
*Corresponding author e-mail: marghny@aun.edu.eg
© 2017 NSP

 Natural Sciences Publishing Cor.

Sohag Journal of Science
An International Journal

Sohag J. Sci. 2, No. 3, 27-40 (2017) 27

http://dx.doi.org/10.18576/sjs/020301

Map Reduce Frequent Sub graphs Mining on Cloud System

Marghny H. Mohamed1,*, Hosam E. Refaat2 and Hanan H. Amin3.
1Dept. of Computer Science, Faculty of Computers and Information, Assiut University, Egypt.
2Dept. of Information System, Faculty of Computers and Informatics, Suez Canal University, Egypt.
3Dept. of Math, Faculty of Science, Sohag University, Egypt

Received: 14 Jul. 2017, Revised: 22 Aug.2017, Accepted: 28 Aug.2017.

Published online: 1 Sep. 2017.

Abstract: Analyzing frequent subgraph mining (FSM) is considered as the most important challenge to graph mining

domain. Many algorithms have been proposed for this problem. The plurality of these algorithms assumes that the graph

data can be handled in computer memory. Actually, FSM is a primal operation in many applications such as Social

Networks or chemical components, which contains a huge number of edges and vertices. The previous algorithms give

insufficient solutions for the massive data. Accordingly, MapReduce paradigm introduces a distributed solution to massive

data computation. Hence, the proposed algorithm in this paper, which is called MRFSG, uses an iterative MapReduce-

based framework. Moreover, MRFSG is balanced the load among the system workers and reduces dependency between

the workers. Our experiments evaluate the performance of MRFSG using various of datasets. The results of experiment

demonstrate that the proposed algorithm can scale well and efficiently process large graph datasets on the cloud system.

Keywords:Graph mining, Frequent subgraph mining, Parallel system, FSG Algorithm.

1 Introduction

Finding interesting patterns in large data has a various range of applications. Also, the massive growth of the large data

complexity creates a big challenge to the mining algorithms. Graph mining has attracted much attention due to the

explosive growth in the bringing forth of graph databases. Graph mining is a well-known subject in data mining and

machine learning. There are numerous implementations of graph mining, such as molecular substructure exploration [1],

web link analysis [2], outlier detection [3], chemical molecules [4], and social networks .

One way of finding interesting item sets is by simply looking at its frequency. Frequent subgraph mining (FSM) is an

essential part of graph mining. FSM aims to discover all frequent subgraphs in a given graph dataset. A subgraph is called

frequent if its occurrence is no less than a predefined threshold [5] [9]. Through the last decades, frequent subgraph mining

has been a significant theme in graph mining. Many studies were dedicated to this area, resulting in tremendous progress,

in frequent item set mining, sequential pattern mining and so forth .

Since databases expand rapidly in both of its dimensions, the core issue in a frequent graph mining algorithm is the ability

to analyze very large databases [6]. Frequent subgraphs are a subsidiary way which aims at characterizing graph datasets,

building structural indices, classifying and clustering graphs. The graph database is a type of database that consists of either

a multi-graph or single-graph. This paper concentrates on frequent subgraph mining (FSM) especially on the parallel

single-graph setting. In a single large graph, most existing work has a database of numerous little graphical records. This is

useful in several real-life applications such as protein interactions, citation graphs, social networks [7] which are modeled

as a single large graph [8]. There are numerous algorithms for finding frequent subgraphs mining in a single large graph

[9], most of them, however, use sequential strategies which are not working probably in the case of large dataset [5],

especially in terms of run-time performance, for such very large databases. These algorithms are computationally

concentrating on the graph isomorphism and the subgraph isomorphism issue.

In this paper, a parallel algorithm is proposed to find frequent subgraphs for a single large graph using a MapReduce model

in a cloud system. There are a lot of features of cloud strategy, the most fundamental ones are lower costs, re-provisioning

of assets and remote accessibility. Cloud computing minimizes the costs by avoiding the capital expenditure of the

28 M. Mohamed et al.: Map Reduce Frequent Sub graphs Mining on Cloud System

© 2017 NSP

Natural Sciences Publishing Cor.

company in renting the physical infrastructure from a third party provider. Due to the flexible nature of cloud computing,

we can quickly access more resources from cloud providers when we need to expand our business. The remote

accessibility helps to access the cloud services from anywhere at any time. Also, the run-time in MapReduce framework

helps divide the input data and scheduling the program's execution over an arrangement of machines.

It is well known that Gspan [11] and Gaston [12] are additionally proficient algorithms in substructure design mining and

their exhibitions are little superior to Apriori. In addition, these algorithms are more difficult to perform than other

approaches, as complex data structure needs more memory than a list or array of transactions. On the other hand, recursive

construction of the FP-trees and complex data structure requires large space [13].Thus, adjustment of A prior to the parallel

system on account of its good parallel and scale up properties is one of the most important considerations in our work. The

advantages of Apriori method are: big data which can be utilized, the easiness to parallelize, the easiness to recover the

failed work and the reduce dependency between workers.

