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Abstract: In this paper, an analytical method called the Natural Decomposition Method (NDM) for solving nonlinear Sine-Gordon

equation is introduced. This analytical method is a combination of the Natural transform Method (NTM) and a well-known technique,

the Adomian Decomposition Method (ADM). The proposed analytical method reduces the computational size, avoids round-off errors,

linearization, transformation or taking some restrictive assumptions. The series solutions of the Sine-Gordon equation are successfully

obtained using the analytical method, and the results are compared with the results of the existing methods.
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1 Introduction

The Sine-Gordon equation is one of the most crucial
nonlinear evolution equation that plays a vital role in
physical science and engineering. The equation is a
nonlinear hyperbolic partial differential equation
involving the sine of unknown function and the
d’Alembert operator. The Sine-Gordon equation was first
discovered in the nineteenth century in the course of
study of various problems of differential geometry [1]. In
the early 1970s it was first realized that the Sine-Gordon
equation led to kink and antikink (so-called solitons) [2].
The Sine-Gordon equation appears in many physical
applications in relativistic field theory, Josephson
junction, mechanical transmission line and so on. The
standard nonlinear Sine-Gordon equation is given by

vtt(x, t)−α2vxx(x, t)−β sin(v(x, t)) = 0, (1)

subject to the initial conditions:

v(x,0) = f (x), vt(x,0) = g(x), (2)

where α and β are constant.

In recent years, many analytical method have been
used to solve nonlinear partial differential equations such
as Adomian Decomposition Method (ADM) [3,4,5,6],

the Homotopy Analysis Method (HAM) [7], the
Variational Iteration Method (VIM) [8,9,10,11,12], the
Laplace Decomposition Method (LDM) [13], the Natural
Decomposition Method (NDM) [14,15,16,17,18,19], the
Homotopy Perturbation Method (HPM) [20,21,22], the

( G′

G
)-Expansion Method [23], the Tanh Method (TM)

[24], the Exp- Function Method (EFM) [25], the Natural
Homotopy Perturbation Method (NHPM) [26,27,28], the
Reduce Differential Transform Method (RDTM) [29,30,
31], the Generalized Kudryashov method (GKM) [32],
and so on. Other related references are available in [33,
34,35,36,37,38,39,40,41].

In this paper, an analytical method for solving the
nonlinear Sine-Gordon equation is introduced. The
proposed analytical method is applied directly without
any unnecessary linearization , discretization of variables,
transformation or taking some restrictive assumptions. It
avoids round-off errors and reduces the computational
size. In this analytical method, the nonlinear terms are
elegantly computed using Adomian polynomials. The
analytical method gives a series solution which converges
rapidly to an exact or approximate solution with elegant
computational terms.
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2 Natural Transform

In 2008, Khan and Khan [37] introduced an integral
transform called the N-transform and it was renamed as
the Natural transform by Belgacem and Silambarasan [33,
34] in 2012. The Natural transform is an integral
transform which is similar to Laplace transform [39] and
the Sumudu integral transform [35,40]. It converge to
Laplace transform when the variable u = 1 and to
Sumudu transform when the variable s = 1.

Definition 1[33,34] The Natural transform of the function

v(t) ∈ A for t ≥ 0 is defined by the following integral

N
+ [v(t)] =V (s,u)=

1

u

∫ ∞

0
e−

st
u v(t)dt, s > 0, u> 0, (3)

where s and u are the Natural transform variables and

A =

{

v(t) : ∃ M, τ1, τ2 > 0, |v(t)|< Me
|t|
τ j ,

if t ∈ (−1) j × [0,∞)
}

.

Some few properties of the Natural transform method are
given below. See[33,34].

Property 1If V (s,u) is the Natural transform and F(s) is

the Laplace transform of the function f (t) ∈ A, then

N
+ [ f (t)] =V (s,u) = 1

u

∫ ∞
0 e−

st
u f (t)dt = 1

u
F
(

s
u

)

.

Property 2If V (s,u) is the Natural transform and G(u) is

the Sumudu transform of the function v(t) ∈ A, then

N
+ [v(t)] =V (s,u) = 1

s

∫ ∞
0 e−t v

(

ut
s

)

dt = 1
s
G
(

u
s

)

.

Property 3If N+ [v(t)] =V (s,u),

then N
+ [v(β t)] = 1

β V ( s
β ,u).

Property 4If N+ [v(t)] =V (s,u),

then N
+ [v′(t)] = s

u
V (s,u)− v(0)

u
.

Property 5If N+ [v(t)] =V (s,u), then

N
+ [v′′(t)] = s2

u2 V (s,u)− s
u2 v(0)− v′(0)

u
.

Property 6The Natural transform is a linear operator.

