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Abstract: In this paper, we introduce and investigate a new class ofecofunctions, which is called exponentially convex funos.
Several new Hermite-Hadamard type integral inequalitiasexponentially convex functions are established. Someiapcases are
discussed as applications of our results. The ideas andite@s of this paper may be the starting point for furtheeaesh in this
field.
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1 Introduction and Preliminaries For some recent studies on Hermite-Hadamard type
inequalities, see3[7,12].

In recent years much attention has been given in studying Motivated by the ongoing research in this important
and |nV€St|gatlng various aSpeCtS of classical Concept Ofesearch area, we introduce a new class of convex
convexity. Resultantly this concept has been extended anfiinctions, which is called exponentially convex functions
genera“zed in different directions. For some useful d@tal These exponentia”y convex functions are nonconvex

see[,2,4,5,8,10,11]. o _ functions. For the basic properties and other aspects of
A function f : I C R — R is said to be a convex in the exponentially convex functions, see No@®f.[We would
classical sense, if for aky € | andt € [0,1], we have like to point out out that every convex function is a
exponentially convex function, but the converse is not
f(L-t)x+ty) < (1—t)f(x)+tf(y). true. We establish some Hermite-Hadamard type

inequalities for exponentially convex functions. We also

Convexity in connection with integral inequalities is an discuss some special cases, which can be obtained from
interesting field of research. As many inequalities arethe mainresults. _ . o
direct consequences of the app”cations of ConvexThe followmg auxnlary result will be h8|pr| n obtalnlng
functions. Hermite-Hadamard type inequality is one of some of our main results.
the most significant result in convex analysis, which | emma 1([6]). Let f : | = [ab] c R — R be a
provides a necessary and sufficient condition for agifferentiable function on I°, where 1° is the interior of I.
function to be convex. This famous result of Hermite and|f f/ ¢ L1[a,b], then
Hadamard reads as follows: b
Let f : 1 =[ab] C R — R be an integrable convex 1 f(a)+ f(b)
function, then we have b_ a/ f(u)du— 2

a

b 1
a+b 1 f(a)+ f(b) _b-ajr ,
f(T) gma/f(x)dng. = b/(l—Zt)f((l—t)aHb)dt
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2 Exponential convex functions Our next result is Hermite-Hadamard like inequality via
product of two exponentially convex functions.
We now introduce a new class of convex functions, which

is called "exponentially convex functions.” Theorem 2. Let f,g: | C R — R be two integrable

exponentially convex functions, then
Definition 1. A function f : | C R — R is said to be

exponential convex function, if 2f (ﬂ’) g <ib)
2 2

f((L-t)x+ty) < (1—t)m 4—tm 1) b

= eax ' eay”’ .2 / UCLICIIN
forall x,yel, te[01andacR.If(1) holdsinthe ~ b-a/ e
reversed sense, then f is said to be exponentially concave 1 1 1
function. R : o :

+ea(a+b) {GM(a,b,e)+3N(a,b,e)]

Note that ifa = 0, then the class of exponentially convex 1
functions reduce to class of classical convex function. < éM(a, b; e)+éN(a, b;e),
However, the converse is not true.

where
. . . f(a)g(a)  f(b)g(b)
3 Main Results M(a,b;e) := wa T b (4)
In this section, we derive our main results. and
1
Theorem 1. Let f : | ¢ R — R be an integrable  N(a,bje) = ) [f(b)g(a)+ f(a)g(b)], (5)
exponentially convex function, then e
b respectively.
—aa —ab
f <a+b> < 1 / f(li) du < ef@+e f(b). Proof. Since f andg are exponentially convex functions,
2 b-a/ & 2 we have
Proof. Let f be an exponentially convex function. Then af (x+y) 9 (x+y)
2 2
X+ f(x) f
2t (1Y) <2450 (100 1O [ (9, g)
- eox ery erx — edy '

Letx=(1-tja+thandy =ta+ (1-t)b, we have Letx= (1—t)a+thandy =ta+ (1—t)b, then we have

a+b f((1-t)a+th) f(ta+(1—-t)b)
Integrating with respect tbon [0,1] and using the change f(1-t)a+tb) f(ta+ (1—t)b)
of variable technique, we have < {( (- 0ar) At (L05) )}
b
a+b 1 f(u) g((1—-t)a+tb) g(ta+ (1—t)b)
f( 2 ) < b—a/ o U (2) X{( ca((Ttarth) | ealtar (10b) :
a

