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Abstract: We denote a new differential operator %,B (+), where the parameter, associated with the order, is such that @ < 1,
B > 0andM is used to denote that the function to be derived involvesttalglLeffler function with one parameter. This new deriati
satisfies some properties of integer-order calculus, meglity, product rule, quotient rule, function compasitiand the chain rule.
Besides as in the case of the Caputo derivative, the desévali a constant is zero. Because Mittag-Leffler function isatural
generalization of the exponential function, we can extemues of the classical results, namely: Rolle’s theorem, tle@mwvalue
theorem and its extension. We present the correspordiigegral from which, as a natural consequence, new resoierge which
can be interpreted as applications. Specifically, we gdimertne inversion property of the fundamental theorem ¢fudas and prove
a theorem associated with the classical integration by piinally, we present an application involving linear ei#ntial equations by
means of locaM-derivative with some graphs.

Keywords: Local M-derivative, locaM-differential equationM-integral, Mittag-Leffler function.

1 Introduction

The integral and differential calculus of integer-ordeveleped by Leibniz and Newton was a great discovery in
mathematics, having numerous applications in severasarephysics, biology, engineering and others. But somgthin
intriguing and interesting to the mathematicians of the way still to come. In 16951} 2,3], /’Hospital, in a letter to
Leibniz, asked him about the possibility of extending theanmieg of an integer-order derivatig®y/dx" to the case in
which the order is a fraction. This question initiated thetdiy of a new calculus which was called arbitrary order
calculus and which nowadays is usually called fractionkdudas.

Although fractional calculus emerged at the same time amtbger-order calculus proposed by Newton and Leibniz,
it did not attract the attention of the scientific communitydaor many years remained hidden. It was only after an
international congress in 1974 that fractional calculugaeto be known and consolidated in numerous applications in
several fields such as applied mathematic, physics, biaogyengineering.

Several types of fractional derivatives have been intreduo date, among which the Riemann-Liouville, Caputo,
Hadamard, Caputo-Hadamard, Riesz and other tyfy&s€d]. Most of these derivatives are defined on the basis of the
corresponding fractional integral in the Riemann-Liole/dense.

Recently, Khalil et al. T] proposed the conformable derivative with order 0 < a < 1, in order to generalize
properties of classical calculus. Some applications otth€ormable derivative and the alternative fractionahdgive
are gaining space in the field of the fractional calculus anch@rous works using such derivatives are published of
which we mention: the heat equation, the Taylor formula andesinequalities of convex function8,p]. More recently,
in 2014, Katugampolal|d] also proposed a new fractional derivative with classicapgrties, similar to the conformable
derivative.

The main motivation to propose a new derivative calederivative, and consequently to study property and thaere
as well as to realize applications comes from the recentipdluced alternative derivativé(Q] and some new results
involving the conformable derivativg’[11,12)], all of which constitute to particular cases of our resultsthis sense, as
an application of locaM-derivative, we present the general solution of a linedetéhtial equation with graphs. Those
graphs present the particular case of the conformableat&y and two of them thkl-derivative.
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This paper is organized as follows: in section 2 we present ¢bncepts of fractional derivatives in the
Riemann-Liouville and Caputo sense, the definition of foawdl derivative by Khalil et al. 7] and the alternative
definition proposed by Katugampolad], together with their properties. In section 3, our priradipesult, we introduce
the definition of a locaM-derivative involving a Mittag-Leffler function and demarate several theorems. In section 4
we introduce the correspondimd-integral, for which we also present several results; inipalar, a generalization of
the fundamental theorem of calculus. In section 5, we ptetbenrelation between the locM-derivatives, introduced
here, and the alternative proposedif][ In section 6, we present an application involving linetdfiedential equation by
means of locaM-derivative with some graphs. Concluding remarks close#per.

2 Preliminaries

The most explored and studied fractional derivatives aftfomal calculus are the so-called Riemann-Liouville armg@o
derivatives. Both types are fundamental in the study oftioael differential equations; their definitions are pesel
below.

Definition 1.Leta € C such that Réa) > 0and m—1 < a <m. The fractional derivative of order of a causal function
f in the Riemann-Liouville sens@g, f (t), is defined by13,14,15]

28,1 (t) 1= DM (1), (1)
or L R
- _ \m-a-1 _
) l'(m—a)dtm[/of(r)(t T) dr|, m—1l<a<m,
D f (1) = (2)
dmf t =
gt a=m

where D" = d™/dt™ is the usual derivative of integer-order m add ¢ is the Riemann-Liouville fractional integral. If
a =0, we defineZd, =1, where | is the identity operator.

