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Abstract: We propose a new generator from Frѐchet random variable that is known as the Odd Frѐchet-G (OFr-G) family 

of distributions. The new class of family can be more flexible since the density shapes are left skewed, symmetrical and 

reversed-J. Some special models derived and discussed. Several of its important properties are derived. The maximum 

likelihood equations are derived for OFr-G family parameters. The importance and flexibility of the derived models is 

assessed using two real dataset examples. 
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1 Introduction 

Extreme value distributions (EVDs) are essential for demonstrating and measuring events which happen with little probability 

and have been broadly utilized as a part of hazard administration, finance, insurance, financial aspects, sports, hydrology, 

material sciences, broadcast communications, and numerous data sets of extreme events. Class of EVDs involves three types 

of EVDs: Gumbel (type I), Frѐchet (type II) and Weibull (type III). In literature, these EVDs are generalized by incorporating 

location, scale and power parameters resulting in generalized extreme value distributions (GEVDs): generalized Gumbel, 

generalized Frѐchet and generalized Weibull. 

In the modern era, there has been an expanded attention for introducing new generators for univariate distributions by 

inducing at least one extra shape parameter(s) to the baseline distribution. This addition of parameter(s) has been 

demonstrated valuable in investigating tail properties and furthermore to increase the goodness-of-fit of the proposed family. 

Some commonly available generators are beta-G [1], gamma-G (type 1) [2], Kumaraswamy-G [3], gamma-G (type 2) [4], 

McDonald-G [5], gamma-G (type 3) [6], exponentiated generalized-G [7], Transformed-Transformer (T-X) [8], Weibull-G 

[9], Garhy-G [10], exponentiated Weibull-G [11], Kumaraswamy Weibull-G [12], type II half logistic-G [13] and 

exponentiated extended-G family [14]. 

The present study is unfolding as follows; Section 2 based on the derivation of new family of distributions. Further, Section 

3 based on some special models of the OFr-G family. Asymptotes and shapes are given in section 4. Moreover, some suitable 

structural properties such as; explicit expressions for the moments, incomplete moments, and probability weighted moments, 

quantile measures and mean deviation are derived in Section 5. Maximum Likelihood Estimation and real data set examples 

are presented in Section 6 and in the end study concluded in Section 7. 

2 The new family 

Consider the probability density function (pdf) and cumulative distribution function (cdf) of Frѐchet (Fr) distribution with 

real shape parameter θ>0 and scale parameter σ>0 are given respectively,  
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𝐺(𝑥, θ, 𝜎) = 𝑒−(
𝜎

𝑥
)

θ

,        𝑥 > 0, θ, 𝜎 > 0                                                                     (1) 

𝑔(𝑥) = θ𝜎θ𝑥−(θ+1)𝑒−(
𝜎

𝑥
)

θ

,                                                                                            (2) 

Cumulative distribution function 𝐺(𝑥; 𝜉) and survival function �̅�(𝑥; 𝜉) = 1 − 𝐺(𝑥; 𝜉) of the baseline distribution are 

depending on a parameter vector 𝜉 and let a random variable 𝑇 relating a stochastic system having a baseline G distribution. 

The odds x that the system will not be working at time 𝑡 is 𝐺(𝑡) �̅�(𝑡)⁄ . We want model the random variable X of this odds 

using Frѐchet model (with scale parameter σ = 1) given by (1). We can write 

𝑃𝑟(𝑋 ≤ 𝑥) = 𝛱𝑋(𝑥) = 𝐹𝑋 [
𝐺(𝑡)

�̅�(𝑡)
] 

and then by replacing x in the Frѐchet cdf by the ratio 𝐺(𝑥; 𝜉) �̅�(𝑥; 𝜉)⁄ , the cdf of the new family, OFr-G, follows as 

𝐹(𝑥: 𝜃, 𝜉) = ∫
𝜃

𝑥𝜃+1
𝑒−𝑥−𝜃

[
𝐺(𝑥;𝜉)

1−𝐺(𝑥;𝜉)
]

0

𝑑𝑥 = 𝑒
−[

1−𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
]
𝜃

                                             (3) 

The corresponding pdf to (3) is given by 

𝑓(𝑥: 𝜃, 𝜉) =
𝜃𝑔(𝑥; 𝜉)[1 − 𝐺(𝑥; 𝜉)]𝜃−1

𝐺(𝑥; 𝜉)𝜃+1
𝑒

−[
1−𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
]
𝜃

                                               (4) 

where 𝑔(𝑥: 𝜉) consider a pdf of baseline distribution. Hereafter, a random variable 𝑋 with density function (4) is denoted 

by 𝑋~𝑂𝐹𝑟 − 𝐺(𝜃, 𝜉).  

