

We consider the initial state of system|Ψ0〉= |e,1,1,1,0〉
(n1 = 1, n2 = 1, n3 = 1 andn4 = 0).

Then the effectif Hamiltonian in the interaction picture
becomes:

H
′
I = − h̄g2

1

∆
â+1 â1 |e〉〈e|−

h̄g2
2

∆
â2â+2 |c〉〈c|+ h̄g2

3

δ
â+3 â3 |c〉〈c|

− h̄g1g2

∆
â+1 â+2 |e〉〈c|− h̄g1g2

∆
â1â2 |c〉〈e| (13)

We suppose thatg1 ≫ g2 and g2
1

∆ ≫ g2
3

δ then we can

write the HamiltonianH
′
I as:

H
′
I ≈ − h̄g2

1

∆
â+1 â1 |e〉〈e|

= − h̄g2
1

∆
|e,1,1,1,0〉〈e,1,1,1,0| (14)

If we choose the intercation timeτ = (2k+1)∆
g2

1
π (k is

an arbitrary integer) and by use of the Schrödinguer
equation, the system{atom+ cavity} undergoes the
following transformation:

|e,1,1,1,0〉 −→ - |e,1,1,1,0〉 (15)

So we can realize the four-qubit phase gate. For to
obtain the conditions more precisely, we will solve the
Schrödinger equation in the interaction representation to
find the probability amplitudes for all possible initial
states.

For this, we pose for the normalized detuningX0 =
∆
g1
,

X1 =
δ
g1
, X2 =

∆
g2
, X3 =

δ
g3

andX4 =
δ
g4
.

3.1.1 Initial state:|Ψ0〉= |e,1,0,0,0〉

We use the interaction part in the Hamiltonian to
determine the basic system states (atom + cavity) and
which are|e,1,0,0,0〉 and|d,0,0,0,0〉. The possible state
at time t is the superposition of these two states, then
|Ψ(t)〉=Ce(t) |e,1,0,0,0〉+Cd(t) |d,0,0,0,0〉 (i.e
Za = Zb = Zc = 0)

The system9 becomes:
{

Że =−ig1Zd
Żd =−ig1Ze − i∆Zd

(16)

that gives (Ze =Ce):

C̈e(t)+ i∆Ċe(t)+ g2
1Ce(t) = 0 (17)

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


10 A. Chouikh et al.: Realizing a four-qubit quantum gate in...

By considering for the initial stateCe(t = 0) = 1 and
Cd(t = 0) = 0, solving this differential equation gives us at
time t = τ:

Ce,1000(τ) =
1
2

e−i(2k+1)X2
0

π
2 (18)

×







1+
X0

2
√

1+
X2

0
4



ei

√

1+
X2

0
4 (2k+1)X0π

+



1− X0

2
√

1+
X2

0
4



e−i

√

1+
X2

0
4 (2k+1)X0π





k is an arbitrary integer

We note that we will found the same expression for
the following initial states:|e,1,0,0,1〉 , |e,1,0,1,0〉 and
|e,1,0,1,1〉 .

In order that Ce,1000(τ) = 1, X0 must satisfy the
following conditions (withp andp′ are integers):















(2k+1)X0

(
√

1+
X2

0
4 + X0

2

)

π = 2pπ

(2k+1)X0

(
√

1+
X2

0
4 − X0

2

)

π = 2p′π
(19)

which give:

(2k+1)(p− p′)−2pp′= 0 (20)

and

X0 =

√

2(p− p′)
(2k+1)

(21)

For positive fixed values ofk, p and p′, the value of
X0 that allows us to haveCe,1000(τ) = 1 is then determined
through the relation21, with the condition bettween them
satisfy the expression20.

If we take for examplep = (2k + 1)k and p′ = k,
equation20 is verified and we have:

X0 =
2k√

2k+1
(22)

3.1.2 Initial state:|Ψ0〉= |e,1,1,0,0〉

As before we consider a general state at time t as:

|Ψ(t)〉 = Ce(t) |e,1,1,0,0〉+Cd(t) |d,1,0,0,0〉
+Cc(t) |c,0,0,0,0〉

Then the system10becomes:

{

Że = i
g2

1
∆ Ze + i g1g2

∆ Zc

Żc = i g1g2
∆ Ze + i

g2
2

∆ Zc

(23)

Eliminating Zc, we can get the following differential
equation:

Z̈e − i(
g2

1

∆
+

g2
2

∆
)Że = 0 (24)

The resolution of this differential equation give us at
time t (we have used for the initial stateZe(t = 0) = 1 and

Że(t = 0) = i
g2

1
∆ ):