Definition 2.Leta € C such that Réa) > 0 and m the smallest integer greater than or equal td®gwith m—1 < a <
m. The fractional derivative of order of a causal function f in the Caputo sensé f (t), is defined by13,14,15]

281 (t):=3"D"f(t), me N 3)
or 1 .
- (m) _ \m-a-1 _
I‘(m—a)/o fiW (1) (t—1) dr, m—1<a<m,
ZE1(t) := 4)
dm ¢
gt a=m

whereD™ is the usual derivative of integer-order J™ ¢ is the Riemann-Liouville fractional integral arfd™ (1) =
dmf (1)
drm -~
We present now the definitions of two new types bfdctional’ derivatives. As we shall show later, these definitions
coincide, for a particular value of their parameters, wiith tlerivative of order one of integer-order calculus.

Definition 3.Consider f: [0,0) — R and t> 0. The conformable derivative of orderof f is given by[7]

1-a\ _
Tt ) = lim f(t+eth ) —f(t)
£—0 &

: (®)

vVt > 0anda € (0,1).

A function f is calleda-differentiable if it has a fractional derivative. ffis a-differentiable in some intervdD, a),
a>0and if Ii[)rl (@) (t) exists, then we define
t—

Ta (0) = lim Ta f ().

t—0+

(@© 2018 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl4, No. 4, 479-492 (2018)www.naturalspublishing.com/Journals.asp NS = 481

Definition 4.Consider f: [0,0) — R and t> 0. The alternative derivative of order of f is given by[10]

ot (te“’“) —f()
Zaf (1) = lIm ——F——, (6)

vt > 0anda € (0,1).

Also, if f is a-differentiable in some interv4D,a), a > 0 and Ii(r)rl f(@) (1) exists, then we define
t—
D (0) = lim Z4 1 (1).
a (0) o Za (t)

In this paper, if both conformable and alternative derxegtiofa order of a function exist, we will simply say that the
function f is a-differentiable.

The main result of this paper is to discuss a new type of déreathe localM-derivative, that generalizes the
alternative derivative. The new definition seems to be arahixtension of the usual, integer-order derivative, and
satisfies the eight properties mentioned above. Also, asiencase of conformable and alternative derivatives, our
definition coincides with the known fractional derivative&spolynomials. Finally, we are able to define a correspogdin
integral for which we can prove the fundamental theorem tfudas, the inversion theorem and a theorem of integration
by parts.

3 Local M-derivative

In this section we present the main definition of this artetel obtain several results that generalize equivalenttsesu
valid for the alternative derivative and which bear a gréatlarity to the results found in classical calculus.

On the basis of this definition we could demonstrate that@calM-derivative is linear and satisfies the product rule,
the composition rule for twar-differentiable functions, the quotient rule and the chaile. We show that the derivative
of a constant is zero and present "fractional” versions olled®otheorem, the mean-value theorem and the extended
mean-value theorem. Further, the continuity of the "frac4l” derivative is demonstrated, as in integer-orderdak

Thus, let us begin with a definition, which is a generalizatid the classical definition of a derivative as a special
limit.

Definition 5.Let f: [0,0) — R andt> 0. For 0 < a < 1we define the local M-derivative of orderof function f, denoted
78F 1 (1), by
f (tEg (et~ %)) — (1)

78R8 (1) = lim . : )

vt > 0, whereEg (-), B > Ois the classical Mittag-Leffler functidi 6, 17]. Considerf is a-differentiable in(0,a), a> 0,
and lim 3P (t), we have
t—0t

75F ¢ (0) :tirg@,a’ﬁf (t).

Theorem 1f f : [0,00) — R is a-differentiable at§ > 0,0 < o <1, B > 0, then f is continuous agt

Proof 1Indeed, let us consider

f (tOEﬁ (8t60)) ~f(t) = ( f (tOEE (Etoga)) —f (t0)> c. (8)

Taking the limite — 0 on both sides oEq.(8), we have

_ B _ f (toEg (tg @) — f(to) \ .
a — =
imyf (tofp (¢16%)) — f (o) l'%( £ ime
_ gaB i
=9y 1 (t)‘I€|£n>O €
= 0.