The hrf of the OFr-G family is  

ℎ(𝑥: 𝜃, 𝜉) =
𝜃𝑔(𝑥; 𝜉)[1 − 𝐺(𝑥; 𝜉)]𝜃−1𝑒

−[
1−𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
]
𝜃

𝐺(𝑥; 𝜉)𝜃+1 [1 − 𝑒
−[

1−𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
]
𝜃

]

                                              (5) 

The quantile function, say 𝑥𝑢  of a random variable has pdf (4) is given by 

𝑥𝑢 = 𝐺−1 {
1

1 + [− log(𝑢)]
1

𝜃

}                                                                                      (6) 

where u is a uniform U(0,1) distribution. We can generate random numbers from our model by using (6) 

3 Some special cases 

We derived some models of the proposed OFr-G in this section. For example, odd Frѐchet-Weibull, odd Frѐchet-Lomax, odd 

Frѐchet-Pareto and odd Frѐchet-Gamma distributions. 

3.1. Odd Frѐchet-Weibull (OFr-W) distribution 

 

We consider the Weibull distribution with scale parameter α>0 and shape parameter β>0. The pdf and cdf are 𝑔(𝑥) =

𝛼𝛽𝑥𝛽−1𝑒−(𝛼𝑥𝛽), 𝐺(𝑥) = 1 − 𝑒−(𝛼𝑥𝛽), respectively. The pdf of OFr-W is  
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𝑓𝑂𝐹𝑟−𝑊(𝑥; 𝜃, 𝛼, 𝛽) =
𝛼𝛽𝜃𝑥𝛽−1𝑒− 𝜃(𝛼𝑥𝛽)

{1 − 𝑒−(𝛼𝑥𝛽)}
𝜃+1

𝑒
−{

𝑒
−(𝛼𝑥𝛽)

1−𝑒
−(𝛼𝑥𝛽)

}

𝜃

                𝑥 > 0, 𝜃, 𝛼, 𝛽 > 0 

3.2 Odd Frѐchet-Lomax (OFr-L) distribution 

 

Let us consider the Lomax distribution with scale parameter β>0 and shape parameter α>0. Then, the pdf and cdf are given 

by 𝑔(𝑥) = (𝛼 𝛽⁄ )[1 + (𝑥 𝛽⁄ )]−𝛼−1, 𝐺(𝑥) = 1 − [1 + (𝑥 𝛽⁄ )]−𝛼 respectively. Then, the OFr-L pdf is  

𝑓𝑂𝐹𝑟−𝐿(𝑥; 𝜃, 𝛼, 𝛽) =
𝛼𝜃[1 + (𝑥 𝛽⁄ )]−(𝛼𝜃+1)

𝛽[1 − [1 + (𝑥 𝛽⁄ )]−𝛼]𝜃+1
 𝑒

−{
[1+(𝑥 𝛽⁄ )]−𝛼

1−[1+(𝑥 𝛽⁄ )]−𝛼}
𝜃

     𝑥 > 0, 𝜃, 𝛼, 𝛽 > 0 

 

3.3. Odd Frѐchet-Gamma (OFr-Gam) distribution 

 

Now, we consider the parent Gamma distribution with pdf and cdf given by  

𝑔(𝑥;  𝛼, 𝛽) =
1

𝛽𝛼𝛤(𝛼)
𝑥𝛼−1𝑒−(𝑥 𝛽⁄ ) 

𝐺(𝑥;  𝛼, 𝛽) =
𝛶 (𝛼, 𝑥

𝛽
)

𝛤(𝛼)
,                𝑥 > 0, 𝛼, 𝛽 > 0 

Where 𝛶 (𝑎,
𝑥

𝑏
) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡

𝑥

𝑏
0

 denote the incomplete gamma function. Then the OFr-Gam pdf is  

𝑓𝑂𝐹𝑟−𝐺𝑎𝑚(𝑥; 𝜃, 𝛼, 𝛽) =
𝜃

𝛽𝛼𝛤(𝛼)
𝑥𝛼−1𝑒

−(𝑥
𝛽

)
{

𝛶 (𝛼, 𝑥

𝛽
)

𝛤(𝛼)
}

−(𝜃+1)

{1 −
𝛶 (𝛼, 𝑥

𝛽
)

𝛤(𝛼)
}

𝜃−1

𝑒
−{

𝛤(𝛼)

𝛶(𝛼,
𝑥
𝛽

)
−1}

𝜃

 

The pdf and hrf graphs of OFr-W and OFr-L distributions are presented in Figure (1 & 2). This indeed indicates that the 

proposed OFr-G family can be very valuable in fitting real-life data sets. 