Ze(t) =
g2

2

g2
1+ g2

2

+
g2

1

g2
1+ g2

2

ei
(g2

1+g2
2)

∆ t (25)

that yielding at timet = τ (Ze =Ce):

Ce,1100(τ) =
X2

0

X2
0 +X2

2

+
X2

2

X2
0 +X2

2

e
i
(X2

0+X2
2)

X2
2

(2k+1)π
(26)

k is an arbitrary integer

We will found the same expression for the following
initial state:|e,1,1,0,1〉

In order thatCe,1100(τ) = 1, X0 andX2 must satisfy the
following condition (n is an arbitrary integer):

(

X2
0 +X2

2

)

X2
2

(2k+1)π = 2nπ (27)

that implies:

X2
2 =

2k+1
2(n− k)−1

X2
0 (28)

Using the condition onX0 found for the initial state
|Ψ0〉= |e,1,0,0,0〉 (p = (2k+1)k andp′ = k), we find for
X2:

X2 =

√

2(p− p′)
2(n− k)−1

=
2k

√

2(n− k)−1
(29)

3.1.3 Initial state:|Ψ0〉= |e,1,1,1,0〉

n1 = 1, n2 = 1, n3 = 1 andn4 = 0 implies that:

|Ψ(t)〉 = Ce(t) |e,1,1,1,0〉+Cd(t) |d,1,1,0,0〉
+Cc(t) |c,1,0,0,0〉+Cb(t) |b,0,0,0,0〉

c© 2018 NSP
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The system10becomes:






Że = i
g2

1
∆ Ze + i g1g2

∆ Zc

Żc = i g1g2
∆ Ze + i

(

g2
2

∆ − g2
3

δ

)

Zc
(30)

By eliminatingZc, we obtain the following differential
equation:

Z̈e − i(
g2

1

∆
+

g2
2

∆
− g2

3

δ
)Że +

g2
1g2

3

∆δ
Ze = 0 (31)

The resolution of this differential equation give us at
time t (we have used for the initial stateZe(t = 0) = 1 and

Że(t = 0) = i
g2

1
∆ ):

Ze(t) = e
i
2

(

g2
1

∆ +
g2
2

∆ − g2
3

δ

)

t






cos







√

√

√

√

g2
1g2

3

∆δ
+

1
4

(

g2
1

∆
+

g2
2

∆
− g2

3

δ

)2

t







+
i
2

g2
1

∆ − g2
2

∆ +
g2

3
δ

√

g2
1g2

3
∆δ + 1

4

(

g2
1

∆ +
g2

2
∆ − g2

3
δ

)2

×sin







√

√

√

√

g2
1g2

3
∆δ

+
1
4

(

g2
1

∆
+

g2
2

∆
− g2

3
δ

)2

t












(32)

that implies at timet = τ (Ze =Ce):

Ce,1110(τ) = e
i

(

1+
X2

0
X2

2
− X0X1

X2
3

)

(2k+1) π
2

×






cos







√

√

√

√

4X0X1

X2
3

+

(

1+
X2

0

X2
2

− X0X1

X2
3

)2

(2k+1)
π
2







+i
1− X2

0
X2

2
+ X0X1

X2
3

√

4X0X1
X2

3
+
(

1+
X2

0
X2

2
− X0X1

X2
3

)2
(33)

×sin







√

√

√

√

4X0X1

X2
3

+

(

1+
X2

0

X2
2

− X0X1

X2
3

)2

(2k+1)
π
2













By using the conditiong1 ≫ g2 as we have already
mentioned to achieve a phase gate (i.eX0 ≪ X2), we can

simplify the expression ofCe,1110(τ)
(

X2
0

X2
2
≪ 1

)

.

So we have:

1− X2
0

X2
2
+ X0X1

X2
3

√

4X0X1
X2

3
+
(

1+
X2

0
X2

2
− X0X1

X2
3

)2
≃

1+ X0X1
X2

3
√

4X0X1
X2

3
+
(

1− X0X1
X2

3

)2
= 1

(34)
which gives the approximate value ofCe,1110(τ):

Ce,1110(τ) ≃ e
i



1+
X2

0
X2

2
− X0X1

X2
3

+

√

4X0X1
X2

3
+

(

1+
X2

0
X2

2
− X0X1

X2
3

)2


(2k+1) π
2

(35)

≃ ei(2k+1)π

= −1

We will verify the accuracy of these approximations
by plotting the variation of the amplitudeCe,1110(τ)
according to the parametersX1 and X3. X0 and X2 are
determined from equations22 and 29. To do this we
choose the following values for the integerk (k = 51) and
the integern (n = 52) and that will be adopted in the
following. So we getX0 ≃ 10.05 andX2 = 102. We plot
the curve of the real and imaginary part of theCe,1110(τ)
state amplitude at timet = τ as a function ofX1 andX3
(see figure2). we note that for values ofX1 greater than
100 (X1 > 100) and X3 ∼ 10, the real part ofCe,1110(τ)
approaches−1 and the immaginary part approaches 0.