Then, f is continuous agt
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Using the definition of the one-parameter Mittag-Lefflerdtion, we have

“ayy g (re (B0
f (tEg (et ))_f<tk;r(ﬁk+1)>' 9)

Taking the limite — 0 on both sides of EcQ}; sincef is a continuous function, we have
w —ank
. —ayy g (et™9)
imyf (tEg (et7%)) = lim (tkzor (Bk+1)

o N
e-04& I (Bk+1)
=t, (10)
because whea — 0 in the Mittag-Leffler function, the only term that contries to the sum ik = 0, so that
I (et*“’)k
Iimy ———— =1
£-0% I (Bk+1)

We present here a theorem that encompasses the main dlassperties of integer-order derivatives, in particuléir o
order one. As for the chain rule, it is verified by means of aaneple, as we will see in the sequence.

Theorem 2etO< a < 1,3 >0, a,be R and f g a-differentiable for t> 0. Then:
1.(Linearity) 23 (af +bg) (t) =aZ P f (t) + b2S Py t).
Proof 2Using Definition 5, we have
0 (af+bg) (tEg (et~ 7)) — (af +bg) (t)

73" (@f +bg) (t) = li

£—0 <

_ i 21 (T (et7)) +bg (tEp (et%)) —af (t) — bg(t)
£—0 €

im AT (B () —af(®) by (tEg (et”*)) —bg(t)
£—=0 & £—0 £

= a7y Pt () +b7u ()

2 (Product Rule) 75 (f-g) (t) = £ (t) 25Pg(t) +9(t) 2P £ (t).
Proof 3Using Definition 5, we have

8P (f.9)(t) = mf (tE (™) g(tEg (et 7)) — F(®)g(t)
f (tEg (et™®))g(tEg (et™%)) + f (t) g (tEp (et7%)) —
— lim —f (1) g(tEg (et™%)) — (1) g(t)

£—0 &

e . a
= l@o ) Iganog (tEg (et™%)) +

+lim <g(“EB (et)) _g(t)> ()

= 7" (1) () Img (12 (st™*)) + 73" (@) (O F (1

= 74P (H) gt +Zu” (@) 1) f (1),
becausei@og (tEg (et™%)) =g(t).

(f (tEg (et=%)) — f (1)
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a.p a,B
3.(Quotient ruIe)@f’,,*3 (é) (t) = 9(t) Zw f(;(:)]fz(t)@M g(t).

Proof 4Using Definition 5, we have

ap (FY 0 O(tEg(et")) gt
78 <g>(t)—llm

£—0 £
g(t) f (tEg (et™9)) — f (1) g (tEg (et~ %)) + f (1) g(t) — f (1) g(t)
R g (tEg (stg—“)) a(t)
l"l‘og(t) (f (tEg (Zt")) ~f@M) 'gig“of (t) (0 (tEg (zta)) —q(t))

limg (g (et=7)) 9 (t)

~—

i —-a —
becauseilgnog (tEg (et %)) =gt

4.98F (c) = 0, with f(t) = c is a constant.
Proof 5The result follows directly fror@efinition 5.
. . , ti=a  df(t)
5.1f, furthermore, f is differentiable, thesy, & (H) = FE+D at

Proof 6We can write
© (et~9) etl=a  t(et®)?  t(et9)3
tEg (et™9)
p(e %r Bk+1 Y reTy Tresry TTEEry ¢
LGS
r(ng+1)
8t1_a 2
=t+—— +0(&?). 11
+VWB+1Y+ ) (11)

Using Definition 5 and introducing the change

—a 1 = h
h=et! (W +O(E)> e ti-a (r<ﬁ1+1) +O(£)) |

in Eq.(11), we conclude that

gtlfc{
f <t+m+0(£2)> —f(t)

710 - m :
f(t+h)—f(t)
— fim ==
8ﬁ°<plﬁ1+F(B+1)())
f(t+h) —f(1)
_ h
T (B+1)e=01+T (B+1)O(¢)
e df(Y)
T (B+1) dt

with 3 >0andt> 0.
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6.(Chain ruIe)@,\“,,ﬁ (fog)(t)= f’(g(t))@,&’ﬁg(t), for f differentiable at gt).
Proof 7If g(t) = ais a constant, then
7P (tog) (1) = 7" T (9(V) = 74" (1) (a) = 0.

