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Abstract: While the definition of a fractional integral may be codifigdRiemann and Liouville, an agreed-upon fractional deiveat
has eluded discovery for many years. This is likely a redulbtegral definitions including numerous constants ofgnétion in their

results. An elimination of constants of integration opems door to an operator that reconciles all known fractioraivdtives and
shows surprising results in areas unobserved before dimgjuhe appearance of the Riemann Zeta function and freadtleaplace and
Fourier transforms. A new class of functions, known as Zenoddons and closely related to the Dirac delta functioa,recessary for
one to perform elementary operations of functions with@ing constants. The operator also allows for a generadizati the \olterra

integral equation, and provides a method of solving for Riens complimentary function introduced during his resbam fractional

derivatives.
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1 Introduction

The concept of derivatives of non-integer order, commomlgvin as fractional derivatives, first appeared in a letter
between L'Hopital and Leibniz in which the question of a halfler derivative was posed][ In recent years, the
research has found footholds in many areas of study, inefudpplications in polymers, quantum mechanics, group
theory, wave theory, spectroscopy, continuum mechanéd,tfieory, biophysics, statistics, and Lie theo;§[4,5,6]).
Many formulations of fractional derivatives have appeavedr the centuries, such as the Riemann-Liouville, Caputo,
Hadamard, Erdelyi-Kober, Grunwald-Letnikov, Marchaudd &iesz, but one would expect an “ultimate” definition to
emerge out of the many{J8,9,10,11]).

This “ultimate” has seemingly eluded discovery, and oneisdd to choose a so-called “best derivative for the job”,
depending on how a particular definition relates to the meseat hand.

That is not to say, however, that the perfect definition dat&rist. It seems likely that one could expect the following
to be true:

190X = %x”*“ forn>0anda <n+1,

2.9 &/ = ) @e!X, which, assuming the derivative is linear, implies
3.9% sin(Ax) = [A|*sin(Ax+ Za), and
4.5 cogAx) = |A|% cogAx+ Ta).
This is a result of noticing the patterns of traditional datives, and interpolating their properties. Thus far, nappsed

definition satisfies all four of the above in all cases, an@éttithere is much debate as to whether the above are truly the
“correct” interpolations of their respective patterns.
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The discrepancies inherent in fractional derivative de@ins are likely due to the fact that nearly all fractional
derivatives are instead based on generalizing repéategration This brings up many questions such as, “What should
the upper-and-lower limits of integration be?”, or “Shothére be terms added to the end to cancel out abnormalities?”

Even so, a commonly used definition for the fractional dereais the Riemann-Liouville definition, which is a
generalization of Cauchy’s formula for repeated integrati

%/cxf(”(x—r)“‘ldr, @)

with c as an arbitrary integration limit. This, however, is by itgure aractional integral To make the fractional integral
into a derivative, a full derivative of the fractional intadjis taken. This definition introduces surprising resutech as
the fractional derivative of a constant not being const@aputo eliminated this “abnormality” by adding a small term
onto the end which would subtract whatever a constant eteua the Riemann-Liouville definition, leaving zero.

Another very popular definition, the Grunwald-Letnikovdt@anal derivative arises from a binomial generalization o
repeated limit-based derivatives,

St =tim > CUE () tockmn, @

dxa h—0,&, ha

This derivative is also special in that it can provide restidtr complex values ofr. Acting in this manner upon the
exponential function allows for a wide range of use withinrhanic analysis, wavelet theory, and other branches of
mathematics that deal with Fourier seri&g [L3].

While they do not satisfy all of the aforementioned conjestiresults, the Riemann-Liouville and Grunwald-Letnikov
derivatives indeed satisfy the four properties infidllowing definition, which may be taken as the definition of a fractlona
derivative, as defined by Ortigueira and Machati;

Definition 1Leta € [0,1]. An operator ¥ is a fractional differential operator if it satisfies the folving four properties:

1.Linearity: D (af +bg) = aD?(f)+bD?(g) for alla,b € C and f,g € Dom(D?), where Don(iD?)
is the domain of the operator®D

2.D°[f] = f for all functions f

3.DY[f] = f’ forall f € Dom(D?)

4.The Index Law: BDY[f] = DP*9[f] for all f € Dom(DP o D%) N Dom(DF+9).

Satisfying the above definition is good, but not quite goodugyh to “win-out” against all other forms of fractional
derivatives. And just so, newer definitions are arising theaid these rules so that other rules may be met instegd |
This rule-bending allowed for the first non-linear confobteefractional derivative to be proposed just two years déh [

The manuscript which follows eliminates constant funcsicand in doing so changes the nature of the spaces which
the fractional derivative behaves, forcing its domain igémeralized function spaces. This in turn allows the déimito
give results in terms daistributionalderivatives and integrals, and even changes the notiortegials themselves.