That is, if α and β are non–zero constants, then

N
+ [α f (t)±β g(t)] = αN

+ [ f (t)]±βN+ [g(t)]

= αF+(s,u)±β G+(s,u).

Moreover, F+(s,u) and G+(s,u) are the Natural

transforms of f (t) and g(t), respectively.

Table 1. The Natural transform of some functions.

Function Natural transform

1 1
s

t u
s2

eat 1
s−au

tn−1

(n−1)!
,n=1,2, ... un−1

sn

sin(t) u
s2+u2

3 Analysis of the Natural Decomposition

Method (NDM)

In this section, the basic idea of the Natural
Decomposition Method (NDM) is clearly illustrated on
the following nonlinear Sine-Gordon equation

vtt(x, t)−α2vxx(x, t)−β sin(v(x, t)) = 0, (4)

subject to the initial conditions:

v(x,0) = f (x), vt(x,0) = g(x). (5)

Applying the Natural transform to Eq.(4) subject to the
given initial conditions, we get:

V (x,s,u)=
f (x)

s
+

ug(x)

s2
+

u2

s2
N
+
[

α2vxx(x, t)+β sin(v(x, t))
]

.

(6)
Taking the inverse Natural transform of Eq.(6), we get:

v(x, t)=G(x, t)+N
−1

[

u2

s2
N
+
[

α2vxx(x, t)+β sin(v(x, t))
]

]

.

(7)
Now, we assume a series solution of the form

v(x, t) =
∞

∑
n=0

vn(x, t). (8)

The nonlinear term sin(v(x, t)) is decomposed as:

sin(v(x, t)) =
∞

∑
n=0

An, (9)

where An is Adomian polynomials and can easily be
computed with following formula

An =
1

n!

dn

dλ n

[

F

(

n

∑
i=0

λ ivi(x, t)

)]

λ=0

. (10)

where n = 0,1,2, ....
Some few components of An are computed below

A0 = sin(v0(x, t)),

A1 = v1(x, t)cos(v0(x, t)),

A2 = v2(x, t)cos(v0(x, t))−
1

2!
v2

1(x, t)sin(v0(x, t)),

A3 = v3(x, t)cos(v0(x, t))− v2(x, t)v1(x, t)sin(v0(x, t))

−
1

3!
v3

1(x, t)cos(v0(x, t)),

...
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and so on.
By substituting Eq.(8) and Eq.(9) into Eq.(7), we

obtain:

∞

∑
n=0

vn(x, t) = G(x, t)+N
−1

[

u2

s2
N
+

[

α2
∞

∑
n=0

vnxx(x, t)

+β
∞

∑
n=0

An

]]

. (11)

Then by comparing both sides of Eq.(11) above, we can
easily generate the recursive relation as follows:

v0(x, t) = G(x, t),

v1(x, t) = N
−1

[

u2

s2
N
+
[

α2v0xx(x, t)+β A0

]

]

,

v2(x, t) = N
−1

[

u2

s2
N
+
[

α2v1xx(x, t)+β A1

]

]

,

v3(x, t) = N
−1

[

u2

s2
N
+
[

α2v2xx(x, t)+β A2

]

]

,

...

vn+1(x, t) = N
−1

[

u2

s2
N
+
[

α2vnxx(x, t)+β An

]

]

, (12)

∀n ≥ 0.

Thus, the series solutions of Eq.(4)-(5) is given by

v(x, t) =
∞

∑
n=0

vn(x, t). (13)

4 Applications

In this section the application of the Natural
Decomposition Method to nonlinear Sine-Gordon
equations are clearly illustrated to show its simplicity and
high accuracy.

Example 1Consider the following nonlinear Sine-Gordon

equation of the form:

vtt(x, t)− vxx(x, t)− sin(v(x, t)) = 0, (14)

subject to the initial conditions:

v(x,0) =
π

2
, vt(x,0) = 0. (15)

Applying the Natural transform of Eq.(14) subject to the

given initial conditions, we get:

V (x,s,u) =
π

2s
+

u2

s2
N
+ [vxx(x, t)+ sin(v(x, t))] . (16)

Taking the inverse Natural transform of Eq.(16), we

get:

v(x, t) =
π

2
−N

−1

[

u2

s2
N
+ [vxx(x, t)+ sin(v(x, t))]

]

. (17)

Now, we assume a series solution of the form

v(x, t) =
∞

∑
n=0

vn(x, t). (18)

The nonlinear term sin(v(x, t)) is decomposed as:

sin(v(x, t)) =
∞

∑
n=0

An. (19)

Where An is the Adomian polynomials.