The rest of this paper is divided as follows: Section 2 gives related work overview. Section 3 introduces some basic

concepts such as frequent subgraphs, Apriori algorithm and MapReduce model. Sections 4 describes the proposed

algorithm (MRFSG). Section 5 presents experimental results of the algorithm performance measurements. The last section

discusses the conclusions and future work.

2 Related Work

There are many sequential algorithms which enumerate frequent sub graphs mining. Traditional methods don’t give much

attention to the VM capability or required memory size for each FSM task. AGM [10], FSG [14], GS pan [11], Gaston

[12], and DMTL [15] are the most important techniques which are able to process just a small amount of data, it mine a

reasonable amount of time and assume that mining task is fit in the main memory of a computer. These methods will fail if

data grows substantially and some other methods such as DB-FSG [16] and OOFSG [17] are considered as a large database

system. Since the sequential methods fail to give a desirable performance, the parallel techniques are used to save time and

memory in big databases to get frequent patterns.

Cook et al. [18] proposed a framework, where they explored data parallelism and functional parallelism and they used

three paradigms, namely functional partitioning of the search space, dynamic partitioning of the workload and static

partitioning of the dataset across nodes of the system.

In 2004, Wang and Parthasarathy [19] built up a parallel calculation for their Motif Miner toolbox. Motif Miner searched

for interesting substructures in noisy geometric graphs (or graphs embedded in a 3-dimensional space) targeted at large

biochemical molecules such as proteins. However, their parallelization design cannot be directly applied to the more

general graph mining problem [20].

In 2005, Buehrer et al. [21] designed a parallel approach for Gspan. They developed a parallel algorithm for graph mining

on the shared memory architecture. They assessed three models, namely, global queues, hierarchical queues and distributed

queues.

In 2006, Meinl et al. [22] examined the parallel relation of Mofa and Gspan. Fatta and Berthold [23] also discussed the

distributed approach to frequent subgraph mining using partitioning of the database, distributed task queue with dynamic

load balancing and the peer to peer communication correspondence system. Reinhardt and Karypis broadened this work by

paralleling the VSiGram calculation [24].

In 2012, Abhik Ray and Lawrence B. Holder's [25] developed the work done by Cook et al .to enhance the proficiency of

MPI SUBDUE by adjusting the evaluation stage. Their examinations demonstrated the change in speed-up while holding

the features of serial SUBDUE.

Also, in 2012, KhadidjaBelbachir and HafidaBelbachir [26] proposed a sequential algorithm "Partition" with a parallel

version. Their method was different from others sequential algorithms in that the database was scanned only twice to get

the significant association rule. Their parallel system didn’t require much communication between the nodes.

In 2013, Ning Li et al.[27] proposed a parallel Apriori method called “PApriori” based on MapReduce. They used the size

up, speed up and scale up to evaluate the performances of PApriori. They mine association rules from large databases.

Their experimental results show that the program is actually more efficient as the database size is increased.

Recently, Kessl et al., [28] used CUDA to mine graph-based substructure patterns on GPUs. In addition, some studies have

tried to parallelize FSM algorithms [29]. It can be seen that applying parallelism to FSM is an emerging trend.

In 2016, X. Zhao et al.[30] presented distributed algorithm based on Pregel for a single graph. The computed methods on

the master and vertex were designed for working together to achieve the goal. Moreover, in order to enhance the mining

performance, they had two techniques to reduce message passing and number of super steps.

K. M. Padmapriya and M. Keerthana in 2016 [31], introduced a method in frequent subgraph mining algorithm called

FSM-H which uses an iterative MapReduce based framework. Their paper focused on efficient implementation of FSM

over single large graph on a Pregel like extensible computing platform. To the best of our knowledge, this is among the

first attempts to address the problem at scale under a modern distributed programming framework.

Sohag J. Sci. 2, No. 3, 27-40 (2017)/ http://www.naturalspublishing.com/Journals.asp 29

 © 2017 NSP

 Natural Sciences Publishing Cor.

Most of the previous methods don’t adopt any mechanism to avoid generating duplicate patterns (subgraphs isomorphism)

and have load balancing between workers. They also have a complicated model to get frequent subgraph mining and

consume more time to mining big database. In this paper, we try to solve these problems.

3 Basic Concepts

In this section, we present some basic concepts such as frequent sub graph mining, Apriori algorithm and Map Reduce

model.

3.1 Frequent Sub Graph Mining (FSM)

In graph exchange based FSM, the input data is either an accumulation of medium size graph called transactions or single

based graph FSM, as the name suggests, is one substantial graph. Let DB be a graph database, each graph

G = (V, E) of DB, is given as a combination of nodes V and edges E, |V |is the number of nodes of G and |E| is the number

of edges of G (also called graph size). If two nodes u є V and v є V and {u, v} є E then u and v are said to be adjacent

nodes, [4]. The goal of FSM is to discover all frequent sub graphs in a given graph dataset. A subgraph is called frequent if

its event is over a user indicated threshold ɵ.