In comparing the results to past distributional fractiodativatives, these results may be a reconciliation of what
was proposed inl[7], namely that the Riemann-Liouville derivative operating distributional sense does not produce
an integer-valued distributional derivative. The resolt¢ained in 17], when paired with the notion of Zero Functions
proposed here, give precisely the integer-valued digtabal derivatives.

This definition allows derivation and integration of complgowers, and does so with a single definition between
both derivation and integration, making the operator tortbgative power the inverse. The definition also allows fer th
construction of fractional integral transforms, the siolntof fractional differential equations with an arbitranymber
of initial/boundary conditions. What follows is the intraction of the distributional differintegral, and an oveawi of its
many properties.

2 Elimination of Nonzero Constants from Allowed Functions d Differintegration

Remark. This paper uses the terms “antiderivative” and “integratérchangeably.
Derivatives and antiderivatives anetinverses of one another. Considering the funcfigz) = 1 and the integral and
differential operatord andD respectively,

n-1
D"J"[1] = 1 butd"D"[1] = ¥ k. (3)
k=0
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This is whyn boundaryl/initial conditions are necessary for a diffei@rgquation of orden. But this is also why
different integral definitions of fractional derivatives even different bounds of integration on tfemedefinition) yield
drastically different results.

As recently shown by 18], the secret to fractional differentiation lies in elimtitey nonzero constants from
“allowed” functions of differentiation/integration. Thiis a result of the differential operator losing its bijeityi on a
domain containing these functions. Thus, it cannot be tibler Instead, it is apt to allow thdistributionsof the form

f(z) =C2 =C[H(2) + H(-2)] (4)

(whereH(2z) is the Heaviside step function) which are equal to constan¢tfonsalmost everywherebut remain
undefined az = 0.
One must also use the following identity given by the powég far derivatives (but not the limit definition):

d
d—zz=z°:H(z)+H(—z). (5)

To avoid confusion with past definitions of antiderivativhsewever, the new system applied uses the terminology
“inverse derivative,” along with the operatggl for the inverse derivative of a function of independentahiez
Since nonzero constant functions are no longer allowedaijt be enforced that
d?! d-?t
—0=0and—2ZX=z 6
dz1 dz1 ©)
Note that one may relate an inverse derivative to an intdxyral

dfl
/f(z)dz: if@+C 7)

Definition 2Let X(Q) be a linear generalized function space containing the maalsmDefine X ¢(Q) to be the
generalized function space containing precisely the imefehe linear mapping, T X(Q) — X~%(Q) and all
derivatives (in the sense of(R)) of the image of T on X2).

The mapping T is defined as follows

(8)

TIf(2)] = f(2) if f is not a constant function
" | (-2 if f is a constant function

forall f € X(Q), and where Zis assumed to have the properties explained above in thieec
The space X°(Q) is called a generalized function space with trivial constan

From this point onwards, only derivatives and inverse deires inX ¢(Q) spaces are considered.

2.1 Definition of the zero function

Constant functions have been eliminated and replaced withtions equal to constants almost everywhere. To utilize
these, it is reiterated that

d
G2 =H2+H@. (©)
This results in very novel cases, such that
dizzozo-z*lzé(z)—é(—z), (10)

where d(z) is the Dirac delta function. This notation is used to give amitive understanding of the shape of this
derivative as an “odd” function. The distributional detiva of 2 = H(—2) + H(z) is indeedd(z) — 6(—z) however the
approximately-equak used to indicate the use of theverse distributional derivativevhich is slightly different than a
distributional integral.

Herein is proposed the zero function:
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Definition 3The zero functiof(z) is defined as

0(z) = d—zzo ~ 5(2) — &(—2). (11)
Utilizing inverse derivatives one obtains
d-1
7100 = 2. (12)

One may continue to take derivatives of the zero function:

0"V (z) = d—;zo =H"(2) 4+ (—=1)"HV(=2) ~ 5V (2) = 5("-V)(—2). (13)

It results that one must reconcile the idea of the zero fondt an operator that isotan integral, but rather an inverse
derivative.

