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Abstract: The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to
incorporate new pieces of information. In this paper, we argue that to apply rationality result of belief dynamics theory to various
practical problems, it should be generalized in two respects: first of all, it should allow a certain part of belief to be declared as
immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base
dynamics, is presented, along with the concept of a generalized revision algorithm for Horn knowledge bases. We show that Horn
knowledge base dynamics has interesting connection with kernel change and abduction. Finally, we also show that both variants are
rational in the sense that they satisfy certain rationality postulates stemming from philosophical works on belief dynamics.
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1 Introduction section). In the case of finite knowledge bases, it is
sometimes hard to see how the update relations should be

Modeling intelligent agents’ reasoning requires designingmodified to accomplish certain Horn knowledge base
knowledge bases for the purpose of performing symbolicypdates.

reasoning. Among the different types of knowledge
representations in the domain of artificial intelligence,
logical representations stem from classical logic.. . g
However, this is not suitable for representing or treating!? he research group under the chair. Additional

items of information  containing  vagueness, (updatable) facts are that matthias and gerhard are group

incompleteness or uncertainty, or Horn knowledge basénairs, and delhibabu and aravindan are staff members.
YVe restricted that staff and chair names are taken by

evolution that leads the agent to change his beliefs abo _ 2 ) . >
g g uher/h|s emalil id, and our integrity constraint is that each

the world. . .
When a new item of information is added to a Horn "€S€arch group has only one chair i.y,z (y=x) «

knowledge base, inconsistency can result. Revision mear@OURChair(x,y)A groupchair(x,z).

modifying the Horn knowledge base in order to maintain Immutable partstaff_chair(X,Y)—

consistency, while keeping the new information and staff group(X,Z),groupchair(zZ,Y).

removing (contraction) or not removing the least possible

previous infqrmation. .In.our case, update means revision Updatable partgroupchair(inforl,matthias)-

and contraction, that is insertion and deletion in database @~ ——— group.chair(infor2,gerhard)-

perspective. Our previous work [7,8] makes connections staff group(delhibabu,infort)-

with contraction from knowledge base dynamics. staff group(aravindan, infort)
Our Horn knowledge base dynamics, is defined in two , )

parts: an immutable part (Horn formulae) and updatable>UPPOse we want to update this database with the

part (literals) (for definition and properties see works of nformation, staffchair(delhibabu,aravindan), that is

Nebel [41] and Segerberg [45]). Knowledge bases have a staff chair(delhibabiaravinda—

set of integrity constraints (see the definitions in later staff group(delhibabiz) A groupchair(Z,aravindan

Example 1Consider a database with an (immutable) rule
that a staff member is a person who is currently working
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If we are restricted to definite clauses, there is onlyare denoted by upper case Roman letfeiB F. K, ..... A
one plausible way to do this: delhibabu and aravindanliteral is an atom (positive literal), or a negation of an
belong to groups inforl, this updating means that we needtom (negative literal).
to delete (remove) matthias from the database and newly For any formulag, we write E(¢) to mean the set of
add (insert) aravindan to the database (aravindan gathe elementary letters that occur¢n The same notation
promoted to the chair of the research group inforl and healso applies to a set of formulae. For anyBeif formulae,
was removed from research group inforl). This results inL(F) represents the sub-language generate# (), i.e.
an update that is too strong. If we allow disjunctive the set of all formulag with E(¢) C E(F).
information into the database, however, we can Hornformulae are defined [15] as follows:

accomplish the update by minimal adding wrt consistenc
P P y g y 1Everyae @, aand—aare Horn clauses.

staff.group(delhibabjinforl) v 2a+« ajAag ... \a, is a Horn clause, where> 0 and
groupchair(inforl,aravindan aac@(l<i<n).
and this option appears intuitively to be correct. 3.Every Horn clause is a Horn formula,is called head

When adding new beliefs to the Hormn knowledge ~@nda is body of the Homn formula.
base, if the new belief is violating integrity constraints 4If ¢ andy are Horn formulae, so ig A .
then belief revision needs to be performed, otherwise, itis A definite Horn clause is a finite set of literals (atoms)

simply added. As we will see, in these cases abductionna; contains exactly one positive literal which is called
can be used in order to compute all the possibilities and ighe head of the clause. The set of negative literals of this
is not up to user or systeto choose among them. definite Horn clause is called the body of the clause. A
When dealing with the revision of a Horn knowledge o clause is non-recursive, if the head literal does not
base (both insertions and deletions), there are other waygccur in its body. We usually denote a Horn clause as

to change a Horn knowledge base and it has to beheaebbody. LetZ,» be the set of all Horn formulae with
performed automatically also. Considering the respect ta%..

information, change is precious and must be preserved as Formally, a finite Horn knowledge ba#B is defined
much as possible. Therinciple of minimal chang§22, s 3 finite set of formula from languagé,, and divided
44] can prowde a reagonable strategy. On the othe_r hanGuto three parts: an immutable theokB, is an Horn
practical implementations have to handle contradictoryformulae (head-body), which is the fixed part of the
uncertain, or imprecise information, so several prOblemsmowledge; updatable theonKBy is Horn clause

can arise: how to define efficient change in the style Of(head—); and an integrity constraintBic is Horn clause
AGM [1]; what result has to be chosen [27,32,39]; and (—body).

finally, according to a practical point of view, what

computational model to support for Horn knowledge basepefinition 1(Knowledge Base)Let KB be a finite set of
revision has to be provided? Horn formulae from language¥?, called a Horn

The rest of paper is organized as follows: First we knowledge base with,KB = KB, U KBy U KBy,
start with preliminaries in Section 2. In Section 3, we KB = KB, NKBy = @ andKB = KBy NKBic = 2.