In the traditional parallel system, the database is described by an array with two dimensions. You can parcel two-

dimensional array horizontally allocating columns of the premier array to the various workers or vertically by appointing

rows, divide the number of columns or rows by the number of works as shown in Fig. 1. But these horizontal or vertical

partitions don’t reduce redundancy. Moreover, when any workers fail, a long time is needed to recover, this is what

concerns us in this research.

Figure 1.Horizontal and Vertical partitions

3.2 Apriori Algorithm

Apriori is one of the most classical algorithms presented by R.Agrawal and R.Srikant in 1994 for mining frequent items

for Boolean association rule [32] [33]. It generates the k-candidate by combining two frequent (k − 1) item sets in the level-

wise procedure. In this way, only the frequent item sets at a level are used to construct candidates at the next level [34].

The Apriori based approach utilizes the breadth first search BFS technique due to its level shrewd candidate generation.

The pattern growth approach can utilize both BFS and depth-first search (DFS) [5]. Fig. 2 demonstrates Apriori and pattern

growth strategies.

http://www.naturalspublishing.com/Journals.asp

30 M. Mohamed et al.: Map Reduce Frequent Sub graphs Mining on Cloud System

© 2017 NSP

Natural Sciences Publishing Cor.

Figure 2. (a) Apriori- based vs. (b)pattern growth- based approach

This paper is designed along the lines of Apriori algorithm concentrated on FSG discovery algorithm. The FSG embraces

edge-based candidate generation strategy and two graphs of size "k" are a unit to form resultant graphs of size "k+1" which

ought to likewise be frequent. So, in each iteration, the size and the number of subgraph candidates is increased. Candidate

pruning is additionally done if the produced candidate does not fulfill the minimum threshold. The FSG algorithm was

introduced in [14] [35] as shown in Fig. 3.

whereCk is a set of candidates with k edge, gk is a k-(sub) graph, Fk is a set of frequent k-subgraphs and k-(sub)graph is a

(sub) graph with k edges. The FSG method increments the size of a frequent dataset by inserting one edge at a time. In the

FSG, frequent 1-edge and 2-egde graphs dataset are specified. Then, based on those two sets, it starts the main

computational loop. During every iteration, it initially creates candidate subgraphs whose size is greater than the past

frequent ones by one edge. Next, it tallies the frequency for each of these candidates and prunes subgraphs that don't fulfill

the support requirement. Found frequent subgraphs fulfill the descending closure property of the support condition which

//FSG Algorithm

Function FSG(D,min_sup)

//D-Graph database

// min_sup= minimum support

[

F1→detect all frequent 1- subgraphs in D

F2→detect all frequent 2- subgraphs in D

K→3

While Fk-1≠Null do

Ck→fsg_gen(k-1)

 For each candidate gk∈Ck do

 gk.count←0;

 For each graph g∈D do

 If [candidate gk∈g] then

 gk.count→gk.count+1

 End If

 End For

 End For

fk←{gk∈Ck: gk.count≥min_sup};

 K←K+1

End While

Returnf1, f2, …,fk-2

]// End function

Figure 3. FSG algorithm

Sohag J. Sci. 2, No. 3, 27-40 (2017)/ http://www.naturalspublishing.com/Journals.asp 31

 © 2017 NSP

 Natural Sciences Publishing Cor.

enables us to successfully prune the lattice section of frequent subgraphs [35].

The Apriori algorithm (as well as FSG algorithm) is the simplest algorithm. However, it is costly in terms of time

complexity and space, since it requires a repetitive scan of the database. With the speedy growth of the Internet and sensor

network, data are increasing exponentially, which often causes non-negligence problems of memory overflow and huge

delay in communication. Researchers propose many algorithms to overcome the above problems by using parallel frequent

subgraphs mining algorithms to speed up the mining of the ever-increasing sized databases [36].

3.3 Map Reduce Model

MapReduce is a distributed processing model introduced by Google [27]. It is a parallel model for processing

big data in a distributed massively parallel way using simple commodity system. It is a programming model and

related application for handling and generating large datasets in an enormously parallel way. MapReduce has

turned into a famous model for ad-van cements in cloud computing. It gives users a standard model to

programming distributed algorithm, and it handles every one of the points of data distribution, load balancing,

fault tolerance and replication. It gives a programming model a map function that procedures a key/value pair to

produce a set of middle key/value sets, and a reduction function that merges every average value related with a

similar transitional key, as seen in Fig.4.

Mapping phase: is distributed across multiple machines by automatically partitioning the input data into a set of

splits or shards. The input shards can be processed in parallel on different machines.

Reduce phase: After the Map phase is over, all the intermediate values for a given output key are combined

together into a list and returns one or more final values for that same intermediate key. In short, this phase

summarizes the complete dataset.

