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Abstract: In this paper, we introduce and investigate a new class of convex functions, which is called exponentially convex functions.
Several new Hermite-Hadamard type integral inequalities via exponentially convex functions are established. Some special cases are
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1 Introduction and Preliminaries

In recent years much attention has been given in studying
and investigating various aspects of classical concept of
convexity. Resultantly this concept has been extended and
generalized in different directions. For some useful details,
see [1,2,4,5,8,10,11].
A function f : I ⊂ R → R is said to be a convex in the
classical sense, if for allx,y ∈ I andt ∈ [0,1], we have

f ((1− t)x+ ty)≤ (1− t) f (x)+ t f (y).

Convexity in connection with integral inequalities is an
interesting field of research. As many inequalities are
direct consequences of the applications of convex
functions. Hermite-Hadamard type inequality is one of
the most significant result in convex analysis, which
provides a necessary and sufficient condition for a
function to be convex. This famous result of Hermite and
Hadamard reads as follows:
Let f : I = [a,b] ⊂ R → R be an integrable convex
function, then we have

f

(

a+ b
2

)

≤
1

b− a

b
∫

a

f (x)dx ≤
f (a)+ f (b)

2
.

For some recent studies on Hermite-Hadamard type
inequalities, see [3,7,12].

Motivated by the ongoing research in this important
research area, we introduce a new class of convex
functions, which is called exponentially convex functions.
These exponentially convex functions are nonconvex
functions. For the basic properties and other aspects of
exponentially convex functions, see Noor [9]. We would
like to point out out that every convex function is a
exponentially convex function, but the converse is not
true. We establish some Hermite-Hadamard type
inequalities for exponentially convex functions. We also
discuss some special cases, which can be obtained from
the main results.
The following auxiliary result will be helpful in obtaining
some of our main results.

Lemma 1([6]). Let f : I = [a,b] ⊂ R → R be a
differentiable function on I◦, where I◦ is the interior of I.
If f ′ ∈ L1[a,b], then

1
b− a

b
∫

a

f (u)du−
f (a)+ f (b)

2

=
b− a

2





1
∫

0

(1−2t) f ′((1− t)a+ tb)dt





.
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2 Exponential convex functions

We now introduce a new class of convex functions, which
is called ”exponentially convex functions.”

Definition 1. A function f : I ⊆ R → R is said to be
exponential convex function, if

f ((1− t)x+ ty)≤ (1− t)
f (x)
eαx + t

f (y)
eαy , (1)

for all x,y ∈ I, t ∈ [0,1] and α ∈ R.. If (1) holds in the
reversed sense, then f is said to be exponentially concave
function.

Note that ifα = 0, then the class of exponentially convex
functions reduce to class of classical convex function.
However, the converse is not true.

3 Main Results

In this section, we derive our main results.

Theorem 1. Let f : I ⊂ R → R be an integrable
exponentially convex function, then

f

(

a+ b
2

)

≤
1

b− a

b
∫

a

f (u)
eαu du ≤

e−αa f (a)+ e−αb f (b)
2

.

Proof. Let f be an exponentially convex function. Then

2 f

(

x+ y
2

)

≤
f (x)
eαx +

f (y)
eαy .

Let x = (1− t)a+ tb andy = ta+(1− t)b, we have

2 f

(

a+ b
2

)

≤
f ((1− t)a+ tb)

eα((1−t)a+tb)
+

f (ta+(1− t)b)

eα(ta+(1−t)b)
.

Integrating with respect tot on [0,1] and using the change
of variable technique, we have

f

(

a+ b
2

)

≤
1

b− a

b
∫

a

f (u)
eαu du. (2)

Again utilizing the fact thatf is an exponentially convex
function, we have

f ((1− t)a+ tb) ≤ (1− t)
f (a)
eαa + t

f (b)
eαb .

Integrating with respect tot on [0,1], we have

1
b− a

b
∫

a

f (u)
eαu du ≤

e−αa f (a)+ e−αb f (b)
2

. (3)

Summation of inequalities (2) and (3) completes the proof.
⊓⊔

Remark. Note that, ifα = 0 in Theorem1, then we recover
the classical Hermite-Hadamard inequality.

Our next result is Hermite-Hadamard like inequality via
product of two exponentially convex functions.