 
(a) 

 
(b) 

Fig 1: pdf curves of (a) OFr-W  and (b) OFr-L 
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The figure 1(a) represents the behavior of OFr-W density function and explains the tractability and flexibility of model 

graphically with its sub-families. The pdf plot shows that for, the newly developed model has exponentially decreasing 

behavior, unimodal positively skewed behavior. Figure 1(b) represents the behavior of pdf of OFr-L distribution which is 

unimodal. 

 

 

 
(a) 

 
 (b) 

Fig 2: hrf curves of (a) OFr-W and (b) OFr-L 

 

 

The figure 2(a) and figure 2(b) represents the behavior of hazard rate function and explains the tractability and flexibility of 

model graphically with its sub-families. The hazard increasing and decreasing and has J- shape.  

 

Theorem 1 make available some relationships of the OFr-G family with other distributions. 

Theorem 1: Let X ∼OFr−G(θ, ). 

(a) If 𝑌 = 𝐺(𝑋;  ), 𝑡ℎ𝑒𝑛 𝐹𝑌(𝑦) = 𝑒
−(

1−𝑦
𝑦 )

𝜃

       0 < 𝑦 < 1, 

(b) If 𝑌 =
𝐺(𝑋;   )

�̅�(𝑋;   )
, 𝑡ℎ𝑒𝑛 𝑌~𝐹𝑟𝑒𝑐ℎ𝑒𝑡 (𝜃, 1), 𝑎𝑛𝑑   

(c) If 𝑌 =
�̅�(𝑋;   )

𝐺(𝑋;   )
, 𝑡ℎ𝑒𝑛 𝑌~𝑊𝑒𝑖𝑏𝑢𝑙𝑙 (𝜃, 1) 

 

4 Asymptotes and shapes 

Corollary 1: The asymptotic of equations (3), (4) and (5) as 𝑥 → 0 are given by 

𝐹(𝑥)~𝑒−[𝐺(𝑥)]−𝜃
 𝑎𝑠 𝑥 → 0, 

𝑓(𝑥)~
𝜃𝑔(𝑥)𝑒−[𝐺(𝑥)]−𝜃

[𝐺(𝑥)]𝜃+1
  𝑎𝑠 x → 0,  

ℎ(𝑥)~
𝜃𝑔(𝑥)𝑒−[𝐺(𝑥)]−𝜃

[𝐺(𝑥)]𝜃+1 1 − 𝑒−[𝐺(𝑥)]−𝜃
  𝑎𝑠 x → 0.  
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Corollary 2. The asymptotics of equations (3), (4) and (5) as 𝑥 → ∞ are given by 

1 − 𝐹(𝑥)~[1 − 𝐺(𝑥)]𝜃              𝑎𝑠 x → ∞,  

𝑓(𝑥)~𝜃 𝑔(𝑥)[1 − 𝐺(𝑥)]𝜃−1     𝑎𝑠 x → ∞,  

ℎ(𝑥)~
𝜃 𝑔(𝑥)

1 − 𝐺(𝑥)
                          𝑎𝑠 x → ∞. 

5 Structural properties 

We established some structural properties of the OFr-G family of distributions that can be more productive than processing 

those directly by numerical integration of its density function. 

5.1. Useful expansions 

In this subsection, a useful expansion of the probability density and distribution functions for OFr-G family is covered.  

 

Firstly, we obtain an expansion for pdf defined in (4) as follows:  

Since the exponential series is 

𝑒
−[

1−𝐺(𝑥;𝜉)

𝐺(𝑥;𝜉)
]
𝜃

= ∑
(−1)𝑖

𝑖!
[
[1 − 𝐺(𝑥; 𝜉)]

𝐺(𝑥; 𝜉)
]

𝜃𝑖

.

∞

𝑖=0

                                                       (7)  

Then, 

𝑓(𝑥: 𝜃, 𝜉) = 𝜃𝑔(𝑥; 𝜉) ∑
(−1)𝑖

𝑖!

[1 − 𝐺(𝑥; 𝜉)]𝜃(𝑖+1)−1

𝐺(𝑥; 𝜉)𝜃(𝑖+1)+1

∞

𝑖=0

 ,    

We can rewrite the last equation as 

𝑓(𝑥: 𝜃, 𝜉) = 𝜃𝑔(𝑥; 𝜉) ∑
(−1)𝑖

𝑖!