3 Interpolating the Differintegral of the Heaviside Step Function

In the sense of distributions, it is well known thét(x) = &(x), and also thaf™  H(t)dt = xH(x).
Generalizing these with differential and integral opersitine obtains

n
D"[H (x)] = 5™V (x), andJ"[H (x)] = %H(x). (14)
Interpolating these results one may argue that

XC{

JIHX)] = m"' (X). (15)
Observe now the integral to a negative integer power
X—n
J"H(X)] = mH(x}. (16)

To see how this function behaves as a distribution, one nutigt @pon a test functiory.

[ 2R y)oy)dy= % /R PYHOY)0y) "y = s | @ HOY)x-y)* "y

[(1—n)
_r(1-n

17)
__nl ; /‘ﬂ’ (x—y)(x—y)* "dy= (- n)/‘/’(“”)(y)H(X—y)dy: o (x)

where the equality after the ellipsis is considered in theseef residues.

At each equality above, integration by parts is used, buabse test functions are only nonzero on a compact set,
they vanish at infinity. Indeed, this realization that theidive of the Heaviside step function may be fractionadizo
positive and negative powers allows one to construct thtelligsional differintegral.

4 Definition of the Distributional Differintegral

To utilize any notion of a “distributional” differintegrabne must understand what spaces allow a distributionaatize
to be taken. Thus, a function space must contain a densetsafbfemctions analogous to test functions to make any
progress in defining a distributional differintegral. Herare defined the spaces to consider:

Definition 4Let X(Q) be a normed space of functions defined®mvhich includes a definition for a derivative (and as
such an inverse derivative). Then defing2{ to be a distributional function space if there exists a degth respect to
[l - [Ix(q)) subset X Q) C X(Q) such that for all fe X (Q),

1.8 1(2) = £ (2) exists for all ne N and ze Q.
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2.There exists a compact subsetk?, such that " (z) = Ofor all z € Q\K and for all n N.
Define each elementd X (Q) to be a test function of the spac¢X).

One may recognize the above as a generalization of the tegtidns in many spaces of real-valued functions.

Just as derivatives and integrals have often been defineayparator is used to represent the distributional
differintegral. This operator is an elongated section sigrwith the variable of differintegration subscripted, aine t
power of differintegration superscripted. The motivationthis is that the symbol is close to that of bgttand?d.

The definition of the distributional differintegral is thpsesented.

Definition 5Let f € X (Q) C X~ ¢(Q) a distributional function space with trivial constant, ated z) € dQ (note 3 may

be infinite).
For a € C, thea'™ distributional differintegral of fz), with respect to the variable z, is

i - i (st 00, )

1 z a—

i fy (OO .
1 a—

= Py 1O 0" ey

wherey is a simple closed curve i? containing the pointszand z, with Hz— ¢) becoming the real-valued Heaviside
step function whem is parameterized by a real variable.

Remark. When working with functions of a single real variable, thegie closed curvg may be thought of as the
real part of a circle on the complex Riemann sphere. Thisiges the most common case where the curve becomes the
real line[—oo, o0

When the integrals in the definition above do not converge, may evaluate the integral for values mfwhich

converge and performnalytic continuatior{with respect ta,(a) = §:f(z) as a function ofx) to give valid results for

alla eC. Sinceﬁ is entire, this function would be well-defined.
Any of the three definitions above are equivalent. It is sames$ helpful to understand the first (inverse derivative)
definition, noting that this definition does not compute gnéds but inverse derivatives. Upon first inspection, haavev

one may see the extreme similarity between this definitiahthat of the Riemann-Liouville fractional integral:

1109 = gy [ (D=1 e (19)

Remark. The definitions arequivalentor real-valued test functions, > 0, and a lower integration bound efo.

An inverse derivative definition (instead of only an intdgtafinition) sets no limits on convergence. This allows
extension values af to all complex numbers as explained above, instead of jespdisitive real numbers.

Itis important to insist that the zero function can be usedt, defines an inverse derivative without a nonzero constant
of integration. Unless a derivative explicitly denotesvagie of the constant of integration (by means oh#rderivative
of the Zero Function), theris no constant of integratian

It is important to note here that € Z* computes the'" inverse derivative, and € Z~ computes the'" derivative,
while a = 0 is the identity operation.

4.1 The distributional differintegral for non-test funmtis and distributions

Since the above definition holds only for test functions, mest extend the distributional differintegral to otherdtions,
as well as distributions. Since it is required that the tastfions are dense in the function space, one may define the
differintegral for non-test functions as follows:

1 Thatis, ify(t) : [to,ta] — Q with y(to) = y(t1) = zp andy(t') = zfor t’ € [to,t1], thenH (z— {) = H(z—y(t)) = 1 if t € [to,t") and
H(z—{) =H(z—y(t)) =0ift e (t',ty].
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Definition 6Let f € X~¢(Q), a distributional function space with trivial constantnge X(Q) is dense in X¢(Q) there
exists{¢h}_; such thaty, € X (Q) forallnandg — fin [|- [[x-cq). Fora € C, thea'" distributional differintegral of
f(z), with respect to the variable z, is

In regards to distributions, as with distribution theohg distributional differintegral is defined as follows.