 4 Proposed Method (MRFSG)

In this paper, we present a new algorithm, named MRFSG, for finding all frequent subgraph mining in a single

large graph. The MRFSG algorithm is carried based on dividing the single large graph into a set of subgraphs

and distributing it to parallel workers for two reasons: first, the large graphs take large amount of memory in

sequential implementation, second, a parallel graph partitioning algorithms can take advantage of the

extensively higher amount of memory available in parallel implementation to partition very large graphs.

Figure 4.Map Reduce model

http://www.naturalspublishing.com/Journals.asp

32 M. Mohamed et al.: Map Reduce Frequent Sub graphs Mining on Cloud System

© 2017 NSP

Natural Sciences Publishing Cor.

A large single graph is divided horizontally into sets of related sub graphs, which will be assigned to a number of the

system workers w. This proposed method is an efficient algorithm for paralleling the FSG algorithm based on Map Reduce

model with considering worker resources as shown in Fig.6. MRFSG finds all sub graphs from the original single large

graph by finding the isomorphism between these sub graphs. If the graph contains thousands of nodes, the size of data that

should be processed will be millions of bits. This will cause challenges in memory and processing power. The distribution

of this job among parallel workers will provide the desired processing power, but the worker memory size will cause a

challenge. Any parallel platform can be homogeneous or heterogeneous. In the case of the heterogeneous system, the

distribution of the tasks must consider the resources of each worker. In the case of the homogeneous parallel system, which

is the paper interests, the memory size is equivalent in each worker. Hence, the horizontal distribution of the subgraphs

graph matrix can be written:

𝑣 = 𝐶𝑒𝑖𝑙 (
𝑛

𝑤
) → (1)

where n is the number of sub graphs.

To simplify manipulating the tasks in each worker, the worker will take its job portion as a set of two tasks. In another

word, the reserved memory size for each VM must be two times the subgraph size. Hence, equation (1) can be written as

follows:

𝑣 = 𝐶𝑒𝑖𝑙 (
𝑛

2𝑤
) → (2)

Equation 2 supposes that the job will be distributed over the system workers in two rounds. This strategy gives the parallel

algorithm numerous advantages in load balancing and failure recovery. For

example, if we have a graph with size (20*20) contains 20 subgraphs and 4 workers we partition our work to

each work to have 3 subgraphs approximately as illustrated in Fig.7.

We must note that the homogeneity of the system will not guarantee the identical performance of all VMs[37]. The reason

for the randomness of the performance caused by resource allocates or that assigns the required resources on different

physical machines on the cloud. Moreover, if two VMs are allocated in the same data center, this will not guarantee that

both VMs have an identical performance due to the problem caused by other system factors like memory contention. This

leads us to distributethe tasks in two rounds and monitor the system workers such that if any worker becomes

idle, the master worker assigns a new task to it as shown in Fig. 8. This will increase resources usage by

distributing the load between the system nodes.

Figure 5. Map Reduce model

Sohag J. Sci. 2, No. 3, 27-40 (2017)/ http://www.naturalspublishing.com/Journals.asp 33

 © 2017 NSP

 Natural Sciences Publishing Cor.

The main advantages of the proposed model are the dependency reduction between system workers. This division reduces

the defect recovery time in the case of worker failure. In another word, if the worker finishes its task and there are more

tasks, it will start working on another task and will not be idle, otherwise, the waiting time of the slow worker is cut to half.

Also, this division is more suitable for heterogeneous system resources. After finishing a set of tasks, its client is

broadcasting the result, in which the system is called reduce, and then each worker collects its interest data.

As discussed previously, each worker in our example in Fig.7. will take three subgraphs (rows) the segments(tasks) from 1

to 4 are in process and from 5 to 7 are waiting. After each worker counts all items in its segment, it will broadcast the value

of the frequent items and collect the value of its interesting items.

Suppose that, the candidate in the first stage is: c1={a,b,c, …., t}, each worker has one segment. The worker counts all

candidates in its segment (i.e. Worker 1 counts the frequency c1in s1, worker 2 counts the frequency c1 in s2 etc.) After

finishing its segment, the worker will not be idle; it will take another segment to compute frequency in it. The interesting

table contains all candidates and these candidates are distributed to the worker equivalently as in Table 1.

From Fig.6, notice that, for example, worker 2 has two tasks (2,7). The worker will handle them as one segment; in other

words, the worker will count all candidate items C1 in both segments as one segment and it will be interested in specific

items as an interesting table (Ex: f,g,h,i,j). Hence, each worker will broadcast the frequency of all candidates except it’s

interesting one.

As it is mentioned, whatever the number of segments the worker has; the worker will deal with it as one segment. So, the

worker will broadcast the frequent candidates of these segments without duplication in communication. Thus, each worker

will accumulate the result of its assigned partitions until this stage is finished. Each stage is ended when there is no waiting

tasks list. Hence, workers start to exchange the frequency data. Moreover, each worker will exclude broadcast of it’s

interesting information to reduce the communication. This process will be repeated in each stage with a new candidate until

Figure 6. An example for graph with size 20*20 and their segments to 4 workers

Figure 7. An example for graph with size 20*20 and their segments to 4 workers

Worker 1

T1, T2, T3

Worker 2

T4, T5, T6

Worker 3

T7, T8, T9
…… ……

Worker w

…., Tn

(a)

T10 T11 T12 ……

(b)

Figure 7. (a) Vectors of working with tasks and (b) Vectors of waiting tasks

http://www.naturalspublishing.com/Journals.asp

34 M. Mohamed et al.: Map Reduce Frequent Sub graphs Mining on Cloud System

© 2017 NSP

Natural Sciences Publishing Cor.

all frequent subgraphs are obtained as shown in Fig.8.