[1 − 𝐺(𝑥; 𝜉)]𝜃(𝑖+1)−1

[1 − [1 − 𝐺(𝑥; 𝜉)]]
𝜃(𝑖+1)+1

∞

𝑖=0

 ,    

Now, using the generalized binomial series, we can write 

[1 − [1 − 𝐺(𝑥; 𝜉)]]
−[𝜃(𝑖+1)+1]

= ∑ (
𝜃(𝑖 + 1) + 𝑗

𝑗
)∞

𝑗=0 [1 − 𝐺(𝑥; 𝜉)]𝑗 ,                 (8)  

 Then, 

𝑓(𝑥: 𝜃, 𝜉) = 𝜃𝑔(𝑥; 𝜉) ∑
(−1)𝑖

𝑖!
(

𝜃(𝑖 + 1) + 𝑗
𝑗

) [1 − 𝐺(𝑥; 𝜉)]𝜃(𝑖+1)+𝑗−1

∞

𝑖,𝑗=0

    ,    

The binomial series is  

(1 − 𝑧)𝛽−1 = ∑(−1)𝑘 (
𝛽 − 1

𝑘
) 𝑧𝑘

∞

𝑘=0

,                                                             (9) 
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for |𝑧| < 1, and β is a positive real non integer. Then, by applying the binomial theorem (8) for [1 − 𝐺(𝑥; 𝜉)]𝜃(𝑖+1)+𝑗−1 in 

(4), the density function of OFr-G becomes 

   𝑓(𝑥: 𝜃, 𝜉) = 𝜃𝑔(𝑥; 𝜉) ∑
(−1)𝑖+𝑘

𝑖!
(

𝜃(𝑖 + 1) + 𝑗
𝑗

) (
𝜃(𝑖 + 1) + 𝑗 − 1

𝑘
) [𝐺(𝑥; 𝜉)]𝑘∞

𝑖,𝑗,𝑘=0  , 

 the pdf of OFr-G can be defined as an infinite linear combination of pdf of exponentiated generated i.e. 

𝑓(𝑥) = ∑ 𝜂𝑘𝑔(𝑥, 𝜉)𝐺(𝑥, 𝜉)𝑘

∞

𝑘=0

,                                       (10) 

then, 

𝑓(𝑥) = ∑ 𝑊𝑘ℎ𝑘+1(𝑥)

∞

𝑘=0

,                                               (11) 

where, 

𝑊𝑘 = ∑
𝜃(−1)𝑖+𝑘

𝑖! (𝑘 + 1)
(

𝜃(𝑖 + 1) + 𝑗
𝑗

) (
𝜃(𝑖 + 1) + 𝑗 − 1

𝑘
)

∞

𝑖,𝑗=0

 

and, 

𝑊𝑘 =
𝜂𝑘

[𝑘 + 1]
,        ℎ𝑘+1(𝑥) = (𝑘 + 1)𝑔(𝑥, 𝜉)𝐺(𝑥, 𝜉)𝑘. 

Secondly, an expansion of [𝐹(𝑥)]ℎ is obtained as following: Again, the binomial expansion is worked out for [𝐹(𝑥)]ℎ, with 

h is integer.  

[𝐹(𝑥)]ℎ = ∑
(−1)𝑞

𝑞!

∞

𝑞=0

[
1 − 𝐺(𝑥, 𝜉)

𝐺(𝑥, 𝜉)
]

𝑞𝜃

. 

We can rewrite the last equation as 

[𝐹(𝑥)]ℎ = ∑
(−1)𝑞

𝑞!

∞

𝑞=0

[
1 − 𝐺(𝑥, 𝜉)

1 − [1 − 𝐺(𝑥, 𝜉)]
]

𝑞𝜃

. 

Now,  

[1 − [1 − 𝐺(𝑥; 𝜉)]]
−𝑞𝜃

= ∑ (
𝑞𝜃 + 𝑢 − 1

𝑢
)

∞

𝑢=0

[1 − 𝐺(𝑥; 𝜉)]𝑢, 

then,  

[𝐹(𝑥)]ℎ = ∑
(−1)𝑞

𝑞!

∞

𝑞=0

(
𝑞𝜃 + 𝑢 − 1

𝑢
) [1 − 𝐺(𝑥, 𝜉)]𝑞𝜃+𝑢. 

Since the generalized binomial series is  
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[1 − 𝐺(𝑥, 𝜉)]𝑞𝜃+𝑢 = ∑(−1)𝑧

∞

𝑧=0

(
𝑞𝜃 + 𝑢

𝑧
) 𝐺(𝑥, 𝜉)𝑧  

Then, [ ( )]hF x  takes the following form 

[𝐹(𝑥)]ℎ = ∑
(−1)𝑞

𝑞!