On the other hand, assume that g is not a constant in the neibobd of a, that is, suppose ag > 0 such that
g(x1) # g(x2), ¥x1,X € (a0 — &, a0 + ). Now, since g is continuous at a, feismall enough we have

f(g(aks (et™9))) - f(g(a))

9&3 (fog)(a) = LiLnO . -
_im T(9 (@B (et7))) — T(g(a)) g (aBg (e177)) —g(a)
&0 g(alig(et™9)) —g(a) c .

Introducing the change
e1=g(akg (et7%)) —g(a) = g(aks (et™)) =g(a)+ &
in Eq.(12), we conclude that

98P (f og) (@) = glliTof (9(akg (Et_:l))) —f(g (a))i@og(aEﬁ (Et_:)) -g(a

t'(g(a) 24" 9(a),

with a> 0.
The two theorems below, present some results used in theleslof integer order.

Theorem detac R, B > 0and0 < a < 1. Then we have the following results:
1.28* (1)=o0.

a B tl—C{
2'@M1 (eat) == m
3.75F (sin(at)) = %acos(at) :
4.9 (cos(at)) = —%asin(at).
1

aet.

S rpm

6.70" (%) = =z ( Ba+ 5t

Theorem4LetO< a <1, 3 >0andt> 0. Then, we have

57" (

lia
1.98° (sin(1t9)) = %.

a i lta
2.24" (cos(1t%)) = _%.

395 () = rom

The identities in Theorer® and Theorend are direct consequences of item 5 of Theo&m
We now prove the extensions, fardifferentiable functions in the sense of the lob&lderivative defined in Eq7j,
associated with the Rolle’s theorem and the mean-valuexdedded mean-value theorems.

Theorem 5Rolle’s theorem fowr-differentiable functions).et a> 0 and f: [a,b] — R be a function such that:

1.f is continuous offg, bj;
2.f isa-differentiable ona, b) for somea € (0,1);
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3.f(a) = f(b).
Then, there exists& (a,b), such thatz*? f(c) = 0, B > 0.

Proof 8Since f is continuous ofa,b] and f(a) = f(b), there exists a point € (a,b) at which function f has a local
extreme. Then,

f (cEg (ec™@)) — f(c) f (cEg (ec™@)) — f(c)

e—0~ & £—0t &

AsgangiEB (ec™) =1, the two limits in the right hand side of this equation havpasite signs. Henc@,&’ﬁf (c)=0.

Theorem §(Mean-value theorem far-differentiable functions)et a> 0 and f: [a,b] — R be a function such that:

1.f is continuous offa, bJ;
2.f isa-differentiable ona, b) for somea € (0,1).

Then, there exists€ (a,b) given by

7581 (0) = 1O T,
o a
with 8 > 0.
Proof 9Consider ¢x) as
g(x) =f(x)—f(a)—T (B+1) %?l%@-<%ﬂ—éw>. (13)
T ha _aC{
a a

As g satisfies the conditions of Rolle’s theorem, there ®xist (a,b) such that@,&’ﬁf(c) = 0. Applying the local
M-derivativeZ,}” to both sides oEq.(13) and using the fact thaz” (%) = ﬁ and 72 (c) =0, cis a constant,
we conclude that

PURICRL)
a a

Theorem 7(Extended mean-value theoreh®t a> 0 and f,g: [a,b] — R functions such that:

1.f,g are continuous offg, bj;
2.f,g area-differentiable for somer € (0,1).

Then, there exists€ (a,b) such that
ZuPf(e) _ t(b)~

f(a
70Pg(c) 9B —g(@’ (1)

with 8 > 0.

Proof 10Consider the function

f(b)—f(a)
g(b)—g(a)

As F is a continuous function da, b], a-differentiable on(a,b) and F(a) = 0 = F(b), by means of Rolle’s theorem
there exists & (a,b) such that@,a’BF(c) = 0 for somea € (0,1). Then, applying the local M—derivativ@h“,,’ﬁ to both
sides ofEq.(15) and using the fact thwﬂp(c) = Owhere c is a constant, we conclude that

F =100 fa)- ( ) (@) —g(@). (15)

25Pt(©)  f(b)—f(a)

28Pg9(c) 9(b)—g(@)’
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Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

486 N SS 2 J. Sousa and E. Oliveira : On the lodatderivative

Definition 6.We considei3 > 0, a € (n,n+ 1], for some ne N and f n times differentiablén the classical sense) for
t > 0. Then the locaM-derivative of orden of f is defined by

£ (tEg (et"=a)) — £ (1)

a.Bin T
Dy E () = l@o : , (16)
if and only if the limit exists.
tn+1 a
From Definition 6 and the chain rule, using induction mmwe can prove thaZy, Bng f(t)= BD (D) (1),

a € (n,n+1] and sof is (n+ 1)-differentiable fort > 0.