introduce knowledge base dynamics along with the
concept of generalized revision, and revision operator for  Working with deductively closed, infinite belief sets is
knowledge base. Section 4 studies the relationshimot very attractive from a computational point of view.
between knowledge base dynamics and abduction. IThe AGM approach to belief dynamics is very attractive
Section 5, we discuss an important application ofin its capturing the rationality of change, but it is not
knowledge base dynamics in providing an axiomaticalways easy to implement either Horn formula based
characterization for insertion view atoms to databasespartial meet revision, or model-theoretical revision. In
and brief summary of the related works nature of view real application from artificial intelligence and database,
update problem for incomplete to complete information. what is required is to represent the knowledge using a
In Section 6 we give brief overview of related works. In finite Horn knowledge base. Further, a certain part of the
Section 7 we make conclusions with a summary of ourknowledge is treated as immutable and should not be
contribution as well as a discussion of future directions ofchanged.
investigation. All proofs can be found in the Appendix. Knowledge base change deals with situations in
which an agent has to modify its beliefs about the world,
usually due to new or previously unknown incoming
2 Preliminaries information, also represented as formulae of the
language. Common operations of interest in Horn
We consider a propositional languagé, defined froma  knowledge base change are the expansion of an agent’s
finite set of propositional variables? and the standard current Horn knowledge base KB by a given Horn clause
connectives. We use lower case Roman letéelsx,y, ... ¢ (usually denoted as KBj), where the basic idea is to
to range over elementary letters and the Greek letteradd regardless of the consequences, and the revision of its
¢, 4,... for propositional formulae. Sets of formulae current beliefs by¢ (denoted as KB *¢), where the
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intuition is to incorporatep into the current beliefs in (KB*6) Preservationtf o and are KB-equivalent, then

some way while ensuring consistency of the resulting KBxa <« KBxf3.

theory at the same time. Perhaps the most basic operatigB*7.1) Strong relevancekBx* a - a If KB, ¥ —~a

in Horn knowledge base change, like belief change, igKB*7.2) Relevancelf 8 € KB\KB=x a, then there is a set

that of contraction (AGM [1]), which is intended to KB’ such that

represent situations in which an agent has to givepup KBxa C KB C KBuU a, KB is consistent

from its current stock of beliefs (denoted as KB- (KB UKBy¢) with a, but KB'U {B} is inconsistent
KB UKBc with a.

Definition 2(Levi Identity). Let - be an AGM contraction (KB*7.3) Weak relevancef 8 € KB\KBx a, then there is

operator for KB. A way to define a revision is by using a setkKB' such thatKB' C KBU a, KB’ is consistent

Generalized Levi Identity: (KB, UKBi¢c) with a, but KB' U {B} is inconsistent

KBxa — (KB——a)Ua KB, UKBc with a.

o o ] To revisea from KB, only those informations that are
Then, the revision can be trivially achieved by relevant toa in some sense can be added (as example in
expansion, and the axiomatic characterization could b8he introduction illustrates)(KB « 7.1) is very strong
straightforwardly obtained from the corresponding gxiom allowing only minimum changes, and certain
characterizations of the traditional models [17]. The aimyational revision can not be carried out. So, relaxing this
of our work is not to define revision from contraction, but ~gndition (example with more details can be found in
rather to construct and axiomatically characterize revisior'[g]), this can be weakened to relevand&B « 7.2) is
operators in a direct way. relevance policy that still can not permit rational
revisions, so we need to go next step. WikB x 7.3) the
relevance axiom is further weakened and it is referred to

3 Knowledge base dynamics as "core-retainment”.

AGM [1] proposed a formal framework in which

revision(contraction) is interpreted as belief change.4 Knowledge base dynamics and abduction
Focusing on the logical structure of beliefs, they

formulate eight postulates which a revision knowledgeWe study the relationship between Horn knowledge base

base (contraction knowledge base was discussed in [8lynamics (discussed in the previous section) and
has to verify. abduction, a well-known from reasoning. This study helps
to bring these two fields together, so that abductive logic
Definition 3.Let KB be a Horn knowledge base with an grammar procedure could be used to implement revision.
immutable parKB,. Leta andf be any two Horn clauses For this purpose, we use the concepts of generalized
from .%Z,,. Then,a and 3 are said to beKB-equivalentiff kernel change (revision and contraction), an extension of
the following condition is satisfied! set of Horn clauses kernel contraction and revision introduced for belief
EC %»: KBIUEL aiff KBjUE I 3. bases. We first observe that generalized kernel change
coincides with that of Horn knowledge base change
These postulates stem from three main principles: thgrevision and contraction), and then we process to show
new item of information has to appear in the revised Hornits relationship with abduction.
knowledge base, the revised base has to be consistent and
revision operation has to change the least possible beliefs.
Now we consider the revision of a Horn clausevrt KB, 4.1 Kernel revision system
written asK B a. The rationality postulates for revisirg
from KB can be formulated. To revise a Horn formular from a Horn knowledge base
KB, the idea of kernel revision is tkeep at leasbne
element from every inclusion-minimal subset of KB that
derivesa. Because of the immutable-inclusion postulate,
no Horn formula fronKB; can be deleted.

Definition 4(Rationality postulates for Horn knowledge
base revision).

(KB*1) Closure:KBxa is a Horn knowledge base.
(KB*2) Weak Successf a is consistent withK B UK B¢

thena ¢ KBxd, Definition 5(Kernel sets).Let a Horn knowledge base KB

be a set of Horn formulae, whee is Horn clause. The

(KB*3.1) Inclusion:KB+ o CCn(KBU a).

(KB*3.2) Immutable-inclusionKB; C Cn(KBxa).

(KB*4.1) Vacuity 1:if o is inconsistent withKB; U KBy
thenKBx o = KB.

(KB*4.2) Vacuity 2:if KBUa ¥ L thenKBxa = KBUa.

(KB*5) Consistencyif o is consistent wittkKBj UKBc
thenKB * a consistent wittKB, UKBc.

a-inconsistent kernel of KB, noted BB | a, is the set
of KB’ such that:

1.KB' C KB ensuring thakKB, C KB’ andKB,c C KB'.

2KB'Ua is inconsistent withK B, UKBc .

3.For any KB” such thakB” c KB’ C KBthenKB"Ua
is consistent withiKB; UKB¢c.
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That is, given a consistertt, KB | a is the set of
minimal KB-subsets inconsistent with

Example 2Suppose that KBEKB, : p«—aAb,p—a,q«
anb; KBy :a«,b—; KBic: g} anda= — p. Then we
have that:

KBL a={{p<anb},{pa}}.