Fig. 2: The plot of the real and imaginary part of theCe,1110(τ)
state amplitude at timet = τ as a function ofX1=

δ
g1

andX3 =
δ
g3
.

We takek = 51,n = 52, X0 ≃ 10.05 andX2 = 102.

3.1.4 Initial state:|Ψ0〉= |e,1,1,1,1〉

We proceed in the same way as for the initial state|Ψ0〉=
|e,1,1,1,0〉 and we consider the general state of the system
(n1 = 1, n2 = 1, n3 = 1 andn4 = 1):

|Ψ(t)〉 = Ce(t) |e,1,1,1,1〉+Cd(t) |d,1,1,1,0〉 (36)

+Cc(t) |c,1,1,0,0〉+Cb(t) |b,1,0,0,0〉
+Ca(t) |a,0,0,0,0〉
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The system10becomes:















Że = i
g2

1
∆ Ze + i g1g2

∆ Zc

Żc = i g1g2
∆ Ze + i

(

g2
2

∆ − g2
3

δ

)

Zc − i g3g4
δ Za

Ża =−i g3g4
δ Zc − i

g2
4

δ Za

(37)

By eliminating Zc and Za, we obtain the following
differential equation:

...
Z e − i(

g2
1

∆
+

g2
2

∆
− g2

3

δ
− g2

4

δ
)Z̈e (38)

+

(

g2
1g2

3

∆δ
+

g2
1g2

4

∆δ
+

g2
2g2

4

∆δ

)

Że = 0

By solving this equation and introducing the
normalized parametersX0, X1, X2, X3 andX4, we find the
following solution at timet = τ (Ze =Ce):

Ce,1111(τ) = 1+
2i

√

(

1+ X2
0

X2
2
+ X0X1

X2
3

+ X0X1
X2

4

)2
− 4X3

0 X1

X2
2 X2

3

×e
i

(

1+
X2

0
X2

2
− X0X1

X2
3

− X0X1
X2

4

)

(2k+1) π
2

(39)

×sin







√

√

√

√

(

1+
X2

0

X2
2
+

X0X1

X2
3

+
X0X1

X2
4

)2

− 4X3
0 X1

X2
2 X2

3
(2k+1)

π
2







From the implementation condition that was already

mentioned g2
1

∆ ≫ g2
3

δ , we can deduce the following

condition X0X1
X2

3
≫ 1. The condition

X2
0

X2
2
≪ 1 implies that

4X3
0 X1

X2
2 X2

3
≪ X0X1

X2
3
, So the termX0X1

X2
3

+ X0X1
X2

4
under the root in

the above equation will be the determining factor. Then:

√

√

√

√

(

1+
X2

0

X2
2

+
X0X1

X2
3

+
X0X1

X2
4

)2

− 4X3
0 X1

X2
2 X2

3

≫ 1

=⇒ 1
√

(

1+
X2

0
X2

2
+ X0X1

X2
3

+ X0X1
X2

4

)2
− 4X3

0 X1

X2
2 X2

3

≃ 0

=⇒Ce,1111(τ) ≃ 1 (40)

We will verify the accuracy of these approximations by
plotting the variation of the amplitudeCe,1111(τ) according
to the parametersX1 and X4 (see Figure3). We remark
that for similar normalized detuning to those considered
in the case of the other initial states (i.eX0 ≃ 10.05,X2 =
102, X1 > 100 andX3 ∼ 10), the real part ofCe,1111(τ)
approaches 1 and the immaginary part approaches 0.

Fig. 3: The plot of the real and imaginary part of theCe,1111(τ)
state amplitude at timet = τ as a function ofX1 =

δ
g1

andX4=
δ
g4

.
We takek = 51,n = 52, X0 ≃ 10.05, X2 = 102. andX3 = 10.