Each worker is a fully functional copy of FSG with its own embedding lists and it starts to get first frequent, second

frequent, etc until the (k-2) frequent subgraphs in the database. If any worker is idle, it takes a new task to complete the

process.

MRFSG Algorithm

Input

G:graph database

s : minimum support

Output
Frequent all subgraphs

1. 𝑥 = 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠(𝐺)

2. isomorphism(x)T  //T is the tasks waiting list and 𝑇 → {𝑡1, 𝑡2, … . . , 𝑡𝑛}

3. 𝑣 = 𝐶𝑒𝑖𝑙(
|𝑇|

2𝑤
)//Determine the worker quota for each round

4. // Get all frequent 1 and 2 subgraphs in G

5. For q =1:2 do

6. Broadcasting M{q} // where M{q} interesting Table to each worker.

7. While(𝑇 ≠ ∅)

8. For each worker 𝑤𝑖

9. If worker_Load(𝑤𝑖)=0// worker is idle

10. Assign (𝑡𝑗, 𝑡𝑗+1, … … . , 𝑡𝑗+𝑣 , 𝑤𝑖) // Assigning a set of subgraphs of size c to the idle worker 𝑤𝑖

11. End If

12. End For

13. End While
14. If reduce phase finished //all of the tasks T are finished and each worker broadcasting the frequent items values

15. 𝐹
𝑞 = ⋃ 𝑓𝑖

∀𝑤𝑖 // Combine all Frequent items from all workers

16. Else

17. Wait until all tasks are finished

18. Go to step 14

19. End If

20. End For
21. K→3

22. While Fk-1 ≠ ∅
23. Broadcasting M{k}

Figure 8. Database segments and interested Table

Sohag J. Sci. 2, No. 3, 27-40 (2017)/ http://www.naturalspublishing.com/Journals.asp 35

 © 2017 NSP

 Natural Sciences Publishing Cor.

24. Ck→fsg_gen(k-1)

25. For each candidate gk∈Ck

26. gk.count←0;

27. For each graph g∈D

28. If [candidate gk∈g] then

29. gk.count→gk.count+1

30. End If

31. End For

32. End For

33. While(𝑇 ≠ ∅))

34. For each worker 𝑤𝑖do

35. If worker_Load(𝑤𝑖)=0

36. Assign(𝑡𝑗 , 𝑡𝑗+1, … … . , 𝑡𝑗+𝑣, 𝑤𝑖)

37. End If

38. End For

39. If reduce phase finished

40. 𝐹
𝑘 = ⋃ 𝑓𝑖

∀𝑤𝑖 ,where 𝑓𝑖←{gk∈Ck: gk.count ≥ min_sup};

41. Else

42. Wait until all tasks are finished

43. Go to step 39

44. End If

45. End While

46. K←K+1

47. End While

48. Get all frequent subgraphs

Figure 9 .Proposed method

The initial step in this algorithm is to obtain subgraphs matrix from the single large graph and find the

isomorphism between subgraphs. The result of this step is divided into tasks using equation 2 and tasks are

written into a waiting list to be processed by the system workers (mapping phase). The system workers will

apply FSG algorithm to count the frequency of all candidates subgraphs. Each worker is interested in a set of

candidates, which concerning to collect its frequency from other workers. Each stage in finding the frequent

item set ended when the waiting tasks are empty, which means starting exchange the worker data (reduce

phase). In reduce phase, each worker broadcasts the frequency of all candidates except it’s interesting items.

Hence, each worker can determine the frequent items among its interesting items. Then the frequent items are

determined by collecting the frequent items from the workers. The previous steps are repeated until finding all

the frequent subgraphs.

5 Experimental Results

All experiments are conducted on ITI cloud computing system with a CPU of four workers, 4 GB of RAM, Intel (R)

Xeon (R) CPU with 2.00 GHz 2.00 GHz (4 Processor) which runs Windows server 2008 R2 Enterprise. The researchers

use different datasets for large single graph such as Karate , ca-GrQc dataset ,s-735 .HEP-TH . Also, the researchers

generate random frequent single graph.

The algorithms were coded in Mat lab by using Mat lab 2012. The Characteristics of the experimental datasets are

described in Table 2. The Table shows the size of graphs, the number of edges in the dataset, parallel FSG method,

Belbachir method [26] and the proposed method with minimum support 0.3.

http://www.naturalspublishing.com/Journals.asp

36 M. Mohamed et al.: Map Reduce Frequent Sub graphs Mining on Cloud System

© 2017 NSP

Natural Sciences Publishing Cor.