Theorem 1For every Horn knowledge bad€B, x4 is a
generalized kernel revision function iff it satisfies the
postulates (KB*1) to (KB*6) and (KB*7.3).

4.2 Relationship with abduction

Revision by a Horn clause is based on the concept of & he relationship between Horn knowledge base dynamics

a-inconsistent-kernels. In order to complete

the and abduction was introduced by the philosopher Pierce

construction, we must define a incision function that cuts(see [2]). We show how abduction grammar could be used

in each inconsistent-kernel.

Definition 6(Incision function). Let KB be a set of Horn
formulae.o is a incision function foKB if and only if, for
all consistent Horn clauses

1.0(KBL, a) CUKBL, a
2lf KB' € KBL, a thenKB'N(o(KBL, a))#0

Definition 7(Hitting set). A hitting setH for KBL, a is
defined as a set s.t. (B C U(KBL_a), (i) HNKB; is
empty and (ii)vX € KBL, a, X # 0 and X N KBy is not
empty, therX NH #£ 0.

A hitting set is said to benaximalwhenH consists of
all updatable statements frapg{ KB_L ; a) andminimalif
no proper subset d is a hitting set foKB_L | a.

Definition 8(Generalized Kernel revision). An incision
function for KB is a function s.t. for altr, o(KBL  a) is
a hitting set forKB_L , a. An operatorxs for KB is a
generalized kernel revision defined as follows:

(KB\o(KBL,a)Ua, if ais
KBx. of — consistent with
o KBy UKBc
KB, otherwise.

An operatorx s for KB is a generalized kernel revision
iff there is an incision functiow for KB such thatK Bx a
= KB x4 a for all beliefsa.

From the definition of hitting set, it is clear that when
KB —a, o is the hitting set ofKB_L, a. On the other
hand, whenKB, + a, the definition ensures that only
updatable elements are inserted, andoes follow from
the revision. Thus, week success (KB*2),
immutable-inclusion(KB*3.2) and vacuity (KB*4.1) are
satisfied by generalized kernel revisioncofrom KB.

Example 3Given KB={KB; : p — aAb,p «— a,q —
anb; KBy :a«—,b«—; KBc:9 }, a= « p and
KBL,a = {{p «— aAb},{p < a}}. We have two

to realize revision with immutability condition. A special
subset of literal (atoms) of languadé,,, abduciblesAb,

are designated for abductive reasoning. An abductive
framework (P, Ab) stands for a theory P, which is a set of
Horn formulae from.Z,», with possible hypotheseAb.

An abductive framework for a knowledge base
KB = KB; UKBy UKBc can be given as follows:

P=KByU{a < B|a is a Horn clause itKBy andf
is an abducible from Ab that does not
appear irkKB}.

Definition 9(Minimal abductive explanation). Let KB
be a Horn knowledge base ard an observation to be
explained. Then, for a set of abduciblgéBy ), A is said
to be an abductive explanation wiB, iff KB, UA F a.
A is said to beminimal wrt KB, U KBc iff no proper
subset ofA is an abductive explanation far, i.e. 0 st
KBUuA' Fa.

Since an incision function is adding and removing
only updatable elements from each member of the kernel
set, to compute a generalized revisionoofrom KB, we
need to compute only the abduction in everkernel of
KB. So, it is now necessary to characterize precisely the
abducibles present in every-kernel of KB. The notion
of minimal abductive explanation is hot enough to capture
this, and we introduce locally minimal and KB-closed
abductive explanations.

Definition 10(Local minimal abductive explanations).
Let (KB UKB[;) be a smallest subset By, s.tA an
minimal abductive explanation of wrt (KB; UKB;) (for
someA). ThenA is called local minimal foror wrt KBy .

Note 1Let (KB UKBy) € ({A*,A™}). HereA™ refers to
admission Horn knowledge base (positive atoms) And
refers to denial Horn knowledge base(negative atoms) wrt
givena. Then problem of abduction is to explathwith
abducibles KBy ), s.t. (KBjUKBy)UATUA™ I a and

possible results for the incision function and its associated(KBI UKBy)UA™ = a UA™ are both consistent with IC.

kernel revision operator:
01(KBL, a) = {p— aAb} andKBxg, a = {{ a},

{—b}},
02(KBL,a) = {p«< a} andKBxg, a = {{—a}}.

Incision function g, produces minimal hitting set for
KBL, a.

4.3 Generalized revision algorithm

The problem of Horn knowledge base revision is
concerned with determining how a request to change can
be appropriately translated into one or more atoms or
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literals. We give new generalized revision algorithm. It is base atom(literals)Further, we assume that IDB does not
enough to compute all the KB-locally minimal abduction contain any unit clauses and that predicates defined in a

explanations fora wrt KB, UKBy UKBjc. If a is

consistent with KB then well-known abductive procedure

to compute an abductive explanation tomrt KB, could
be used to compute kernel revision

Reasoning about Abduction and Deduction

Definition 11([51]). Let KB=(KB,KBy,KBc) be a
knowledge base€l is updatable part from KB. We define
abduction frameworkKKBBC KBAP,IC). After Algorithm
1 is executedy is derived part fromKB'. The abduction
explanation foru in (KBy UKB(j,KBic) is any setTi,
whereT; C KBA? such thatKB, UKB; UT = u.

An explanatiorT; is minimal if no proper subset af is

given DDB are both view and base predicates.

Two kinds of view updates can be carried out on a
DDB: An atom(literals), that does not currently follow
from DDB, can beinserted; or an atom(literals), that
currently follows from DDB, can bdeleted [7,8].In this
paper, we consider only insertion an atom(literals) from a
DDB. When an atom(literals) is to be inserted, the view
update problem is to delete only some relevant EDB facts
and then to insert, so that the modified EDB together with
IDB will satisfy the insertion of A from DDB. As
motivated in the introduction, our concern now is to
discuss the rationality of view update, and provide an
axiomatic characterization for it. This axiomatic
characterization can be seen as a declarative semantics for

also an explanation, i.e. if it does not exist any explanationview updates in deductive databases.