L : . Integrating with r ttbon [0, 1], we hav
Again utilizing the fact thatf is an exponentially convex egratng espect toon [0, 1], we have

function, we have a+b a+b
4f g —

f(a)  f(b 2 2
Integrating with respect tbon [0, 1], we have < b—a/ au du
a
b
1 f(u e %f(a) +e (b 1

4 ea(atb) ) eoa eab
Summation of inequalitie2} and @) completes the proof. a b f(a f(b
s (9D 1y 1)
Remark. Note that, ifa = 0in Theorend, then we recover 1 g(a .g(b) at
the classical Hermite-Hadamard inequality. X (1=1) eaa o :
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b—a

1
This implies - T/ (1— 20 ((L—t)a+th)dt

a+b) <a+b>
4f -
( N2 _b-a

I\J

0
1
/|1 24| /(1 —t)a+ th)|dt.
0

b 2
2 /f u)g(u
< -
~“b-a g2au , . . ,
a Since|f'| is exponential convex function, we have
1
1 f(a)g(@) | f(b)g(b) b
+ < / [Zt(l—t){ e f@+ib) 1 /f(u)du
0 2 b—a
24+ (1) :
L (g f(@aib)} e R,
g—/|1 2t|[(1 ) [ |+t = }dt
This implies 2 0 e e
ot a+b a+b _b-a f'(a) f'(b)
—2 g —2 8 eoa eab :
b :
This completes the proof.O
s [
-y Theorem 4.Let f : 1 =[a,b] C R — R bea differentiable
1 1 1 function on I°, where |° is the interior of I. If |f/|9 isan
NpTeT) {EM(& bie) + zN(a,b; e)} : (6)  exponentially convex function, where g > 1 and T4i=1,

then
We now prove second part of the inequality. Siricandg

are exponentially convex functions, we have
f((1—t)a+th)g((1—t)a+tb)

fa) . f(b) fa) . f(b) b1
< - — — 1 Pt
< |:(1 t) oua +1 b (1-t) gua +1 eab _ b—a }{ f/(a) p_EI+ f/(b) p_pi}~| p
Integrating with respect toon [0, 1], we have ~ 2(p+ 1)% 2| I e e
1 0 f(u)g( 1 Proof. Using Lemmal, we have
—— <
b a e2au du 3 (abe)+6N(abe) (7)
2 LESIC R
Summation of inequalitie$} and (7) completes the proof. 2 b—a
O a
1
Note that if a = 0, Theorem2 reduces to a result for _ B/ 1—2t)f'((1—t)a+th)dt
classical convex functions. 2 /
We now derive some results for differentiable 1
exponentially convex functions. b—a
o —/|1 2] £((1—t)a+ th)|dt.
Theorem 3.Let f : 1 = [a,b] C R — R bea differentiable 2 J
function on 1°, where I° is the interior of I. If |f'| isa
exponentially convex function, then Using Holder’s integral inequality, we have
b b
fla+fb) 1 fl@+fb) 1
S o Sk o
a a
- b—afl|f'(a) f'(b) . 1
- 8 eaa eab

1
< b%a (O/|1—2t|pdt>
1 a
x </|f’((1—t)a+tb)|th> , ®)
0
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where % +% = 1. Now using the fact thatf’|% is an
exponentially convex function, we have

I q 1 q
A [0

B f’(a)q f/(b)q

B {eﬂa | e ] ®)
and

1

/|1—2t|pdt: 1 (10)
/ p+1

Using @), (9) and @L0), we have the required result

Theorem 5.Let f : 1 = [a,b] C R — R bea differentiable
function on 1°, where is the interior of I. If |f/|% is an
exponentially convex function, where g > 1, then we have

f(a); f(b) biajf(“)d“
S0 ey

Proof. Using Lemmal, we have

b
f(a);t o _ IOia/f(u)du

1
b—;a/(l—Zt)f’((l—t)m—tb)dt

0

b 1

< %a/|1—2t||f/((1—t)a+tb)|dt.
0

Using power-mean inequality, we have

1
/|1—2t||f/((1—t)a+tb)|dt
0

Using the exponentially convexity ¢f’|9, we have

1
/|1—2t||f/((1—t)a+tb)|th
0

1
@ (b))

§/|1—2t|[(1—t) eg? 4t £ Jdt

0
C1(|r@)t o)
_Z{ eda edb } (12)
where
; 1
/|1—2t|dt: 5 (13)

Using 11), (12) and @3), we have the required resultC
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