Table 2. shows that, in the comparison with the proposed method and traditional parallel FSG, the proposed method

decreases the time with a statistically significant difference in time, Also in comparison with Belbachir method [32], our

proposed method decreases the time with a statistically significant difference.

Figure 10 .Relation between traditional parallel FSG, Belbachir and proposed methods

Table 2.Characteristics of the experimental results

Num of

nodes

Num

of

 edges

Traditional

Parallel FSG

time

(in a second)

Belbachir

method time

(in a second)

Proposed

method time

(in a second)

P1 P2

25 162 0.231907 0.230542 0.010942 <0.001** <0.001**

50 596 10.645431 9.251497 7.138739 <0.001** <0.002**

100 2444 80.450788 78.324781 42.295382 <0.001** <0.001**

150 5592 1899.830128 1779.356874 1055.060501 <0.001** <0.001**

200 10285 1925.088189 1794.214147 1135.537046 <0.001** <0.001**

500 62174 3185.893210 3102.514287 2734.693428 <0.001** <0.001**

1000 154654 9574.012456 9473.240145 8756.358716 <0.001** <0.001**

2000 236521 18539.658471 18466.324185 17399.684512 <0.001** <0.001**

P1: Comparison between the proposed method and the traditional parallel FSG

P2: Comparison between the proposed method and Belbachir method

** Statistically significant difference (p<0.01)

0

3000

6000

9000

12000

15000

18000

21000

25 50 100 150 200 500 1000 2000

Ti
m

e
 in

 s
e

co
n

d
s

Number of graph nodes

Traditional Parallel FSG

Belbachir method

Proposed method

Sohag J. Sci. 2, No. 3, 27-40 (2017)/ http://www.naturalspublishing.com/Journals.asp 37

 © 2017 NSP

 Natural Sciences Publishing Cor.

Table 3. shows that, in the comparison with the proposed method and the traditional parallel FSG, the proposed method

decreases the time with statistically significant difference in time, Also in comparison with Belbachir method, our proposed

method decreases the time with a statistically significant difference, as shown in Fig.11.

Table 3. Results with different datasets

Datase

t

Num

of

nodes

Num

of

edges

Minimu

m

support

Traditional

Parallel FSG

time (in a

second)

Belbachir

method time

(in a second)

Proposed

method time

(in a second)

P1 P2

Karate 34 78
0.1

0.001

0.024142

0.157493

0.020145

0.1184210

0.016986

0.087493

0.022*

0.018*

0.043*

0.037*

ca-

GrQc
5242 28980

0.1

0.001

4.509058

23.61356

4.015285

20.254311

3.015584

18.636608

0.027*

0.013*

0.042*

0.039*

As-735 7716 13233
0.01

0.001

10.564226

336.325547

9.502451

329.254174

7.389572

320.254589

0.005*

*

0.003*

*

0.009*

*

0.006*

*

ca-

HepTh
9877 51971

0.01

0.001

19.254781

678.383727

15.2654871

663.251489

12.245178

653.608589

0.001*

*

0.001*

*

0.001*

*

0.001*

*

P1: Comparison between the proposed method and the traditional parallel FSG

P2: Comparison between the proposed method and Belbachir method

* Statistically significant difference (p<0.05)

** Statistically significant difference (p<0.01)

0

5

10

15

20

25

0.001 0.1

Ti
m

e
 in

 s
e

co
n

d
s

Threshold
(a)

Karate dataset

Traditional
Parallel FSG
methd
Belbachir
method

Proposed
method

0

10

20

30

0.001 0.1

Ti
m

e
 in

 s
e

co
n

d
s

Threshold
(b)

ca-GrQc
dataset

Traditional
Parallel FSG
methd
Belbachir
method

Proposed
method

http://www.naturalspublishing.com/Journals.asp

38 M. Mohamed et al.: Map Reduce Frequent Sub graphs Mining on Cloud System

© 2017 NSP

Natural Sciences Publishing Cor.

Figure 11.The relation between the traditional parallel FSG, Belbachire and the proposed methods for (a) Karate dataset, (b) ca-GrQc,

dataset (c) As-735 dataset and (d) ca-Hepth dataset.

6 Conclusions

In this paper, we address the issue of the frequent subgraph mining process. We describe our proposed MRFSG

approach for frequent subgraphs mining from a single large graph database. The proposed method uses

MapReduce model in cloud system to parallel and builds balanced partitions of a graph database over a set of

machines to save time and memory. By conducting experiments on a variety of datasets and randomly

generated graphs, the researchers found that the proposed method decreased the time in a statistically significant

difference from the time computed in the traditional parallel FSG and Belbachir methods. The performance and

capability of our approach satisfying for large databases. In future work, the researchers will study the use of

other techniques for cloud frequent subgraphs for a single large graph in the heterogeneous system.