—iim & @ (20)

n—o0

Definition 7Let T € X (Q)*, the space of continuous linear functionals off<X). For a € C, the a™" distributional
differintegral of T, with respect to the variable z, is

a —ima a
8 T[(0)] =em.T {§Z (o)} (21)
where(o) is a placeholder for test functions.

Notice that ifT is a regular distribution, witti a locally integrable function, arifi[(o)] = [, [f(2)-(o)]dz then§:Tf =

T§<fo.

5 The Distributional Differintegral is a Fractional Deriva tive

Arising from Ortigueira and Machado’s definition of a frawtal differential operator, it should be shown that the
distributional differintegral satisfies all four propesi The following are proofs only for test functions of a $ingeal
variable, but as they are dense and the definition for othwstions is dependent on that of test functions, these are the
only proofs given. Proofs for functions in general spaceyg bearesearched in the future.

Proof.

1L|near|ty§ [)\f + ug(z } § +u§:g(z)

a -1
§; @+ ne2) = s (G (1O + @) -0 )
-1
- e (s 100 a0 )
_ (9 - gy
—r(a)[(dzlAf@)(z 0", )+ (grama@a-0 \ZZ)] )
—1 -1
=%,)[A @0 ) +u( a0 )
1 d? a 1 [/d? a_
:)\m<dzlf(5)(z Z) 1’ZZ>+um<leg(Z)(z Z) 1‘ZZ>
28, 1@+ 18,92
2.For all test functiond (2), §:f(z) = f(2).
/f 7)dg = /f 2)dZ = 1(2). (23)
(See section 3 above for further explanatlon.)
3.For all test functions (2), §, f(2) = f'(2).
_ -2
o= [ 10 S He- 0d = [ 108 0k~ 1) (24)

(See section 3 above for further explanation.)
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z

alepB a+p
4.The index Law: for all test functior(z), 3, [§Z f(z)] -9 1.

To solve this, one must use the beta function,

Va1 perg F(@r(B)

/o u(1—u) du_i[’(ajtﬁ) : (25)

as well as the Dirichlet formula, given bg9], but in the form necessary for the proof,

z 4 z z
[a-oma [ s -0 o= [ to| [(@- 00 iz~ 9P 1ac]do (26)
Therefore one obtains
o B z z

§z [§z f(z)] = W/m f(®) [/{p (z— )" M- (P)Ble] do. (27)

The inner integralk(z, @) = fqz,(z— 0)%71(Z — @)P~1dZ, may be interpreted as the kernel of the external convaiutio

integral. With the substitution = <=2, which leads ta{ = @+ u(z— @) andd{ = (z— @)du, one obtains

gk

Kz ) = /(p (2= )"~ g)f 1

— -9t [ ua - wP 29)
= %(Z— QTP
Thus one may complete the proof,
§, {gff(Z)} THB/ f(@)(z— )" P do= §G+B (29)
|

6 Specific Relationship to the Riemann-Liouville Definition

In Riemann’s initial, posthumous publication of fractiboalculus, his definition was as follows:

d—" 1
ot / F(1) (x— 1) X+ (), (30)
wherey,(x) was an arbitrary “complimentary” function meant to elinte¢éhe ambiguity in the lower integration limit
[20).

Let it first be recognized that the distributional diffeggtal does exactly eliminates the ambiguity of the lower
integration limit. Secondly, however, the distributioniferintegral actually proposes a method to solve for Rianis
We(x) complimentary function.

An interpretation of this phenomena may be seen using ievisvatives. Since

f(t)dt = a7 § 1 § 1 31
[ wae= St - St = A0 (§0)| (31)
Repetition of this process, and Cauchy’s formula for repeattegration states
n—-1 da-" s n—k—1 §n " n—k—1
o 1 /f K= E 10— 3 0 =800 3 oot (32)
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wherecy is given recursively by the formula

d-x k=1 K k-1
Ck = mf(x) XZXO_J;)CjXS == <§Xf(x)>

k—j—1
= Z)ijo = (33)
X=Xpo =
so that each step reflects the prior evaluated.at
Taking the distributional differintegral of both sides gvealf (x) one recovers the Riemann-Liouville definition