Theorem 2. Let f ,g : I ⊂ R → R be two integrable
exponentially convex functions, then

2 f

(

a+ b
2

)

g

(

a+ b
2

)

≤
2

b− a

b
∫

a

f (u)g(u)
e2αu du

+
1

eα(a+b)

[

1
6

M(a,b;e)+
1
3

N(a,b;e)

]

≤
1
3

M(a,b;e)+
1
6

N(a,b;e),

where

M(a,b;e) :=
f (a)g(a)

eαa +
f (b)g(b)

eαb , (4)

and

N(a,b;e) :=
1

eα(a+b)
[ f (b)g(a)+ f (a)g(b)] , (5)

respectively.

Proof. Since f andg are exponentially convex functions,
we have

4 f

(

x+ y
2

)

g

(

x+ y
2

)

≤

{(

f (x)
eαx +

f (y)
eαy

)}{(

g(x)
eαx +

g(y)
eαy

)}

.

Let x = (1− t)a+ tb andy = ta+(1− t)b, then we have

4 f

(

a+ b
2

)

g

(

a+ b
2

)

≤

{(

f ((1− t)a+ tb)

eα((1−t)a+tb)
+

f (ta+(1− t)b)

eα(ta+(1−t)b))

)}

×

{(

g((1− t)a+ tb)

eα((1−t)a+tb)
+

g(ta+(1− t)b)

eα(ta+(1−t)b))

)}

.

Integrating with respect tot on [0,1], we have

4 f

(

a+ b
2

)

g

(

a+ b
2

)

≤
2

b− a

b
∫

a

f (u)g(u)
e2αu du

+
1

eα(a+b)

1
∫

0

[{

(1− t)
f (a)
eαa + t

f (b)
eαb

}

×

{

t
g(a)
eαa +(1− t)

g(b)
eαb

}

+

{

t
f (a)
eαa +(1− t)

f (b)
eαb

}

×

{

(1− t)
g(a)
eαa + t

g(b)
eαb

}]

dt.
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This implies

4 f

(

a+ b
2

)

g

(

a+ b
2

)

≤
2

b− a

b
∫

a

f (u)g(u)
e2αu du

+
1

eα(a+b)

1
∫

0

[

2t(1− t)

{

f (a)g(a)
e2αa +

f (b)g(b)
e2αb

}

×
[t2+(1− t)2]

eα(a+b)
{ f (b)g(a)+ f (a)g(b)}

]

dt.

This implies

2 f

(

a+ b
2

)

g

(

a+ b
2

)

≤
2

b− a

b
∫

a

f (u)g(u)
e2αu du

+
1

eα(a+b)

[

1
6

M(a,b;e)+
1
3

N(a,b;e)

]

. (6)

We now prove second part of the inequality. Sincef andg
are exponentially convex functions, we have

f ((1− t)a+ tb)g((1− t)a+ tb)

≤

[

(1− t)
f (a)
eαa + t

f (b)
eαb

][

(1− t)
f (a)
eαa + t

f (b)
eαb

]

.

Integrating with respect tot on [0,1], we have

1
b− a

b
∫

a

f (u)g(u)
e2αu du ≤

1
3

M(a,b;e)+
1
6

N(a,b;e). (7)

Summation of inequalities (6) and (7) completes the proof.
⊓⊔

Note that if α = 0, Theorem2 reduces to a result for
classical convex functions.
We now derive some results for differentiable
exponentially convex functions.

Theorem 3.Let f : I = [a,b]⊂ R→ R be a differentiable
function on I◦, where I◦ is the interior of I. If | f ′| is a
exponentially convex function, then

∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

b
∫

a

f (u)du

∣

∣

∣

∣

∣

∣

≤
b− a

8

[∣

∣

∣

∣

f ′(a)
eαa

∣

∣

∣

∣

+

∣

∣

∣

∣

f ′(b)
eαb

∣

∣

∣

∣

]

.

Proof. Using Lemma1, it follows that
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

b
∫

a

f (u)du

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

b− a
2

1
∫

0

(1−2t) f ′((1− t)a+ tb)dt

∣

∣

∣

∣

∣

∣

≤
b− a

2

1
∫

0

|1−2t|| f ′((1− t)a+ tb)|dt.

Since| f ′| is exponential convex function, we have
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

b
∫

a

f (u)du

∣

∣

∣

∣

∣

∣

≤
b− a

2

1
∫

0

|1−2t|

[

(1− t)

∣

∣

∣

∣

f ′(a)
eαa

∣

∣

∣

∣

+ t

∣

∣

∣

∣

f ′(b)
eαb

∣

∣

∣

∣

]

dt

=
b− a

8

[∣

∣

∣

∣

f ′(a)
eαa

∣

∣

∣

∣

+

∣

∣

∣

∣

f ′(b)
eαb

∣

∣

∣

∣

]

.