Tj for usuch thafT; C T,

Definition 12([51]). Let KB=(KB;,KBy,KBic) be a
knowledge baseT is updatable part from KB. After
Algorithm 1 is executed) is derived part fromKB'. The
deduction consequence ardue to the application of,
KB; UKBY; UT Uuis the answer to any question.

Theorem 2Let KB be a Horn knowledge base andis
Horn formula.

1.If Algorithm 1 produced KB’as a result of revising
from KB, then KB’ satisfies all the rationality
postulates (KB*1) to (KB*6) and (KB*7.3).

2.SupposeKB” satisfies all these rationality postulates
for revisinga from KB, thenKB” can be produced by
Algorithm 1.

5 Application: View updates in database

Note that DDB can be considered [37,46] as a
knowledge base to be revised. The IDB is the immutable
part of the knowledge database, while the EDB forms the
updatable part. Every base literal is an abducible, but
since we deal only with definite databases, we require
only positive abducibles. In general, it is assumed that a
language underlying a DDB is fixed and the semantics of
DDB is the least Herbrand model over this fixed
language. Therefore, the DDB is practically a shorthand
of its ground instantiatioh written as|DBg. Thus, a
DDB represent a knowledge base where the immutable
part is given byiIDBg and updatable part is EDB. Hence,
the rationality postulates (KB*1) to (KB*6) and (KB*7.3)
provide an axiomatic characterization for inserting a view
atom(literals) A to a definite database DDB, and a
generalized insertion ¢k to DDB achieves deletion dk
from DDB.

As observed by Kowalski [26], logic can provide a
conceptual level of understanding of relational databases,
and hence rationality postulates (KB*1) to (KB*6) and
(KB*7.3)can provide an axiomatic characterization for
view insertion in relational databases too. A relational
database together with its view definitions can be
represented by a definite deductive database (EDB
representing tuples in the database and IDB representing
the view definitions), and so same algorithm can be used

An important application of knowledge base dynamics,to insert view extensions from relational and deductive
discussed in the previous section, is in providing andatabases.

axiomatic characterization of view updates in deductive

and relational databases. definite deductive database
DDB consists of two parts: aimtensional databaséDB

But before discussing the rationality postulates and
algorithm, we want to make it precise, how a relational
database, along with operations on relations, can be

(KBy), a set of definite program clauses; and anrepresented by definite deductive database. We assume

extensional databaseDB (KBy), a set of ground facts.
The intuitive meaning of DDB is provided by tHeeast

the reader is familiar with relational database concefpts.
relation schemdr can be thought of as a base predicate

Herbrand model semanticand all the inferences are whose arguments define tltributesA of the scheme.

carried out throughSLD-derivation. All the predicates
that are defined in IDB are referred to as view

predicateand those defined in EDB are referred to as

base predicatesExtending this notion, an atom(literals)
with a view predicate is said to bevéew atom(literals),

Its relational extensiorr, is a finite set of base atoms
R(A) containing the predicat® A database schema

1 a ground instantiation of a definite progra®ris the set of
clauses obtained by substituting terms in the Herbrand Universe

and similarly an atom(literals) with base predicate is afor variables inP in all possible ways

© 2013 NSP
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Algorithm 1 Generalized revision algorithm

Input: A Horn knowledge baskB = KB UKBy UKB¢
and a Horn clause to be revised.
Output: A new Horn knowledge badé¢B’ = KB} UKB}; UKBc,

s.t.KB'is a generalized revision to KB.
Procedur& B(KB, o)

begin
1 Let V:= {c € KBjc | KB; UKBc inconsistent withor wrt c}
P:=N:=0andKB' =KB
2. While (V # 0)
select a subsat’ CV
For eachv € V/, select a literal to be
remove (add to N) or a literal to be added(add to P)
Let KB := KR(KB,P,N)
Let V:= {c € KByc | KBy inconsistent withor wrt ¢}
return
3. Produce a new Horn knowledge bds’
end.
Algorithm 2
Procedur&KR(KB,A*, A7)
begin
1. LetP:={ecAT|KB, £e}andN :={ec A~ | KB ¢}
2. While (P # 0) or (N # 0)

select a subsé? CPorN CN
Construct a sef; = {X | X is a KB-closed locally
minimal abductive wrt P explanation for wrt KBy }.
Construct a se®, = {X | X is a KB-closed locally
minimal abductive wrt N explanation far wrt KB, }.
3. Determine a hitting set’(S;) ando(S)
If (N=0)and(P#0))
ProduceKB' = KB U{(KBy U0 (S)}
else
ProduceKB' = KBy U{(KBy\0(S)Uo(S1)}
end if
If (N#0)and(P=0))
ProducekB' = KB U {(KBy\o (%)}
else
ProduceKB' = KBy U{(KBy\o(S)Uo(S1)}
end if
4. returnK B’
end.

consists of finite collection of relational schemes — groupchair(x,y)A groupchair(x,z) (see definition and
< Ry,...,Ry >, and arelational databases a specific  properties of similarity in works of Christiansen [11] and
extension of database schema, denoted as,...,r, >. Godfrey [19]).

In our context, relational database can be represented by

EDB=Ui-1,..nRi(A).

Example 4_et us consider two relational schenfeandS
from Example 1, with attributeR = {Group Chair} and

Joinis a binary operator for combining two relations. S— {Staf f. Group}.Consider the following extensions

Letr andsbe two relational extensions of scheR&with

attributesR) and S (with attributesS), respectively. Let ands:

T = RUS. The join ofr ands, written asr ® s, is the .
relational extensiom(T) of all tuplest over T such that S‘d Isht%ﬁb Group r\Group Chﬁ.'r
there aret, € r andts € s, with t; = t(R) andts = t(S). elhibabu [nforl !nforl matthias
Join can be captured by a constraint clause aravindan infor2 infor2 gerhard
Q(T) «— R(R),S(S). Our integrity constraint (IC) is that

each research group has only one chairWey,z (y=x) Tab. 1.Base table fos andr

© 2013 NSP
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T1LA-T1B H T2.B-T2.C