F(t) (x—t)™ Tdt — S 0 34
lim / %ck (34)

or rather

f(x) = lim / F(t) (x—t)™ 1dt+zcko (35)

m—ot [

Sincen was arbitrarily large, and since(rt?)(x) = 0 almost everywheréor n € NU {0}, one may take the limit as
n — oo, recovering the formulas

lim /f )(X— )™ Tdt = f(x) — ;ck(b ) (%), (36)
and
_gmt 0
f09 = lim — / F(t)(x—t)™ Ldt + kzock(o (X). 37)

This formula gives the necessary “constants of integrationrepeated integration of integer order, and similarly
keeps the Zero Functions equal to zahmost everywherir derivatives of integer order.
The issues arise when taking derivatives of non-integesmttat is, fractional derivatives. Observe now that

£ (x /f X—t)"o 1dt+zcok+“() (38)

or

/ £t —a-lgp (@) () — ;cko<k+a>( ). (39)
K=
It is shown later that fractional (non-integer) derivaswvaf zero functions araot equal to zeralmost everywhere
but rather havenonzerovalues everywhere. Because of this, integral definitionfsazdtional derivativeglmost always
contain polynomials of infinite degree. This also accouatsfhy many of these integrals do not converge.
Herein is proposed a solution to Riemangigx) complimentary function. That is

Pe() = 5 0 (x). (40)
K=0
Sadly, this complimentary function was eliminated from Riemann-Liouville definition due to Laurent’s work in
1884.

7 Specific Distributional Differintegrals

Herein are provided distributional differintegrals of cmon functions of a single real variable. Notice that the apmr
takes a real-valued function and creates a complex-valusetibn (though still of a single real variable). Compugati
for these cases of functions of a single real variable mitthiasof the Riemann-Liouville derivative. Therefore theywh
been omitted for brevity.

Before beginning, it is important to note that the distriboal differintegral is linear as shown above. Thus, one
must only apply it to portions of functions separated by @ddisubtraction. Translations of the independent végiab
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are allowed in all distributional differintegrals. That i§ 'IA'Z(J is an independent variable translation operator such that
T, f(2) = f(z— 20), then

8 Tulf(@) =T [§, f(2)]. (41)

This is a result true for any convolution with a distributji@s seen in1] exercise 6.14.

In the following results{ is chosen such th§t: f (z)\ =0, as this applies when solving most differential equations

: inf Q
and allows for better convergence of test functions.

7.1 Monomials

The distributional differintegral of a generic monomiahftion is

7= W va (42)

§0’ [(1+n)
z rd+n+a)

wheren € C\Z~ (orin the special case of Zero Functions; Z~ and the function is scaled b)y(llTn) forcing the scalars

to cancel when the distributional differintegral is apd)ie
Now observe the existence of the Zero Function. Of coursare@d from our earlier definition, the Zero Function
may now be defined as

02 =8, 2= Fo 43)
Likewise, thea'" derivative of the Zero Function may be defined as

—a a1 1 ro 1
09(2) =8, 0@z =3, K=t F(E;)Zla - A @a)

This is fascinating as it implies that non-integer deriwsiof zero functions are not zero, but notice just as wetl tha
every integer derivative of zero functions is indeed zero.
It is well known that the inverse Laplace Transform behages a

2t = = iim [ Setds— {~1-n (45)
’ _-ZniTaw y—iT _’F(—n) '
Considering the zero function defined 48)0z) = ﬁz*lf", the result should look quite familiar. Indeed this implies
Z[09(t),9 =" (46)

Notice as well, that one could redefine the definition of thardiutional differintegral utilizing the Zero Function.
Observe,

@__L ,ia (ca)_ _L -
o) = )’ ! or 0= ,_(a)z" Y (47)
implying
o 1 (dt a [ dt? _a)
810 - o (g 100 ) = (gt @090 _ ). a8)
or
—a d—l
S, f<z>=(ﬁf<z>0<"><z—z>lzZ). (49)

This certainly should not be a surprise as the Zero Funcsititerally definedas a result of the distributional differintegral
of 2.
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7.2 Dirac delta function

The distributional differintegral of the Dirac delta fuia is

a -1
§ 5(2) = H(z)% —H(2)0"9(2). (50)

This, of course, extends nicely to the distributional difieegral of the Heaviside step function,

8 HZ) =HEZ—— ~HEI (51)
rMa+1 ’

The answers come as no surprise, since it is well known tleaatiiderivatives of the Heaviside step function are
the antiderivatives of the monomials multiplied by the Heigle step function. The first derivative of the Heavisidepst
function is the Dirac delta function, so it would follow thte Zero Function multiplied by the Heaviside step funct®n
also the Dirac delta function.