References

[1] Nijssen, S. and Kok, J.: Frequent Graph Mining and its application to molecular databases. In: The IEEE Interna-tional

Conference on Systems, Man and Cybernetics (SMC 2004), pp. 4571–4577, 2004.

[2] Punin, J.R., Krishnamoorthy, M.S., Zaki, M.J.: LOGML: Log markup language for web usage mining. In: Kohavi, R.,

Masand, B., Spiliopoulou, M., Srivastava, J. (eds.) WebKDD 2001.LNCS (LNAI) Springer, Heidelberg, vol. 2356, pp.

88–112, 2002.

[3] Eberle, W. and Holder, L.: “Anomaly detection in data represented as graphs.” Intelligent Data Analysis 11, pp. 663–

689, 2007.

[4] Dehaspe, L., Toivonen, H. and King, R.:” Finding Frequent Substructures in Chemical Compounds.” In: KDD, pp. 30–

36, 1998.

[5]Vo, B., Nguyen, D. and Nguyen, T., “A Parallel Algorithm for Frequent Subgraph Mining” Springer International

Publishing Switzerland 2015 H.A. Le Thi et al. (eds.), Advanced Computational Methods for Knowledge Engineer-ing,

page 163, Advances in Intelligent Systems and Computing 358, DOI: 10.1007/978-3-319-17996-4_15, 2015.

[6] Marghny, H. and Hosam, R.: A new parallel association rule mining algorithm on distributed shared memory sys-tem,

Int. J. Business Intelligence and Data Mining, vol. 3, No.10, 2012.

[7] Nilothpal, T. and Mohammed, Z.: “A distributed approach for graph mining in massive networks”, Data Min. Knowl.

Disco. , vol. 5, No. 30, p.1024-1052,2016.

[8] Elseidy, M., Abdelhamid, E., Skiadopoulos, S. and Kalnis, P.:“ GraMi: Frequent subgraph and pattern mining in a

single large graph.” PVLDB, 7, pp. 517–528, 2014.

0

200

400

0.001 0.01Ti
m

e
 in

 s
e

co
n

d
s

Threshold
(d)

ca-HepTh
dataset

Traditional
Parallel FSG

Belbachir
method

Proposed
method0

100

200

300

400

0.001 0.01

Ti
m

e
 in

 s
e

co
n

d
s

Threshold
(c)

As-735 dataset

Traditional
Parallel FSG

Belbachir
method

Proposed
method

Sohag J. Sci. 2, No. 3, 27-40 (2017)/ http://www.naturalspublishing.com/Journals.asp 39

 © 2017 NSP

 Natural Sciences Publishing Cor.

[9] Ray, A. and Holder, B.:” Efficiency improvements for parallel subgraph miners”. In Florida Artificial Intelligence

Research Society Conference, FLAIRS ’12, 2012.

[10] Inokuchi, A., Washio, A. and Motoda, H.: “An apriori-based algorithm for mining frequent substructures from

graph”, In PKDD '00 Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge

Discovery, pp. 13-23, 2000.

[11] Yan, X. and Han, J.:” gspan: Graph-based substructure pattern mining.” In: The IEEE International Conference on

Data Mining (ICDM 2002), pp. 721–724, 2002.

[12] Nijssen, S. and Kok, J.: Frequent graph mining and its application to molecular databases. In: The IEEE Interna-tional

Conference on Systems, Man and Cybernetics (SMC 2004), pp. 4571–4577, 2004.

[13] Vimala, S., Kerana, D., Kaliyamurthie, P.: "A Study of Efficient Algorithms for Fast Recovery of Frequent Itemset

Mining ", International Journal on Advanced Computer Engineering and Communication Technology, ISSN: 2319-

2526, Vol. 5, Issue. 1, 2016.

[14]Kuramochi, M. and Karypis, G., “ Frequent subgraph discovery”, In Proc of ICDM, 2001.

[15] Chakravarthy, S. and Pradhan, S.:”Db-FSG: An SQL-based approach for frequent subgraph mining,” in Proc. 19th Int.

Conf. Database Expert Syst. Appl. , pp. 684-692, 2008.

[16] Parthasarathy, S. and Coatney, M.:” Efficient discovery of common substructures in macromolecules.”, InPro-

ceedings of the IEEE International Conference on Data Mining (ICDM), 2002.

[17] Meinl, T., Wörlein, M., Fischer, I. and Philippsen, M.:” Mining Molecular Datasets on Symmetric Multiprocessor

Systems”. In Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics 6: Taipei,

Taiwan. IEEE Press, pp. 1269 – 1274, 2006.

[18] Cook, D.J., Holder L.B., Galal, G., and Maglothin, R.:” Approaches to parallel graph-based knowledge discovery.”,

Journal of Parallel Distrib. Comput. 61, Vol. 3, pp. 427-446, 2001.

[19] Wang, C. and Parthasarathy, S.:”Parallel algorithms for mining frequent structural motifs in scientific data.” In

Proceedings of the ACM, International Conference on Supercomputing (ICS), 2004

[20] Parthasarathy, S. and Coatney, M.:” Efficient discovery of common substructures in macromolecules.”, InPro-

ceedings of the IEEE International Conference on Data Mining (ICDM), 2002.