∞

𝑞,𝑢,𝑧=0

(
𝑞𝜃 + 𝑢 − 1

𝑢
) (

𝑞𝜃 + 𝑢
𝑧

) 𝐺(𝑥, 𝜉)𝑧 . 

Finally, 

0

[ ( )] ( , ) ,h z

z

z

F x s G x 




                                                      (12) 

where, 

𝑆𝑧 = ∑
(−1)𝑞+𝑧

𝑞!

∞

𝑞,𝑢=0

(
𝑞𝜃 + 𝑢 − 1

𝑢
) (

𝑞𝜃 + 𝑢
𝑧

) 

5.2. The probability weighted moments (PWMs) 

The PWMs can be obtained using the following relation 

, [ F( ) ] ( )(F( )) .r s r s

r s E X x x f x x dx




                                      (13) 

The PWMs of OFr-G is obtained by substituting (10) and (12) into (13), replacing h with s, leads to: 

,

, 0

( , )(G( , )) .r z k

r s z k

k z

s x g x x dx   
 





   

Then, 

, ,

, 0

,r s z k r z k

k z

s  






   

where,  , ( , ) G( , ) .
z kr

r z k x g x x dx  








    

In addition; another formula will be yielded by using quantile function as follows 

 
1

,

, 00

(u) .
r z k

r s z k G

k z

s Q u du 






   
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5.3. Moments and moment generating function 

The moments are obtained as follows 

                            ( ) .r

r x f x dx




                                                                (14) 

Then substituting (10) into (14) yields: 

0

( , )(G( , )) ,r k

r k

k

x g x x dx   
 



    

then, 

,

0

,r k r k

k

  




   

where, ,r k is the probability-weighted moments of the ( , )G x  distribution.  

Further, another recipe can be derived, in light of the parent quantile work as follows; 

1

0 0

( (u)) .r k

r k G

k

Q u du 




    

Generally, mgf is ( ) ( )tX

XM t E e and by using expansion then it can be written as follows  

0

( )
!

r

X r

r

t
M t

r






 . 

Then, 

,

, 0

( ) .
!

r

X k r k

k r

t
M t

r
 





   

Moreover; shape will be yielded by utilizing quantile function as follows; 

1

(t (u))

0 0

( ) .GQ k

u k

k

M t e u du




   

5.4. Entropies 

Entropy is a measure of variety or vulnerability of a random variable X. Three prevalent entropy measures are the Rényi, q, 

and Shannon. A common measure of entropy is Rényi entropy and has much importance in many fields such as statistical 

inference, classification, problem identification in statistics, econometrics and pattern recognition in computer sciences. The 

given theorem provides expression for Rényi entropy. 

The Rényi entropy can be derived using the below relation 
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𝐼𝑅(𝛾) =
1

1−𝛾
𝑙𝑜𝑔 ∫ 𝑓𝛾(𝑥) 𝑑𝑥

∞

0
  , 𝛾 > 0 and 𝛾 ≠ 1. 

By applying the binomial theory (8), (9) and exponential expansion (7) in the pdf (4), then the pdf 𝑓(𝑥)𝛾 can be expressed as 

follows   

, ,

, , 0

( ) ( , ) G( , ) ,k

i j k

i j k

f x t g x x  




   

where 

   
, ,

1( 1)
.

!

k i k

i j k

i j i j
t

i j k

                 
   

  

 

Therefore, the Rényi entropy of OFr-G family is given by 

, ,

, , 0

1
( ) log ( , ) G( , ) .

1

k

i j k

i j k

I X t g x x dx
  





 




   

The q- entropy is defined by the following relation 

1
( ) log 1 ( ) , 0 and   1.

1

q

qH X f x dx q q
q





 
    

  
  

Therefore, the q- entropy of OFr-G generated family of distributions is given by 

, ,

, , 0

1
( ) log 1 ( , ) G( , ) .

1

q k

q i j k

i j k

H X t g x x dx
q

 


 

 
  

  
                                  (15) 

5.5. Order statistics 

Let be random variables and its ordered values is denoted as 𝑋(1), 𝑋(2), … . . , 𝑋(𝑛) . The probability density function (pdf) of 

order statistics is obtained using the below function.  