One may also rewrite the distributional differintegral asoavolution with a fractional Dirac delta function. Notice
that

§, 10 = [ 1009 @-HE- 0 = [ 105 -0z, (52)

—a
where thea'" fractional derivative of the Dirac Delta Function is dertbees(?) (z) = §Z 0(2).

Remark. This is where the title of the manuscript arises. The opera&mply a fractionalization of the distributional
derivatives and inverse derivatives of the Dirac delta fismc Along with the sifting property and integration by it
results that fractional differintegral may be based on the convolutidrihe fractionalized distributional derivative of
the Dirac delta function

7.3 Exponential function

The distributional differintegral of a generic exponehftisnction is

§ 2= etz (53)

This, coupled with the linearity of this operator, implidgetdistributional differintegral of the sin, cos, sinh, atwsh
functions.

§:8i“(/\2)=IAI“’Sin(/\Z—ag)- (54)
§:COS(/\Z) = IAI’“COS(/\Z—GQ). (55)
§ srvrg — (LA ) -
57 cast(hz) = (Aaemuz—maeu) -

Remark. The Gamma function’s definition follows from a specific cas¢he exponential function’s distributional
differintegral.
Observe the following:

§o¢— ro [ -0 -t e (58)
Thus,
82, o= [re [0 e e | =€l (59)
(@© 2018 NSP
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This implies,
1 0 { a-1 _ 0 _
W/—we (0= )% H(0—-7)d{ = = 1. (60)
One may rearrange this as
0 )
M@= [ 0-0"HO-dc = [ o tefa, (61)

which may be recognized as the most-common integral definitf the Gamma function.

7.4 Natural logarithm

The distributional differintegral of the natural logartHunction is

a _ an@+In(A)—y—yY(l+a)
§ In(Az) =2 e , 62)
wherey ~ 0.57721.., the Euler-Mascheroni constant, a1 + o) = ’;fll—m the digamma function.
Note here, that IMz) = In(2) +In(A) = In(2) +In(A)Z, and indeed the linearity exists,
a _ an@-y-u(l+a) 1 _qa
g, [In@+In()] =2 Flia) ) 7/_(1+a)z“_§z In(A2). (63)

The strongest advantage of the distributional differirdég found therein. When attempting to create a distrdmnail
differintegral, there was prior doubt as to how functionstsasz " would be treated. On one hand, they were monomials,
but on the other, they were the derivatives of logarithm®rélwas fear that a perfect definition would never be created
because of this discrepancy.

What may be seen, however, is that the “monomial” distrimai differintegral ofz" is found in the form

,_(rl(_l;f)a)z‘”—“ , Where at integer-valued derivatives, the result is ondefderivatives of the Zero Function. Likewise,

the distributional differintegral of the logarithmic vésa of z " is found in the formz* 'n(z)+'”<rA<>1jr’;_)‘”(1+a>, where at

integer-valued derivatives, the result keeps the funetiform z " and is not killed by an infinite denominator (as a
result of the digamma function). Interestingly, the noteger derivatives of this class of functions include theursdlt
logarithm again.

7.5 The Polylogarithm, and thus the Riemann Zeta functimnspecific cases of the distributional
differintegral

Observe the following distributional differintegral:

a 1 .
§, 5 =Lia(®) (64)

whereLiq (€7) is the polylogarithm function of bage.

Testing the distributional differintegral on this funatigs not coincident. Note the similarity of the Riemann Zeta
function’s integral definition,

1 00 XS—l

(9 Jo &% (63)

(66)
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Indeed it may be seen from above that
=Lig(€?)|, o =Lia(1) = (a). (67)

(§: 62%1> z=0

This also supports the fact that the polylogarithm may benddfias the repeated integral of itself. Here the
distributional differintegral powesr as the base of the polylogarithm implies even further thadefinition holds true.

7.6 Product of monomial and exponential

The distributional differintegral of a monomial-exponi@hproduct is

§:z”ef\2: GM()\ 2" R (141t a;Az) — ar(-a) ,-n-a. Fil—a;1-n—a;A2), (68)

ri+a) rl-n—a

whereiFi(1+n;1+ a;Az) and1Fi(1— a;1—n— a;Az) are Kummer confluent hypergeometric functions.

While the distributional differintegral becomes comptexvery quickly for products of functions (no doubt thissas
from a generalization of product rules and integration bstg)athe product of the exponential and monomial is a very
commonly-used product, notably in the fractional Laplaeasform.