Using the recursive relation of Eq.(12) where

v(x,0) = π
2
,vt(x,0) = 0, and α = β = 1, we obtained

the following approximations:

v0(x, t) =
π

2
,

v1(x, t) = N
−1

[

u2

s2
N
+ [v0xx(x, t)+A0]

]

= N
−1

[

u2

s2
N
+ [v0xx(x, t)+ sin(v0(x, t))]

]

= N
−1

[

u2

s2
N
+ [1]

]

= N
−1

[

u2

s3

]

=
t2

2
,

v2(x, t) = N
−1

[

u2

s2
N
+ [v1xx(x, t)+A1]

]

= N
−1

[

u2

s2
N
+ [v1xx(x, t)+ v1(x, t)cos(v0(x, t))]

]

= 0,

v3(x, t) = N
−1

[

u2

s2
N
+ [v2xx(x, t)+A2]

]

= N
−1

[

u2

s2
N
+ [v2(x, t)cos(v0(x, t))

−
1

2!
v2

1(x, t)sin(v0(x, t))

]]

= −
1

8
N
−1

[

u2

s2
N
+
[

t4
]

]

= −3N−1

[

u6

s7

]

= −
t6

240
,

...

and so on.
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Then, the series solution of Eq.(14)–(15) is given by:

v(x, t) =
∞

∑
n=0

vn(x, t)

= v0(x, t)+ v1(x, t)+ v2(x, t)+ v3(x, t)+ · · ·

=
π

2
+

t2

2
−

t6

240
+

t10

34560
+ · · · (20)

Thus,

v(x, t) =
π

2
+

t2

2
−

t6

240
+

t10

34560
+ · · · (21)

The series solution is in closed agreement with the result

obtained by (ADM)[2].

Example 2Consider the following nonlinear Sine-Gordon

equation of the form:

vtt(x, t)− vxx(x, t) = sin(v(x, t)), (22)

subject to the initial conditions:

v(x,0) =
π

2
, vt(x,0) = 1. (23)

Applying the Natural transform to Eq.(22) subject to the

given initial conditions, we get:

V (x,s,u) =
π

2s
+

u

s2
+

u2

s2
N
+ [vxx(x, t)+ sin(v(x, t))] .

(24)
Taking the inverse Natural transform of Eq.(24), we get:

v(x, t) =
π

2
+ t +N

−1

[

u2

s2
N
+ [vxx(x, t)+ sin(v(x, t))]

]

.

(25)
Now, we assume a series solution of the form

v(x, t) =
∞

∑
n=0

vn(x, t). (26)

The nonlinear term sin(v(x, t)) is decomposed as:

sin(v(x, t)) =
∞

∑
n=0

An. (27)

Where An is the Adomian polynomials.

Then using the recursive relation of Eq.(12) where

v(x,0) = π
2
,vt(x,0) = 1, and α = β = 1, we obtained

the following approximations:

v0(x, t) =
π

2
+ t,

v1(x, t) = N
−1

[

u2

s2
N
+ [v0xx(x, t)+A0]

]

= N
−1

[

u2

s2
N
+ [v0xx(x, t)+ sin(v0(x, t))]

]

= N
−1

[

u2

s2
N
+ [cos(t)]

]

= N
−1

[

1

s

]

−N
−1

[

s

s2 + u2

]

= 1− cos(t),

v2(x, t) = N
−1

[

u2

s2
N
+ [v1xx(x, t)+A1]

]

= N
−1

[

u2

s2
N
+ [v1xx(x, t)+ v1(x, t)cos(v0(x, t))]

]

= N
−1

[

u2

s2
N
+ [sin(t)cos(t)− sin(t)]

]

= N
−1

[

u

s2 + u2

]

−
3

4
N
−1
[ u

s2

]

−
1

8
N
−1

[

2u

s2 + 4u2

]

= sin(t)−
3t

4
−

sin(2t)

8
...

and so on.

Then, the series solution of Eq.(22)–(23) is given by:

v(x, t) =
∞

∑
n=0

vn(x, t)

= v0(x, t)+ v1(x, t)+ v2(x, t)+ v3(x, t)+ · · ·

=
π

2
+ t + 1− cos(t)+ sin(t)−

3t

4
−

sin(2t)

8
+ · · ·

=
π

2
+ t +

t2

2!
−

t4

4!
+ · · · (28)

Thus,

v(x, t) =
π

2
+ t +

t2

2!
−

t4

4!
+ · · · (29)

The series solution is in closed agreement with the

result obtained by (ADM)[2].

5 Conclusion

In this paper, the Natural Decomposition Method (NDM)
is successfully applied to nonlinear Sine-Gordon
equation. The NDM gives a series solution which
converges rapidly to an exact or approximate solution.
Furthermore, the NDM reduces the computational size
and avoids round-off errors. Series solutions of the
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nonlinear Sine-Gordon equation are successfully obtained
using the analytical method, and the results are compared
with the results of the existing techniques. Thus, the
proposed analytical method can easily be used to solve
many nonlinear partial differential equations due to its
efficiency and high accuracy.
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