4 M-Integral

Here, we introduce the concept di-integral of a functionf. From this definition we can prove some results similar to
classical results such as the inverse property, the funditbeorem of calculus and the theorem of integration itspa
Other results about tHd-integral are also presented. In preparing this section agenextensive use of referencgslp,
11,12].

Definition 7.(M-integral)Let a> 0 and t> a. Consider f defined ifa,t] and0 < a < 1. Then, the M-integral of order
a of a function f is given by

f(x

WA O =1 (B+1) [ ar)
with 8 > 0.
Theorem glInverse)Consider & 0and0 < a < 1. Also, consider f a continuous function such that theretemisﬁa“’pf
Then

P (mIEPE (1) = 1), (18)

witht >aandf > 0.
Proof 11Indeed, using the chain rule provedTimeorem? we have

tl—“ d

_ %% (/’([3+1)/at il(f(gdx>

ol r(B+1)
‘rm+n< = fm)
= f(t). (19)

We now prove the fundamental theorem of calculus in the seintbe M-derivative mentioned at the beginning of the
paper.

Theorem 9Fundamental theorem of calculusyt f: (a,b) — R be ana-differentiable function an® < a < 1. Then,
for allt > a we have

—(mIgPE (1))

w I (7471 0) =10 -1 (@),
with B > 0.

Proof 12In fact, since function f is differentiable, using the chaife (non-integer order) and the fundamental theorem
of calculus, we have

Mﬂﬁ( “Bf())—F(B+1)/tL"?:2()dx

X0 1 df(t)
_FB+1/FB+1X10’ dt dx
_tdf(y)
=)o at

=ft)-f(a) (20)
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If the conditionf (a) = 0 holds, then by Theorem 9, EBQ), we havey.7. [@“‘;Bf( )} £(t).
Theoren® can be generalized to a larger order as follows.

Theorem 1Q.eta € (n,n+ 1] and f: [a,0) — R be(n+ 1)-times differentiable for t~ a. Thenyvt > a, we have
n £ (a)(t—a)
m 7P (Qﬂ’ﬁf (t)) =ft)- 5 M,

with 3 > 0.
Proof 13Using the definition of M-integral and the chain rule provedrheoren2, we have
WS (751 0) = wrd - P i )]
= - o)t P (o)
— w2 (10 ). (21)
Then, performing piecewise integration for the integettearderivative inEq.(21), we have

a.B (0B _ 0 1K (@) (t—a)
IS B(@ f(t )) _f(t)—k;T.

As integer-order calculus has a result known as integraygrarts, we shall now present, through a theorem, a similar
result which we might call fractional integration by parts.
Using the notation of Eql() for the M-integral:

w0 0= B+ [ Pax= [ txdax

rB+1),

wheredyx = A=a

Theorem 11 et f,g: [a,b] — R be two functions such that g are differentiable an® < a < 1. Then

/f ) dax = f () g(x) |2 — /g 28P 5 (%) dax, 22)

with 8 > 0.

Proof 14indeed, using M-integral and applying the chain rule (nateger order) and the fundamental theorem of
calculus, we have

/ f dax =

b f(x
pe1) [ o gax
(9

),
)/ab - dg(x)

xI=a(B+1) dt

b
:/a f(x)gf () dx

= ()9 13- (B+1)

I (
rp+1

bg(x) xt@ df(x)
AT (B dt o

b
= 10990018 — [ 909 24”1 () dax.

where ¢x = —Bl+—1dx
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Theorem 12.et0 < a< b and let f: [a,b] — R be a continuous function. Then, fox o < 1 we have

TP 1)) < (I P ), (23)
with 8 > 0.
Proof 15From the definition of M-integral of ordexr, we have
X
GYB —_—
I BT O] = | (B+1) [ g
)
<IF B+ [ |2 |dx

=msg Pt ()]