N

V.A Vv.C

Fig 1. View Atom

The following rule, T(Staff GroupChair) «
S(Staf f,Group), R(Group Chair)

represents the join afandr, which is given as: Unfortunately, this algorithm does not work as

sor| Staff Group Chair intended for any deductive database, and a counter
delhibabu inforl matthias example is produced below. Thus, general algorithms 3
aravindan infor2 gerhard and 4 produced some unexpected sets in addition to

locally minimal abductive explanations.
Tab. 2.s®r

To sum up, we showed how relational database an
operators on relations can be conceptually captured by

OExampIe H5Consider a deductive database DDB as follows:

definite deductive databases. All solutions translate [38]a |DB: p—ane EDB:a< IC:—b
view update request into dransaction combining q—anf e

insertions and deletions of base relation$or satisfying p—bAf f e

the request. Further, a definite deductive database can be q—bnre

considered as a knowledge base, and thus rationality p—q

postulates and insertion algorithm of the previous section q—a

can be applied for view updates in database.
We need to inserp. First, we check consistency with
IC and after we find}; andA; via tree deduction.
5.1 View insertion algorithm [ —ae
Bl—qg—af

Since relational and definite deductive databases can bl — a
considered as knowledge bases, and inserting a vievll — b,e
atom(literals) (tuplep can be considered as revision&df [].—q«—b,f
a specific instance of Algorithm 1 can be used to compute] ].— p
insertion of a view atom(literals) to a database. In fact, we
have to discuss how to compute all DDB-closed locally =~ From Algorithm 3 it is easy to conclude which
minimal abductive explanations foA wrt IDBg. As branches are consistent wrt IC (shown on tredi)yFor
expected, these abductive explanations can be computdtie next step, we need to find minimal accommodate and
using deduction trees, and the process is discussed in thdenial literal with wrt top. The subgoals of the tree are
sequel. «— a,eand« a, f, which are minimal tree deductions of

An update request U = B, where B is a set of baseonly facts. Clearly,4; = {a,e,f} and A; = {b} with
facts, is not true in KB. Then, we need to find a transactionrespect to IC, are the only locally minimal abductive
T = TinsU Tgel, WhereTins(4i) (resp.Tqel(4))) is the set of  explanations forp wrt IDBg, but they are not locally
facts, such that U is true iDDB' = ((EDB— Tge|U Tins) U minimal explanations.
IDBUIC). Since we consider definite deductive databases, From Algorithm 4, the subgoals of the tree area, e,
SLD-tree can be used to compute the required abductive— a, f, — b, f and — b,e. Clearly,4; = {a,b,e, f} and
explanations. The idea is to get all EDB facts used in aA; = {a,e f}. In the next step, we check consistency
SLD-derivation of A wrt DDB, and construct that as an with IC. A; and A; are only locally minimal abductive
abductive explanation fok wrt IDBg. explanations forp wrt IDBg, but they are not locally

There are two ways to find minimal elements minimal explanations (more explanations can be found in
(insertion and deletion) with integrity constraints. [33]).
Algorithm 3 first checks consistency with integrity The program is clear due to the unwanted recursion
constraints and then reduces steps with abductivep < aAb, p < a. Will the algorithm work as intended if
explanation forA . Algorithm 4 is doingvice versabut  we restrict ourselves to acyclic program [8] that excludes
both algorithm outputs are similar. such loop? One would expect a positive answer, but
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Algorithm 3 Algorithm to compute all DDB-closed locally minimal
abductive explanation of an atom(literals)
Input: A definite deductive databa§&¥DB = IDBUEDBUIC an literals
o
Output: Set of all DDB-closed locally minimal abductive explanations
for .o wrt IDBg

begin
1. LetV :={ceIC | IDBUIC inconsistent withez wrt c }
While (V # 0)
Construct a complete SLD-tree for .«# wrt DDB.
For every successful branéhconstructd; = {D | D € EDB
and D is used as an input clause in branch
For every unsuccessful branghconstructdj = {D | D € EDB
and D is used as an input clause in brapgh
Produce set of allj andA; computed in the previous step
as the result.
return
2. Produce all DDB-closed locally minimal abductive
explanations il andA;
end.

Algorithm 4 Algorithm to compute all DDB-closed locally minimal
abductive explanation of an atom(literals)
Input: A definite deductive databa&DB = IDBUEDBUIC an literals
o
Output: Set of all DDB-closed locally minimal abductive explanations
for .o wrt IDBg

begin
1 Construct a complete SLD-tree for o7 wrt DDB.
For every successful branéhconstructd; = {D | D € EDB
and D is used as an input clause in branch
For every unsuccessful branghconstructd; = {D | D € EDB
and D is used as an input clause in brapgh
2. LetV :={ce IC | IDBUIC inconsistent withez wrt ¢ }
While (V # 0)
Produce set of allj andAj is consistent with IC
as the result.
return
Produce all DDB-closed locally minimal abductive
explanations il andA;
end.

unfortunately still some unwanted sets may be producedxplanations forA wrt IDBg. Let S be the set of

as the following example highlights. explanations returned by algorithms 3 and 4 given DDB
So, even for acyclic program, algorithms 3 and 4 doandA as inputs. Then, the following propositions hold:

not work as intended (that is to generate all and only the 15C 9

DDB-close locally minimal abductive explanations). 2Y¥A'(A' € A UA) €S: IA€SstACA.

Doe_s this mean that ggnerallzed revision can not be 3.Suppose DDB is resticted to be acyclic thed! € S

carried out for database in general?. Probably we should A cUs

approach the problem from different perspective. We have

seen that algorithms 3 and 4 may compute some Having characterized what exactly is computed by

unwanted sets in addition to the required ones. Whatlgorithms 3 and 4, we now proceed to show that

exactly are those sets? Is it possible to characterize them&gorithms 5 and 6 are useful for view insertion. The key

The following lemma answers these questions. to the solution is the following lemma, which established

. the preservable of hitting set computation among two sets.
Lemma llLet DDB = IDB UEDBU IC be a definite

deductive database antl an atom(literals). LeSbe the Lemma 2. 1.LetSbe a set of sets, a8l another set s.t.
set of all DDB-closed locally minimal abductive SC S and every member &\S contains an element
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of S Then, a seH is minimal hitting set folSiff it is a model by the introduction of null values. In this section,
minimal hitting set forS. we show how view update provides completion of

2.LetSbe a set of sets, ardl another setsiSC S and  incomplete information. More detailed surveys of this
for every membeK of S\S: X contains a member of area can be found in [36].