𝑓𝑖:𝑛(𝑥) = 𝐾𝑓(𝑥)𝐹𝑖−1(𝑥){1 − 𝐹(𝑥)}𝑛−𝑖 = 𝐾 ∑(−1)𝑣

𝑛−𝑖

𝑣=0

(
𝑛 − 𝑖

𝑣
) 𝑓(𝑥)𝐹(𝑥)𝑗+𝑖−1              (16) 

Where 𝐾 = 𝑛!/[(𝑖 − 1)! (𝑛 − 𝑖)!]. 

The density of the nth ordered statistics follows the OFr-G family is derived as follows 

                
( ) ( ): z,

, 00

( ) ( , ) G ( , ) ,
i k

n i
z k

i n X k v X

k zv

f x g x p x  
 





                                                     (17) 

where  z, 1 ,
v

v z

n k
p K s

v

 
   

 
(.)g   and  (.)G   are the density and cumulative functions of the OFr-G distributions, 
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respectively. 

Moments of order statistics is defined by: 

                                
( ) :(X ) ( ) .r r

i i nE x f x dx





                                        (18) 

by substituting (17) in (18), leads to 

( ) ( )( ) z,
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i i

n i
r r z k

i k v X X

k zv

E p x g x x dx  
 



 

    

Then, 

( ) z, ,

, 00

(X ) .
n i

r

i k v r z k

k zv

E p 
 





   

6. Estimation 

This study adopts maximum likelihood estimation method so that it is mostly used and provides maximum information about 

the properties of estimated parameters. Moreover, normal approximation of these estimators can frankly be managed 

systematically and mathematically for large sample theory. Let 𝑥1, 𝑥2, … . 𝑥𝑛 be the observed values from the OFr-G family 

with parameters θ and 𝜉. The total log-likelihood function for 𝜑 is given by  

𝑙𝑛 = 𝑙𝑜𝑔(𝜑) = 𝑛 log 𝜃 + ∑ log[𝑔(𝑥𝑖; 𝜉)]

𝑛

𝑖=1

+ (𝜃 − 1) ∑ log[1 − 𝐺(𝑥𝑖; 𝜉)]

𝑛

𝑖=1

− (𝜃 + 1) ∑ log[𝐺(𝑥𝑖; 𝜉)]

𝑛

𝑖=1

− ∑ [
1 − 𝐺(𝑥𝑖; 𝜉)

𝐺(𝑥𝑖; 𝜉)
]

𝜃𝑛

𝑖=1

          (19) 

Now we have to maximize log-likelihood function given in (19) to get the MLEs of OFr-G family of distributions. For this 

purpose, we take the first derivative of the above log-likelihood equation with respect to parameters and equate to zero 

respectively. The mechanisms of the score function 𝑈𝑛(𝜑) = (
𝜕𝑙𝑛

𝜕𝜃
,

𝜕𝑙𝑛

𝜕𝜉
)

𝑇

are  

𝜕𝑙𝑛

𝜕𝜃
=

𝑛

𝜃
+ ∑ log

1 − 𝐺(𝑥𝑖 ; 𝜉)

𝐺(𝑥𝑖; 𝜉)

𝑛

𝑖=1

− ∑ [
1 − 𝐺(𝑥𝑖; 𝜉)

𝐺(𝑥𝑖; 𝜉)
]

𝜃𝑛

𝑖=1

log
1 − 𝐺(𝑥𝑖; 𝜉)

𝐺(𝑥𝑖 ; 𝜉)
                                                                                       (20) 

𝜕𝑙𝑛

𝜕𝜉
= ∑ [

𝑔(𝜉)(𝑥𝑖; 𝜉)

𝑔(𝑥𝑖; 𝜉)
]

𝑛

𝑖=1

+ (1 − 𝜃) ∑ [
𝐺(𝜉)(𝑥𝑖; 𝜉)

1 − 𝐺(𝑥𝑖; 𝜉)
] − (𝜃 + 1) ∑ [

𝐺(𝜉)(𝑥𝑖; 𝜉)

𝐺(𝑥𝑖 ; 𝜉)
]

𝑛

𝑖=1

𝑛

𝑖=1

+ 𝜃 ∑ [
𝐺(𝜉)(𝑥𝑖; 𝜉)[1 − 𝐺(𝜉)(𝑥𝑖; 𝜉)]

𝜃−1

𝐺(𝑥𝑖; 𝜉)𝜃+1
]                (21)

𝑛

𝑖=1

 

Where 𝐺(𝜉)(∙) means the derivative of the function h with respect to 𝜉. 

The exact solution of equations (20,21) for unknown parameters is not possible. So it is well-situated to use nonlinear 

optimization algorithms such as a Newton-Raphson algorithm for maximizing the above likelihood function numerically. We 

can use R (optimal function or maxBFGS function), or MATHEMATICA (Maximize function).  