This completes the proof.⊓⊔

Theorem 4.Let f : I = [a,b]⊂ R→ R be a differentiable
function on I◦, where I◦ is the interior of I. If | f ′|q is an
exponentially convex function, where q ≥ 1 and 1

p +
1
q = 1,

then
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

b
∫

a

f (u)du

∣

∣

∣

∣

∣

∣

≤
b− a

2(p+1)
1
p

[

1
2

{

∣

∣

∣

∣

f ′(a)
eαa

∣

∣

∣

∣

p
p−1

+

∣

∣

∣

∣

f ′(b)
eαb

∣

∣

∣

∣

p
p−1

}]

p−1
p

.

Proof. Using Lemma1, we have
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

b
∫

a

f (u)du

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

b− a
2

1
∫

0

(1−2t) f ′((1− t)a+ tb)dt

∣

∣

∣

∣

∣

∣

≤
b− a

2

1
∫

0

|1−2t|| f ′((1− t)a+ tb)|dt.

Using Hölder’s integral inequality, we have
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

b
∫

a

f (x)du

∣

∣

∣

∣

∣

∣

≤
b− a

2





1
∫

0

|1−2t|pdt





1
p

×





1
∫

0

| f ′((1− t)a+ tb)|qdt





1
q

, (8)
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where 1
p + 1

q = 1. Now using the fact that| f ′|q is an
exponentially convex function, we have

1
∫

0

| f ′((1− t)a+ tb)|q

≤

1
∫

0

[

(1− t)

∣

∣

∣

∣

f ′(a)
eαa

∣

∣

∣

∣

q

+ t

∣

∣

∣

∣

f ′(b)
eαb

∣

∣

∣

∣

q]

dt

=
1
2

[∣

∣

∣

∣

f ′(a)
eαa

∣

∣

∣

∣

q

+

∣

∣

∣

∣

f ′(b)
eαb

∣

∣

∣

∣

q]

, (9)

and

1
∫

0

|1−2t|pdt =
1

p+1
. (10)

Using (8), (9) and (10), we have the required result.⊓⊔

Theorem 5.Let f : I = [a,b]⊂ R→R be a differentiable
function on I◦, where is the interior of I. If | f ′|q is an
exponentially convex function, where q ≥ 1, then we have

∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

b
∫

a

f (u)du

∣

∣

∣

∣

∣

∣

≤
b− a

2

(

1
2

)1− 1
q
[

1
4

{∣

∣

∣

∣

f ′(a)
eαa

∣

∣

∣

∣

q

+

∣

∣

∣

∣

f ′(b)
eαb

∣

∣

∣

∣

q}] 1
q

.

Proof. Using Lemma1, we have
∣

∣

∣

∣

∣

∣

f (a)+ f (b)
2

−
1

b− a

b
∫

a

f (u)du

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

b− a
2

1
∫

0

(1−2t) f ′((1− t)a+ tb)dt

∣

∣

∣

∣

∣

∣

≤
b− a

2

1
∫

0

|1−2t|| f ′((1− t)a+ tb)|dt.

Using power-mean inequality, we have

1
∫

0

|1−2t|| f ′((1− t)a+ tb)|dt

≤





1
∫

0

|1−2t|dt





1− 1
q

×





1
∫

0

|1−2t|| f ′((1− t)a+ tb)|qdt





1
q

. (11)

Using the exponentially convexity of| f ′|q, we have
1

∫

0

|1−2t|| f ′((1− t)a+ tb)|qdt

≤

1
∫

0

|1−2t|[(1− t)

∣

∣

∣

∣

f ′(a)
eαa

∣

∣

∣

∣

q

+ t

∣

∣

∣

∣

f ′(b)
eαb

∣

∣

∣

∣

q

]dt

=
1
4

{∣

∣

∣

∣

f ′(a)
eαa

∣

∣

∣

∣

q

+

∣

∣

∣

∣

f ′(b)
eαb

∣

∣

∣

∣

q}

, (12)

where
1

∫

0

|1−2t|dt =
1
2

(13)

Using (11), (12) and (13), we have the required result.⊓⊔
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