Corollary 1 Considering f: [a,b] — R a continuous function such that

N= sup |f(t)|. (24)
tela,b]
Thenvt € [a,b] and0 < a < 1, we have
te  a’
‘Mfa“*pf(t)‘ <r(B+1)N <———>, (25)
a a
with 8 > 0.
Proof 16By Theoreml2, we have
TP O] < w11 (1)
t
= (B+1) [ 1F (o)t
a
t
<1 (B+DN [ x*lax
a
te af
=TI (B+1)N (E_F)' (26)

5 Relation With Alternative Derivative

We discuss a possible relation between the alternativeatae and the locall-derivative proposed here.
Katugampola10] proposed a new fractional derivative which he called akitive derivative, given by

o f (teft’“) —f(t)
778 (1) = lim —————. (27)

with a € (0,1) andt > 0.
Itis easily seen that our definition of loddl-derivative Eq.7)) is more general than the alternative derivative Eg.(
The definition in Eq.{) contains the classical Mittag-Leffler functidiiz(-), which is a generalization of the
exponential function. Indeed, choosifig= 1 in the definition of the classical Mittag-Leffler functiobd, 17], we have

oo Xk
Eg (X) = Eq (X) = k;m — ¢ (28)

In particular, introducing = et~ in Eq.(7) and taking the limie — 0 we recover the alternative derivati#:

P (1) tim ELECD 1Oy | (&) -1

£—0 £ e=0 €

=9%f(t). (29)
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6 Application
Fractional linear differential equations are importanttia study of fractional calculus and applications. In tlgst®n,
we present the general solution of a linear differentialagigun by means of the locél-derivative. In this sense, as a

particular case, we study an example and perform a graplhsasalf the solution.
The general first-order differential equation based ondlkalM-derivative is represented by

Z8Put) + PM)ut) =Q(t). (30)

whereP(t), Q(t) area-differentiable functions and(t) is unknown.
Using the item 5 of Theoren®) in the Eq.B0), we have

Suw+ L D pyun = L8 Yo, (31)

The Eq.B8Y) is a first order equation, whose general solution is given by

u(t) = e "B i dt( (B+1) ?1(0) ) 5 dtdt+c>7

whereC is an arbitrary constant.
By definition of M-integral, we conclude that the solution is given by

u(t) = WP <MI;’*B <Q(t) ewé"“ma») +c> ,

Now let us choose some values and functions and make an exaisipg the linear differential equation previously
studied by means of the lockl-derivative. Then, takin@(t) = —A, Q(t) =0,u(0) =up,a=0,0<a <1efB >0, we
have the following linear differential equation

78Pu(t) = Au(t), (32)

whose solution is given by
U(t) = Up ea ‘7 Fp+1t* — eV <%I‘ (B + 1)ta> ,

wherelE, (-) is Mittag-Leffler function.
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Fig. 1: Analytical solution of the Eq32). We consider the valug® = 0.5, A=1 andup=20.

20 ;
----- a=03
18k TN a=06 4
' - ==0=09
K a=10
16 F -
0
i
E
145 E
!
i
2= 1\ 4
I
I
\510!'7 B
-
1
8h - -
[
P
o3 B
!
4P |
!
!
2H B
I,
\/
O L L L L
0 3 35 4 45 5

Fig. 2: Analytical solution of the Eq32). We take the value8 = 1.0, A=2 andup=20
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Fig. 3: Analytical solution of the Eq32). We choose the valugd= 1.5, A=2.5 andup=20.

7 Conclusion

We have introduced the so-called lod&dderivative, and its correspondiidrintegral. We could prove important results
concerning integer-order derivatives of this kind, in fautar, derivatives of order one. For-differentiable functions in
the context of locaM-derivatives we could show that the derivative as propossd behaves well with respect to the
product rule, the quotient rule, composition of functionsl ghe chain rule. The locéll-derivative of a constant is zero,
differently from the case of the fractional derivative i tRiemann-Liouville sense. Moreover, we presestifferentiable
functions versions associated with the Rolle’s theoremntiean-value theorem and the extended mean value theorem.

An M-integral is introduced and some results bearing relatiomssults in the calculus of integer order are obtained,
among which theM-fractional versions of the inverse theorem, the fundaaleiieorem of calculus and a theorem
involving integration by parts.

We obtain a relation between our loddlderivative with the local alternative derivative, as @eted in section 5 of
the paper, as well as possible applications in several goaascularly as we show, in the solution of a linear diffetieal
equation. We conclude from this result that the definitiaspnted here can be considered a generalization of thdled-ca
alternative derivativellQ].
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