6.1. Simulation study 

To inspect the performance of OFr-W distribution. We conduct a simulation study by using Monte Carlos simulation method 

with 30,000 repetitions on the basis of bias and mean square error of estimated parameters from maximum likelihood 

estimation method. The simulation is done as follows: 

 Generate data from 𝐹(𝑥) = 𝑢, where is uniformly distributed (0, 1) from (6). 
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 Simulation is conducted for sample sizes n=30, 75, 100 and 300.  

 The repetition of the experiment is 30,000 times for each sample size. 

In each trial, the estimates of the parameters will be gotten by maximum likelihood estimation. The estimated values, biases 

and MSEs are be reported from these experiments. The bias and MSEs are computed by  

𝐵𝑖𝑎𝑠𝜖(𝑛) =
1

N
∑(ϵ̂i − ϵ)

N

i=1

   and    𝑀𝑆𝐸𝜖(𝑛) =
1

N
∑(ϵ̂i − ϵ)2

N

i=1

 

Table 1 represents the outcomes of Monte Carlos simulation study. We evaluate the mean of estimated parameters, mean 

square errors, and biases. These findings based on expected first order asymptotic theory as bias and MSE’s decreases toward 

zero with an increase in sample size. 

 

Table 1 The parameter estimation from OFr-W distribution using MLE 

θ α β Sample sizes (n) Parameters Mean Bias MSE 

0.50 0.50 0.75 

30 

θ 

α 

β 

0.5273 

0.5149 

0.9027 

0.0273 

0.0149 

0.1527 

0.0194 

0.0087 

0.2433 

75 

θ 

α 

β 

0.5117 

0.5070 

0.7967 

0.0117 

0.0070 

0.0467 

0.0068 

0.0033 

0.0481 

100 

θ 

α 

β 

0.5108 

0.5041 

0.7873 

0.0108 

0.0041 

0.0373 

0.0048 

0.0023 

0.0341 

300 

θ 

α 

β 

0.5021 

0.5015 

0.7626 

0.0021 

0.0015 

0.0126 

0.0016 

0.0007 

0.0103 

0.50 0.50 2.0 

30 

θ 

α 

β 

0.5277 

0.5132 

2.4106 

0.0277 

0.0132 

0.4106 

0.0196 

0.0084 

1.6513 

75 

θ 

α 

β 

0.5102 

0.5057 

2.1503 

0.0102 

0.0057 

0.1503 

0.0069 

0.0033 

0.4008 

100 

θ 

α 

β 

0.5082 

0.5042 

2.0962 

0.0082 

0.0042 

0.0962 

0.0048 

0.0023 

0.2386 

300 

θ 

α 

β 

0.5032 

0.5013 

2.0319 

0.0032 

0.0013 

0.0319 

0.0016 

0.0008 

0.0639 

1.50 0.50 0.75 

30 

θ 

α 

β 

1.3273 

0.5844 

0.7980 

0.0773 

0.0844 

0.0480 

0.1229 

0.7105 

0.0460 

75 

θ 

α 

β 

1.2856 

0.5261 

0.7689 

0.0356 

0.0261 

0.0189 

0.0445 

0.0176 

0.0146 

100 

θ 

α 

β 

1.2734 

0.5162 

0.7653 

0.0234 

0.0162 

0.0153 

0.0298 

0.0100 

0.0118 

300 

θ 

α 

β 

1.2558 

0.5056 

0.7551 

0.0058 

0.0056 

0.0051 

0.0101 

0.0028 

0.0035 
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6.2. Applications 

In this section, we give two applications to represent the significance of the OFr-W and OFr-L distributions exhibited in 

Section 2.1. The ML estimates, as well as goodness-of-fit measures, are computed and compared with other competing 

models. 

Data 1: Maximum Annual Flood Discharges of the North Saskachevan River 

The first data set was originally reported by Montfort [15] which represents the Maximum Annual Flood Discharges of the 

North Saskachevan in units of 1000 cubic feet per second, of the North Saskachevan River at Edmonton, over a period of 47 

years. The data are: 19.885, 20.940, 21.820, 23.700, 24.888, 25.460, 25.760, 26.720, 27.500, 28.100, 28.600, 30.200, 30.380, 

31.500, 32.600, 32.680, 34.400, 35.347, 35.700, 38.100, 39.020, 39.200, 40.000, 40.400, 40.400, 42.250, 44.020, 44.730, 

44.900, 46.300, 50.330, 51.442, 57.220, 58.700, 58.800, 61.200, 61.740, 65.440, 65.597, 66.000, 74.100, 75.800, 84.100, 

106.600, 109.700, 121.970, 121.970, 185.560.  