SandX is contained inJS. Then, a seH is a hitting The earliest extension of the relational model to
set forSiff it is a hitting set forS. incomplete information was that of Codd [13] who
suggested that missing values should be represented in

tables by placing a specialull value symbol’+" at any
table location for which the value is unknown. Table 3,
shows an example of a database using this convention.
Codd proposed an extension to the relational algebra for
tables containing such nulls, based on three valued logic
and a null substitution principle.

In terms of our general semantic scheme, the intended
When DDB is acyclic, generalized revision Affrom ~ Semantics of a databageconsisting of Codd tables can

DDB can be obtained by Algorithm 6. Observe that the be described by definindod(D) to be the set of
first two steps of Algorithm 5 are same as those ofStructures Mg, where D' ranges over the relational
algorithms 3 and 4, and we have already established whafatabases obtained by replacing each occurrente of
exactly are computed by them. Steps 3 and 4 clearlyhe databas® by some domain value. Different values
compute a minimal hitting set and as established byMay be substituted for different occurrences.

lemma 1 and lemma 2, this algorithm produces a partial A plausible integrity constraint on the meaning of a
meet contraction ofA from DDB. This result is relational operator on tables i#f is that the result should

formalized below. be a table that represents the set of relations obtained by
pointwise application of the operator on the models of

Theorem 3Let DDB be a definite deductive database andthese tables. For example RfandS are tables in7 then

A an atom(literals) to be inserted. Then DDB’ is a result the result of the joirR x Sshould be equal to a table T in

of algorithm 5 given DDB and\ as inputs, iff DDB’isa . such that

partial meet revision ofA from DDB, satisfying the

postulates (KB*1) to (KB*6) and (KB*7.1).

Thus algorithms 3 and 4 in conjunction with an
algorithm to compute minimal hitting set can be used to
compute partial meet revision (defined in section 4.14 of
from DDB.

We proceed to present Algorithm 6 to compute Mod(T) = {r = t|r € Mod(R), s € Mod(S)}

generalized revision for definite deductive database. As

observed before, this is not possible in general, but for a In case the _deflnl_tlons of the operators _s_at|sfy this
. . Integrity constraint (with respect to the definition of the
restricted case of acyclic program.

semanticdviod on 7).
Theorem 4Let DDB be a definite deductive database and ~ Let us consider what above equation requires if we
A an atom(literals) to be inserted. Then DDB’ is a result takeRandSto be the Codd Tables 3. First of all, note that
of algorithm 6 given DDB and\ as inputs, iff DDB’ is a  in each model, if we take the value of the null in the tuple
generalized revision ofA from DDB, satisfying the (delhibabu,*) to bes, then the join will contain one tuples
postulates (KB*1) to (KB*6) and (KB*7.3). (delhibabu,v), which include the value. If T is to be a
] o Codd table, it will need to contain tuples (delhibauto

_Algorithms 5 and 6 are inefficient, as they need to generate each of these tuples, wheXe are either
build a complete SLD-tree. Unfortunately, any rational cgnstants or '*'. We now face a problem. Firat,cannot
algorithm for insertion can not avoid constructing pe a constant, for whatever the choice af we can find
complete SLD-trees. If these algorithms are changed tqyn instance € Mod(R) ands € Mod(S) for which the

extract input clauses from incomplete SLD-derivation, yple (delhibabug) does not occur im x s. If they were,
then the new algonthm should check the der|Vab|I|ty of anx would have their values in models of assigned

atom(literals) from a deductive database, before anyndependently.

insertion is carried out(otherwise, success can not be Here the repetition of indicates that theamevalue
satisfied). Checking derivability is also computationally js {5 pe occurrence of the null in constructing a model of
expensive and more then that, weak relevance policthe table. Unfortunately, this extension does not suffice to

(KB*7.3) wiII_not be satisfied in general. Finally, any satisfy the integrity constraint V&y,z (y=x) <
rational algorithm must construct a complete SLD-tree. group.chair(x,y) A groupchair(x,z)).

Staff [Group Groud Chair
5.2 Incomplete to Complete Information delhibabxinforl inforl| mattias
delhibabu * * |aravindan
Many of the proposals in the literature on incomplete
databases have focussed on the extension of the relational Tab. 3. Base Table after Transaction
(© 2013 NSP
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Algorithm 5 Partial meet revision for definite deductive database
Input: A definite deductive databa§¥B = |IDBUEDBUIC an literalse/
Output: A Partial meet revision o from DDB.
begin
1 LetV :={ceIC | IDBUIC inconsistent withez wrt c }
While (V # 0)
2. Construct a complete SLD-tree fer .7 wrt DDB.
3. For every successful brancitonstructd; = {D | D € EDB}

and D is used as an input clause in branch
Let there ben such sets.
LetE* = {{Djy,...,Dm}|Dj € A}
Let E be a inclusion-minimal set amoii, i.e. AE’ € E*
s.t.E'CE.
4. For every unsuccessful brangitonstructA; = {D | D € EDB}
and D is used as an input clause in brafgch
Let there ban such sets.
LetF* = {{D1,...,Dm}|Dj € Aj}
Let F be a inclusion-maximum set amoRg,i.e. iIF' € F*

st.F' CF.
LetV :={ceIC | IDBUIC inconsistent withez wrt c }
return
5. ProduceDDB\F UE as the result.
end.
Algorithm 6 Generalized revision for acyclic definite

deductive database
Input:  An acyclic definite deductive databad®B = IDBUEDBUIC

an literalso/
Output: A generalized revision of from DDB.
begin
1 LetV :={ce IC | IDBUIC inconsistent withez wrt c }
While (V # 0)
2. Construct a complete SLD-tree fer o7 wrt DDB.

3. For every successful brancizonstructd; = {D | D € EDB}
and D is used as an input clause in branch
Construct a hitting set D for al;’s computed in the previous step.
4. For every unsuccessful brangttonstructd; = {D | D € EDB}
and D is used as an input clause in brafgch
Construct a hitting set D for altj’s computed in the previous step.
LetV := {ceIC | IDBUIC inconsistent withez wrt ¢ }
return
5. ProduceDDB\F UE as the result.
end.