8 Distributional Differintegral Transforms

8.1 Fractional Laplace transform

It is possible to generalize the Laplace transform to foazl values using the distributional differintegral. ThEslone
as follows, utilizing the operata#(?)[f(t),s as thea" power of the Laplace transform.

For0O<a <1,
LO[f(t),g = e (e‘3§f f (t)e‘St) . (69)
t=(1-a)s
One may quickly see that
2Ot (t),5 = f(s), (70)
and with slightly more effort
LW[().8 = L[f(t),9 =F(s), (71)
whereF (s) is the Laplace transform df(t).
Proof.
2Of(t),g =m0 (e‘3§f f(t)e‘St)
t=s
72
— 8 t(9e T =1 (9 (72)
=f(s),
and
ZOf(t),s :e‘i"'1<e‘5§tl f(t)e—st> (és / f(1)e ST ( 0H(t—T)dT>
t=0
~ ¢ /f e STH(— dr_/f JeSTH(t dr_/ f(r)e Stdr (73)

=Z[f(t), 9 =F(s).

Notice that one may use this definition without including éwaluation oft = (1 — a)s. However, when using this
evaluation, one arrives at a function of a single indepehdatable (instead afivo independent variables) for fractional
values ofa. There is little intuition as to what the interpretation afesult in this manner would imply physically.
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8.2 Differintegral Fourier transform
As the fractional Fourier transform already exists, a défeé name must be used for the transform resulting from the
distributional differintegral applied to the Fourier tefarm. Since the Fourier transform is a specific case of tladdoal

Laplace transform, it is possible to construct a Fouriardfarm from a special sum of the Laplace transform aboves Thi
is done as follows, utilizing the operatg?(@)[f (t), w] as thea'™ power of the Fourier transform.

ForO<a <1,
()0 = 7 (%) ‘ (éw§ff(t)e—w> om? Z (%) ‘ (e“‘*"§ff(—t)é‘*")

+ % <%> : <é‘*’t§ff(t)e“‘*") t:(a—l)w+ % <%> : <e““’t§ff(—t)é‘*")

Because of the relationship of the Laplace transform to th&iEr transform, the results far = 0 anda = 1 are
equivalent in their parts to the above fractional Laplaaesform atr = 0 anda = 1.

t=(1-a)w

(74)

t=(a—-1)w

FOf(1), 0] = f(w), (75)
and
FY[E (), 0] = f(w), (76)

~

wheref (w) is the Fourier Transform of (t).

9 Fractional Distributional Differintegral Equations

It is helpful to recognize the result that

f{gff(t),s] — s UF(s) =s 9L[F(t),S, (77)

or in the form of derivatives, with notatiof{® (t) = §_“ (1),

f[§faf(t)7s} = 2[f@(t),9 = F(s) =s7.Z[f(t),S]. (78)

In the past, initial conditions would be introduced in thspace as derivatives of the function evaluated at 0. In the
case of fractional differential equations, these initiahditions are introduced by means of Zero Functions. Indieed
inclusion of zero functions reconciles a very importantsjiom regarding fractional differential equations. Onewks
that for ann™ order differential equation, one need®oundary conditions to solve it. How many initial conditioare
necessary for an = % order differential equation? Using a Laplace transfornti{ithie “sum of derivatives” subtracted
from the derivative) one ends up with notation such as

1/2

S k=10, (79)
k=1

which is quite ambiguous. Indeed, summation notation i# lith integer values in mind. Past fractional differeftia
equations have been forced to isg boundary conditions. This works quite well, but sometineggiires more boundary
conditions than necessary.

9.1 Generalization of the nonlinear Volterra integral etjoa

Because the \olterra integral equation allows one to revaitlifferential equation as an integral equation, one may ad
initial conditions (and later boundary conditions) to acfianal differential equation.
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Suppose a fractional differential equation is of the form

YO (x) = f(xy(x). (80)
Then past researcB7] insists its equivalent Volterra integral equation is

[a]-1 ® xk 1 X a1
y(X) = y 0—+—/fr,yr x—1)"7dr. (81)
0= 3 YO +rg ), (0D
Interestingly, Zero Functions and the distributional efifiitegral allow even further generalization of this fotenu
That is, for the sequence ofarbitrary initial conditionsy(?(0) (note these may be fractional derivativesfof and
k=1,2,....n.

n X(X k

Y= 3 YO g+ 8 (v00) (52)

Taking the distributional differintegral (to thea™™ power) of both sides, one arrives at a new version of theiénaat
differential equation

n X0k—a
Y00 = 3 O gy * F0Y09). (83)
or with Zero Functions,
n
YO x) =Y y®(0)0 % (x) + f (x,y(x)). (84)

=
[l
aR

Just so, if all of the values ¢fr — ai) € N, as one sees in the currenttheory of differential equatibies this equation
is equivalentlmost everywher the original.