We exhibit the flexibility of the derived model OFr-W distribution in contrast with other models, including the Marshal 

Olkin-Weibull (MOW), Kumaraswamy Weibull (KwW), beta-Weibull (BW), Odd log-logistic Marshal Olkin Weibull 

(OLLMOW), Odd log-logistic Weibull (OLLW) and McDonald Weibull (McW) distributions. Table 2 represents the 

estimates that are computed using AdequacyModel. Table 3 lists the goodness of fit measures including Anderson Darling 

(A*), Cramer-von Mises (W*), log-likelihood function, Akaike Information Criterion (AIC), Bayesian information criterion 

(BIC), to compare the fitted models. Generally, we consider the best fit using the smaller values of these statistics.  

Table 2: Estimated values for the first data set 

Model Estimates 

OFr-W 0.081501 0.597249 2.808699 - - 

MOW 0.003256 1.507926 1.700421  - - 

OLLW 0.106858 0.494316 4.878116 - - 

KwW 0.049281 1.175201 8.908800 0.305954 - 

BW 0.073591 1.060735 8.887724 0.373319 - 

OLLMOW 0.138308 0.423497 5.580156 0.874088 - 

McW 0.134608 1.041777 5.404278 0.216423 4.820985 

 

Table 3: Goodness of fit measures for first data set 

Model 2 l  AIC BIC *A  *W  

OFr-W -430.2902 436.2901 441.9037 0.154704 0.021416 

MOW -453.4936 459.4935 465.1071 1.831836 0.294515 

OLLW -438.3002 444.3003 449.9139 0.690541 0.105023 

KwW -435.4428 443.4428 450.9276 0.555256 0.081141 

BW -435.1904 443.1904 450.6752 0.521344 0.075961 

OLLMOW -438.0590 446.059 453.5438 0.648353 0.098213 

McW -432.3720 442.3719 451.728 0.336956 0.047534 
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Figure 3: Fitted PDF and CDF for the First Data Set 

 

 

Data 2: Actual Taxes data 

The second data set consist of the monthly actual taxes revenue in Egypt from January 2006 to November 2010 [16]. It 

consists of the observations listed as: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6,  18.5, 5.1, 6.7, 17.0, 

8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10.0, 4.1, 36.0, 8.5, 8.0, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7 .1, 7.7, 

18.1, 16.5, 11.9, 7.0, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11.0, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8. 

We fitted the OFr-L distribution in contrast with the exponential Lomax (EL), Marshal Olkin-Lomax (MOL), Kumaraswamy 

Lomax (KwL), Odd log-logistic Marshal Olkin Lomax (OLLMOL), Odd log-logistic Lomax (OLLL) and McDonald Lomax 

(McL) distributions. Based on the goodness of fit measures Table 4, we note that the OFr-L distribution provides the best fit. 

The fitted PDF, CDF plots are displayed in Figure 4. From these plots, we can also conclude that the OFr-L distribution is 

very suitable for these data. 

Table 4:  Estimated values for the second data 

Model Estimates 

OFrL 1.917880 21.323965 1.910503 - 

EL 4.537816 11.232723 15.99319 - 

MOL 6.035800 14.661110 30.31272 - 

OLLL 0.428485 2.7669142 4.9719023 - 

KwL 2.494748 5.479055 16.25659 1.618642 

OLLMOL 0.367402 1.2489887 5.890851 5.386643 

 

Table 5: Goodness of fit measures for first data set 

Model 2 l  AIC BIC *A  *W  

OFrL -376.818 382.8182 389.0508 0.232776 0.034398 

EL -377.351 383.3510 389.5836 0.354634 0.062102 

MOL -391.268 397.2680 403.5007 1.252071 0.213027 

OLLL -380.045 386.0446 392.2772 0.513687 0.091913 

KwL -377.711 385.7111 394.0212 0.373264 0.065615 

OLLMOL -379.950 387.9502 396.2604 0.513275 0.091878 
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Figure 4: Fitted PDF and CDF for the Second Data Set 

 

7. Conclusion 

In this paper, we propose the Odd Generalized Frѐchet-G family. We study some mathematical properties, including 

expansion of the density function and order statistics. Parameters of the OFr-W distribution are estimated using maximum 

likelihood method. Further, we fit two special models of the proposed family to real data sets to demonstrate the usefulness 

of the new family. These special models provide consistently better fit than other competing models. It is clear that from 

tables and figures the derived family provides a better fit than existing models.  
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