In the model of these tables in whieh= inforl, the Tab. 4.s®r after Transaction
join contains the tuple (delhibabu, inforl) and (inforl,
aravindan).

The following table shows completion of incomplete
If %1 = inforl then (delhibabu, inforl} R x S information with application of integrity constraint and
redundancy:
If x, = inforl then (inforl, aravindang Rx S

The following table shows when transaction is made to
base table: Staff [Groug Chair
delhibabyinforl|aravindan

Staff [Groug Chair
deIhibabﬁinforl mattias

delhibaby * Jaravindan Tab. 5. Redundant Table
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6 Related Works -We have defined new kind of revision operator on
knowledge base and obtained axiomatic
characterization for it. This operator of change is
based ona consistent-remainder set. Thus, we have
presented a way to construct revision operator without

We begin by recalling previous work on view deletion.

Chandrabose [7,8], defines a contraction operator in view
deletion with respect to a set of formulae or sentences : e ;
using Hansson's [21] belief change. Similar to our need to make use of the generalized Levi's identity

. nor of a previously defined contraction operator.
approach, he focuseq on set O.f formulae or sentencgs "We have defined new way of insertion and deletion of an
knowledg_e base revision for view up_date wrt. insertion atom(literals) as per norm of principle of minimal
and deletion and formulae are considered at the same change
level. Chandrabose_ proposed different ways to charngWe have proposed new generalized revision algorithm
knowledge base via only database deletion, devising

particular postulate which is shown to be necessary and fo_rrI]< EOWIe?gﬁ base d)(/jnatr)r:]:cs,_mterestlng connections
sufficient for such an update process. with kerne! change and abduction procedure.

our H knowledae b ists of . -We have written new view insertion algorithm for DDB,
. ur Horn knowledge base consists of o parts,  gnq e provided Horn knowledge base revision, using
immutable part and updatable part , but focus is on

o o our axiomatic method.
principle of minimal change. There are more related a1y we shown connection between belief update
works on that topic. Eiter [16], Langlois[28], and vers:us database update.
Delgrande [15] are focusing on Horn revision with
different perspectives like prime implication, logical
closure and belief level. Segerberg [45] defined new
modeling for belief revision in terms of irrevocability on
prioritized revision. Hansson [21], constructed five types
of non-prioritized belief revision. Makinson [34]
developed dialogue form of revision AGM. Papini[42]
defined a new version of knowledge base revision. Here

we consider immutable part as a Horn clause anGegpects: to handle certain part of knowledge as
updatable part as an atom(literals). , immutable; and dropping the requirement that belief state
We are bridging gap between philosophical work, pe geductively closed. The intended generalization was
paying little attention to computational aspects of gchieved by introducing the concept of knowledge base
database work. In such a case, Hansson's[21] kem€lynamics and generalized contraction for the same.
change is related with abductive method. Aliseda’s [2] Fyrther, we also studied the relationship between
book on abductive reasoning is one of the motvationyoyledge base dynamics and abduction resulting in a
keys. Christiansen’s [12] work on dynamics of abductive generalized algorithm for revision based on abductive
logic grammars exactly fits our minimal change ('nsert'onprocedures. We also successfully demonstrated how
and deletion). Wrobel's [48] definition of first order knowledge base dynamics can provide an axiomatic
theory revision was helpful to frame our algorithm. characterization for insertion an atom(literals) to a
On other hand, we are dealing with view update definite deductive database. Finally, we give a quick
problem. Keller's [23] thesis is motivation for view overview of the main operators for belief change, in
update problem. There is a lot of papers on view updateyarticular, belief update versus database update.
problem (for example, recent survey paper on view |n pridging the gap between belief dynamics and view
update by Chen and Liao[10] and survey paper on vieWypdates, we have observed that a balance has to be
algorithm by Mayol and Teniente [35]. More similar to achieved between computational efficiency and
our work is paper presented by Bessant et al. [4] , locakationality. While rationally attractive notions  of
search-based heuristic technique that empirically provegeneralized revision prove to be computationally
to be often viable, even in the context of very large jnefficient, the rationality behind efficient algorithms
propositional applications. Laurent et al.[29], parentedhased on incomplete trees is not clear at all. From the
updating deductive databases in which every insertion opelief dynamics point of view, we may have to sacrifice
deletion of a fact can be performed in a deterministic way.some postulates, vacuity for example, to gain
Furthermore, and at a first sight more related to ourcomputational efficiency. Further weakening of relevance
work, some work has been done on ontology systems anflas to be explored, to provide declarative semantics for
description logics (Qi and Yang [43], and Kogalovsky algorithms based on incomplete trees.
[24]). Finally, when we presented connection between  On the other hand, from the database side, we should
belief update versus database update, we did not talkxplore various ways of optimizing the algorithms that
about complexity (see the works of Liberatore [30,31], would comply with the proposed declarative semantics.

7 Conclusion and remarks

The main contribution of this research is to provide a link
between theory of belief dynamics and concrete

applications such as view updates in databases. We
rgued for generalization of belief dynamics theory in two

Caroprese [6], Calvanese’s [9], and Cong [14]). We believe that partial deduction and loop detection

The significance of our work can be summarized in thetechniques, will play an important role in optimizing

following: algorithms of the previous section. Note that, loop
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detection could be carried out during partial deduction,Closure.  SinceKBx o is a Horn knowledge base, this

and complete SLD-trees can be effectively constructed postulate is trivially shown.

wrt a partial deduction (with loop check) of a database,Weak SuccessSuppose thatr is consistent. Then it is

rather than wrt database itself. Moreover, we would trivial by definition thata C KBx4 d.

anyway need a partial deduction for optimization of query Inclusion.Trivial by definition.

evaluation. Immutable-inclusion Since everyX € KB, a is such
Though we have discussed only about view updates, thatX C KB then this postulate is trivially shown.

we believe that knowledge base dynamics can also b&acuity 1.Trivial by definition.