It is even possible to extend this theory to arbitrary boupdanditions and not initial conditions, though it makes
for a more difficult equation to solve. Instead of the initainditions in the \Volterra integral equations, one may ¢eav
the constant as an arbitracy, but then there must be enough constants left at the endisfysall initial conditions.
This leaves the following result, for the sequencenairbitraryboundaryconditions,y(?) (x,) (note these may also be
fractional derivatives of ), andk=1,2,...,n:

n

y(x) = z cx 4 §j f(xy(x), (85)
s

or in differential equation form with Zero Functions,

=}

YO =S @ D)+ f(x,y(x). (86)
k=1

In this case, the differential equation is solved withounpaiting the values of the constants first, then the values of
each constant is solved by means of a system of equations.

9.2 Contraction mapping theorem in Banach space

Since the space of functioXs (Q) is assumed to have a subspace dense in fjofiR-c o), the space of must be at the
very least a normed linear space. If the space happens tontp@ete (as it is in most cases), then it is a Banach space.
Thus suppos&—¢(Q) is complete. Then for a bounded linear operdtpif T" is a contraction|(T"|| < 1)for some
power n, there exists a fixed point € X~¢(Q) such thatT(f) = f [21]. This theorem becomes useful in solving
differential and integral equations as finding the fixed p@requivalent to solving the equation.
In X~¢(Q), with an operator defined &x) = T x+ b for someb € X~ ¢(Q), if || T|| < 1 then the fixed point solution
to the equation is

x— 3 Tib (87)
2,
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Observe that for al] € C (and thus allj € N)

a\ | ja
<§z> = §z (88)
as seen from the existence of the index law. This impliesftrany equation of the form

u(z) =F(u@) =8, u@ + f(2) (89)

wheref € X7 ¢(Q) and§: a contraction, one may solve the equation to arbitrary appration with
-5 8 1@ (90)
u(z) = 2).
&3

When§j f(z) = 9(a, z) this allows for even easier computation with

00

w2 =3 olia2) 1)
2,

10 Conclusion

In conclusion, a consistent definition for the distribuibdifferintegral is established. This definition allowdension of
differentiation and inverse differentiation to all compigowers. The definition only behaves, however, if one elates
the so-called constant of integration by means of using erctions. These zero functions have interesting properti
and indeed seem to hold the secret to the distributionadititfegral.

It is most common to compute the distributional differin@dgoy performing a definite integral with an introduced
Heaviside step function, but can also be formed using thergev derivatives briefly introduced. These equivalent
definitions satisfy the four properties necessary for aiwaal derivative given by14].

Compared with past distributional fractional derivativibese results may be a reconciliation of what was proposed
in [17], which stated that the Riemann-Liouville derivative agtérg in a distributional sense does not produce an integer-
valued distributional derivative. Including the notionz&fro functions in the results fromi 7] gives precisely the integer-
valued distributional derivatives.

The specific distributional differintegrals of functiongrae with the most commonly used fractional derivatives of
many functions, with the distributional differintegral mionomials appearing as Riemann-Liouville’s definitiong &me
distributional differintegral of an exponential functiappearing as that of the Grunwald-Letnikov definition. Tases of
the natural logarithm, polylogarithm, and others appdgh#l different from many previous definitions. A specialse
of the polylogarithm shows the emergence of the Riemannfzetzion, while a special case of the exponential function
shows the emergence of the gamma function.

There is also a fractional Laplace transform that may benihiced using the fractional integral portion of the
distributional differintegral. This may be generalizedatdifferintegral Fourier transform.

A small number of fractional differential equations may loéved with the Laplace transform of the distributional
differintegral. Inclusion of the zero functions in theseuations rectifies a slight issue in determining how manyahit
conditions are necessary to solve fractional differemtéalations. Other fractional differential equations maysbled
using a generalized Volterra integral equation. One may silsiplify the fixed point solution to a contraction mapping
theorem in the Banach space of analytic functions using igtelelitional differintegral.

While the properties of the distributional differinteginaregards to differential equations were only briefly exaedi,
the future is very bright for all of the areas covered in thaper. It is quite likely that the surface has only begun to be
scratched on the power and potential of the distributioifedrihtegral.
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