[21] Buehrer, G., Parthasarathy, S., Nguyen, A., Kim, D., Chen, Y. and Dubey, P.:”Parallel graph mining on shared

memory architectures. “ , Technical report, The Ohio State University, Columbus, OH, USA, 2005.

[22] Meinl, Thorsten, Fischer, Ingrid, Philippsen, Michael:”Parallel Mining for Frequent Fragments on a Shared-Memory

Multiprocessor -Results and Java-Obstacles”.In: Bauer, Mathias ; Kröner, Alexander ; Brandherm, Boris (Ed.): LWA

2005 - Beiträgezur GI-WorkshopwocheLernen, Wissensentdeckung, Adaptivität (Workshop der GI-Fachgruppe

"MaschinellesLernen, Wissensentdeckung, Data Mining" (FGML), Saarbrücken, Germany, 2005-10-10 - 2005-10-

12), pp. 196-201, 2005

[23] Di Fatta, G. and Berthold, M.R.:“Dynamic load balancing for the distributed mining of molecular structures.”, IEEE

Transactions on Parallel and Distributed Systems, Special Issue on High-Performance Computational Biology, 17(8),

pp.773-785, 2006.

[24] Reinhardt, S. and Karypis, G.:” A multi-level parallel implementation of a program for finding frequent patterns in a

large sparse graph.” In Proceedings of Twenty First IEEE International Parallel & Distributed Processing

Symposium, 1-8. Long Beach, Calif.: IEEE Press, 2007.

[25] Ray, A. and Holder, B.:” Efficiency improvements for parallel subgraph miners”. In Florida Artificial Intelligence

Research Society Conference, FLAIRS ’12, 2012.

[26] Belbachir, K., Belbachir, H,: “The Parallelization of Algorithm Based on Partition Principle for Association Rules

Discovery”, In Proceedings of International Conference on Multimedia Computing and Systems(ICMCS), IEEE,

2012.

[27] Ning, L., Li, Z. , Qing, H. and Zhongzhi, S.:” Parallel Implementation of Apriori Algorithm Based on MapReduce “,

International Journal of Networked and Distributed Computing, Vol. 1, No. 2, pp. 89-96, 2013.

[28] Kessl, R., Talukder, N., Anchuri, P., Zaki, M.: “Parallel Graph Mining with GPUs.” In: The 3rd International Work-

shop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and

http://www.naturalspublishing.com/Journals.asp

40 M. Mohamed et al.: Map Reduce Frequent Sub graphs Mining on Cloud System

© 2017 NSP

Natural Sciences Publishing Cor.

Applications, pp. 1–16, 2014.

[29] Lin, W., Xiao, X. and Ghinita, G.: “Large-scale frequent subgraph mining in MapReduce”. In: The IEEE 30th Inter-

national Conference on Data Engineering (ICDE 2014), pp. 844–855, 2014

[30] Zhao, X., Chen, Y., Xiao, C., Ishikawa, Y., and Tang, J.:” Large Graph Frequent Subgraph Mining Based on Pregel “,

Section A: Computer Science Theory, Methods and Tools The Computer Journal, 2016.

[31] Padmapriya, K. M. and Keerthana, M.:” Effective Mapreduces Process for Bigdata Using Load Distribution Fre-quent

Sub Graph Mining Algorithm”, International Journal of Advanced Research in Computer Science and Soft-ware

Engineering , Vol. 6, Issue. 9, pp. 359-366, 2016.

[32] Agrawal, R. and Srikant, R.:” Fast algorithms for mining association rules”, in Proc. 20th Int. Conf. Very Large Data

Bases, VLDB, edited by J.B. Bocca, M. Jarke, and C. Zaniolo, Morgan Kaufmann 12, pp. 487–499, 1994.

[33] Agrawal, R., Imielinski, T. and wami, A.: “Mining association rules between sets of items in large databases”. In:

Proc. of the l993ACM on Management of Data, Washington, D.C, pp. 207-216, 1993.

[34] Marghny, H. and Mohammed, D.:”Efficient mining frequent itemsets algorithms”, International Journal of Ma-chine

Learning and Cybernetics vol.5 Issue. 6, pp.823-833, 2014

[35] Ramraja, T. and Prabhakar, R.:”Frequent Subgraph Mining Algorithms – A Survey “, In Procedia Computer

Science, science direct, 47, pp. 197 – 204, 2015.

[36] Bhokare, P. and Sharma, R.:”A Novel Algorithm PDA (Parallel And Distributed Apriori) for Frequent Pattern Min-

ing”, In International Journal of Engineering Research & Technology (IJERT), Vol. 3, Issue. 8, ISSN: 2278-0181,

2014.

[37] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T. and Epema, D.: “A performance analysis of EC2

cloud computing services for scientific computing,” in Cloud computing, ser. Lecture Notes of the Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering, pp. 115–131, 2010.