applied to other applications such as view maintenanceYacuity 2. If KBU {a} is consistent therKBL, a =

diagnosis, and we plan to explore it further (see works [6]  {{KB}}. HenceKBx,; o = KBU{a}.

and [5]). It would also be interesting to study how results Consistency. Suppose thata is consistent. Then

using soft stratification [3] with belief dynamics, KB, a #= 0 and by definition, everX € KB, o

especially the relational approach, could be applied in real is consistent wittor. Therefore, the intersection of any

world problems. Still, a lot of developments are possible, subset of KBL,a is consistent witha. Finally,

for improving existing operators or for defining new KBxg a is consistent.

classes of change operators. As immediate extensiorl)niformity. If a andf are KB-equivalent, theKBL o =

question raises: is there arsal life application for AGM KBL,f

in 25 year theory718]. The revision and update are more Weak relevancelLet 8 € KB and 3 ¢ KB« a. Then

challenging in logical view update problem(database KB s a # KB and, from the definition of«g,it

theory), so we can extend the theory to combine results follows that:

similar to Hansson’s [20], Konieczny’s [25]and Nayak,

[40].
KB#, o = (KB\0(KBL, a))Ua

Therefore, from 3 ¢ (KB\o(KBL,a))U a and
Appendix B € KB, we can conclude thgk € g(KBL, a). By

definition o(KBL, o) C [JKBL, a, and it follows
Proof of Theorem 1. If part) * satisfies (KB*1) to that there is somX € KBL  a such thatB € X. X'is
(KB*6) and (KB*7.3). We must show that< is a a minimal KB-subset inconsistent witho. Let
generalized kernel revision. Let be a incision function Y = X\{B}. Then Y is such that
such that fora. WhenKB, F a, (KB*1) to (KB*6) and Y C X CKBC KBUGa. Y is consistent witha but
(KB*7.3) imply that KB * a = KB coincides with YU{B} is consistent witror. B

generalized revision.
WhenKB, F —a, the required result follows from the
two observations:

13KB' € KBL, a s.tKBxa C KB (whenKB, F a)
Let g be an incision function foKB and x5 be the
generalized revision oKB that is generated by.

Proof of Theorem 2. Follows from Theorem 1 and
Definition 10.1

Proof of Lemma 1.
1.Consider & (A € AjUAj) € S We need to show that

A is generated by algorithm 3 at step 2. From lemma
Since * satisfies closure (KB*1)KB#, a is KB 1, itis clear that there existsfakernelX of DDBg s.t.

contained ina. Also, satisfaction of weak success  XMNEDB=A4jandXUEDB=4;. SinceX - A, there
postulate (KB*2) ensures that C KB4 a. Every must exist a successful derivation #using only the

element oKB_L | a is a inclusion minimal subset that elements ofX as input clauses and similarly  A.
does derivea, and so any subset of KB that does Consequentlyd must have been constructed at step 2.

derivea must be contained in a membertoB_L | a. 2Consider aA'((A" € AjUAj) € S. Let A' be

2N(KBL a) C KBx*g o (WhenKB, + o) constructed from a successful(unsuccessful) branch
Consider any B € N(KBL,a). Assume that via Ai(4). Let X be the set of all input clauses used in
B ¢ KBxa. Since * satisfies weak relevance postulate  the refutationi. Clearly X = A(X  A). Further, there
(KB*7.3), it follows that there exists a set KB’ s.t. exists a minimal (wrt set-inclusion) subseof X that
KB C KBU a: KB is a consistent witha: and derivesA (i.e. no proper subset of derivesA). Let

A =YNEDB (YUEDB). Since IDB does not(does)
have any unit clausesY must contain some EDB
facts, and s is not empty (empty) and obviously
A C A'. But, Y need not (need) be A-kernel for

KB'U{B} is inconsistent witha. But this contradicts
that 3 is present in every minimal subset of KB that
does derivan. HenceB must not be irkKBx4 a.

(Only if part) Let KBx o be a generalized revision IDBg sinceY is not ground in general. But it stands
of a for KB. We have to show thakB x a satisfies the for severalA-kernels with the same (different) EDB
postulate (KB*1) to (KB*6) and (KB*7.3). facts A in them. Thus, from lemma 1A is a

Let o be an incision function foKB and x, be the DDB-closed locally minimal abductive explanation
generalized revision ok B that is generated by. for Awrt IDBg and is contained id\’.
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3.Since this proof requires some details of acyclic Mundus External Cooperation Window India4EU by the
programs that are not directly related to our European Commission when the paper was written.

discussion here, it is relegated [9].

Proof of Lemma 2.

1.(Only if part ) SupposeH is a minimal hitting set for
S. SinceSC S, it follows thatH C S . Further,H
hits every element o8 , which is evident from the
fact that every element & contains an element &
Hence H is a hitting set forS . By the same
arguments, it is not difficult to see thhit is minimal
for S too.

(If part ) Given thatH is a minimal hitting set foS',
we have to show that it is a minimal hitting set f&r
too. Assume that there is an elemé&n: H that is not
in JS This means thak is selected from some
Y € S\S ButY contains an element & sayX. Since
X is also a member o8 , one member oX must

appear irH. This implies that two elements have been

selected fron¥ and henceH is not minimal. This is a
contradiction and hendd C |JS SinceSC S, itis
clear thatH hits every element ir§, and soH is a
hitting set forS. It remains to be shown thai is
minimal. Assume the contrary, that a proper sulbtet
of H is a hitting set forS. Then from the proof of the
only if part, it follows thatH’ is a hitting set foiS too,
and contradicts the fact thek is a minimal hitting set
for S . Hence H must be a minimal hitting set f@&.

2(If part ) Given thatH is a hitting set forS , we have
to show that it is a hitting set fos too. First of all,
observe thatJS=|JS , and soH C |JS. Moreover,
by definition, for every non-empty membrof S,
H N X is not empty. Sinc&C S , it follows thatH is
a hitting set forStoo.

(Only if part) SupposeH is a hitting set forS. As
observed aboved C JS . By definition, for every
non-empty membeX € S XNH is not empty. Since
every member o8 contains a member @, it is clear
thatH hits every member o8 , and hence a hitting
setforS .|
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