4 Discussion

First, we collect all the conditions to achieve the four-qubit
phase gate such that:

◦ The interaction time should be as:τ = (2k+1)∆
g2

1
π =

(2k+1)X0
g1

π (k is an arbitrary integer).
◦ ∆ ≫ g1,g2 and δ ≫ g3,g4 : it implies that

X0,X2,X3,X4 ≫ 1
◦ g1 ≫ g2 : thenX0 ≪ X2

◦ g2
1

∆ ≫ g2
3

δ : that givesX0X1
X2

3
≫ 1

◦ X0 =
√

2(p−p′)
(2k+1) and X2 =

√

2(p−p′)
2(n−k)−1 with n is an

integer number,p and p′ are integer numbers satisfying
(2k+1)(p− p′)−2pp′= 0.

We also note thatX0, X1, X2, X3 and X4 are
normalized parameters and the values that verify the
conditions for implémentation of the phase gate remain
general and don’t correspond to any specific values of the
constants of coupling(g1,g2,g3 andg4) and detunings (∆
andδ ).

To investigate the experimental feasibility of this
proposal, let us consider the microwave cavity-QED
experiment in [18], highly excited Rydberg atoms
(typically 85Rb) have been used to interact with a
superconducting cavity withQ = 4× 1010. The photon
lifetime inside the cavity is in orderτph ∼ 130ms, and the
coupling strength is aroundg = 2π × 50 kHz. We
consider the numerical values considered in our proposal
(k = 51, X0 = 10.5). Then the direct calculation shows
that the time required to implement the phase gate is
τ ≃ 10.8 ms which is much shorter than the photon
lifetime τph.

Secondly, we note that this gate is based on the
marked state|1,1,1,0〉 , and we can built the others fifteen
gates for the marking job by application of single-qubit

c© 2018 NSP
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rotations. For example the transformation operatorQπ
that corresponds to the marked state|1,1,1,1〉 (already
defined in the section 2) can be built as:

Qπ = (I1⊗ I2⊗ I3⊗σx,4)×U × (I1⊗ I2⊗ I3⊗σx,4)

We note thatU is the transformation operator that
corresponds to the marked state|1,1,1,0〉 , σx is the NOT
transformation having the following matrix representation
[

0 1
1 0

]

and I j is the identity matrix corresponding to the

qubits j.

5 Fidelity

This analysis allows to fully built the quantum phase gate
operation, by calculating the fidelity which is considered
as a very useful tool to characterizes the performance of
this operation as a deterministic gate. For two quantum
systems given by the density matricesρ1 and ρ2 the
fidelity F(ρ1,ρ2) can be defined as [12,13]:

F(ρ1,ρ2) =

(

Tr
√√

ρ1ρ2
√

ρ1

)2

In our case both of the wavefunction|Ψ (t)〉
describing the system in Equation7 and the target
|Ψ(0)〉 = |e,1,1,1,0〉 are pure states; consequently, one
can set ρ1 = |Ψ(t)〉 〈Ψ(t)| and
ρ2 = |e,1,1,1,0〉〈e,1,1,1,0|. The FidelityF(ρ1,ρ2) then
is nothing but the probability of the system to be in the
state|e,1,1,1,0〉. The fidelity becomes:

F (|Ψ 〉〈Ψ | , |e,1,1,1,0〉〈e,1,1,1,0|) = |〈e,1,1,1,0|Ψ 〉|2

In Figure4 ,we show the plot of fidelity as a function
of X1 =

δ
g1

andX3 =
δ
g3
. We remark that quite promising

result are obtained over a broad range of system
parameters and the correspondingly fidelity are always
higher(F > 96%)

6 Conclusion

In conclusion, we have proposed a scheme to realize a
cavity QED based five-qubit quantum phase gate which
may simplify the implementation of certain quantum
computing problems. It consists of a five-level atom in a
cascade configuration initially in its lower state passing
through a four-mode cavity. The photons in the four
modes represent the four qubits. In general, the system
must have a strong atom-field interaction and have a
lifetime longer than the required interaction time. The
multi-level cascade atomic structure is realistic and has
been investigated a lot in the past [14,15,16].

Fig. 4: The plot of fidelity as a function ofδg1
and δ

g3
.

Nevertheless, our scheme requires that the cavity runs in
the regime of strong coupling, which generally requires
the optical modes to be confined in a small mode volume
for extended periods of time. Therefore, the cavity must
have an extremely high Q factor. Various modern cavities
with a high Q factor have been fabricated to realize strong
coupling (see for example [17,18,19,20,21]) .

Especially, Gotzinger et al. successfully achieved the
strong coupling between multiple whispering-gallery
modes and two individual nanoemitters which have
different center emission or absorption frequency in one
silicon microsphere resonator cavity [21]. With this such
development in the resonator systems, it is promising that,
the strong interaction between a multimode field and a
multilevel atom simultaneously inside a cavity can be
experimentally performed.
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