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Abstract: This study elucidates a three-parameter probabilisticehgédneralized from Kumaraswamy family using half logistic
distribution as a baseline model named as Kumaraswamy dgiitic distribution. The properties of the observed maatel also
explored. Further, we explain the behavior of failure ratenulative failure rate, and survival rate functions. Mo@arlo simulation
study is being conducted to estimate the parameters undezstiination method. Moreover, two practical applicatidhsstrate the
flexibility and better fit of the observed model.
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1 Introduction

Probability models are frequently used for the predictiblifetime products in various fields of applied sciencese3é
models are also used to explain the failure rate and sumat@bf the certain product. Therefore, many generalinatiwe
formed by adding additional shape parameters to increasietkibility of these probabilistic models. Many generatiz
families of distributions have formed from last few decasiesh as Macdonald-G familfl], Exponentiated Exponential-
T family [2], Beta-G family 8], Marshall-Olkin-G family #], Exponentiated Generalized famil$][ Weibull-G family
[6], Beta Marshall-Olkin family 7], Kumaraswamy Marshall Olkin G familyg], Transmuted Kumaraswamy familg]|
Exponentiated Marshall Olkin G family1P] and many others. One of them is Kumaraswamy-G family ofrithistion
was given by Cordeiro and Castrbl]. The cdf of the generalized form is

F(x) =1—-{1-G*(x,&)}°, (1)
The density function (pdf) of the corresponding cdf is

£(x) = abg (x,£) [G (x,£))*H1- G (x,£)})" ©)

wherea > 0 andb > 0 are two additional shape parameters whijlepresents the parameters of base line distribution.
Since Half-Logistic distribution is formed bylP] using the absolute transformation of the logistic disttibn,

therefore, having much importance in statistics, physigdrology and logistic regression. Moreover, this disttibn is

highly considered in modeling datasets of numerous ardespdf and cdf of half-logistic distribution is respectiyel

2\ —Ax
glx)=—2¢ . x>0A>0, 3)
(1+e2)?
1—e M
G(x)= Tte A’ (4)
whereA is its shape parameter.
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Many generalized models have formed for the modeling of dais by using observed generator such as
Kumaraswamy Weibull 3], Kumaraswamy Gumbellf], Kumaraswamy Birnbaum-Saunders5], Kumaraswamy
Pareto 6], Kumaraswamy generalized Rayleigh7], Kumaraswamy inverse Rayleigh§], Kumaraswamy modified
inverse Weibull 19|, Kumaraswamy Laplace 2[)], Kumaraswamy exponential-Weibull2]], Kumaraswamy
exponentiated inverse Rayleigh?] and many other distributions exists in the literature. Tien purpose of this study
to introduce a generalized form of half-logistic distrilout and describes its flexible behavior. The rest of studytaion
following divisions such as Section 2 explain the behavibpdf and cdf for observed distribution, its hazard and
survival rates including limiting behavior of the observatbdel. Section 3 explains some properties of Kw-HL
distribution such as moment, generating function, and rmete moments, random number generator and quartile
function, entropies and order statistics. Section 4 casti®lonte Carlo simulation study for the estimation of parterse
by maximum likelihood estimates (MLE). Section 5 illusasitthe real life application and flexibility of model as
compared to other models. The whole study is being conclirdseiction 6.

2 The Kw-HL Distribution

If X belongs to Half Logistic distribution with parametér > 0 cumulative distribution function (cdf) of Kw-HL
distribution can be obtained by inserting (n (1).

1—e M\ ¢ °
F(x;a,b,A) _1{1 (m) } ®)
Its corresponding pdf is
b—1
_ 2abAe M [1—e M4t 1—e A\ ¢
flab,A) = (1_~_e?\x)2|:1+€>‘xj| 1= (m) ©

wherea > 0,b > 0 andA > 0 are shape parameters.

2.1 Some useful expansions
By using binomial expansion
(1—7.)“:2 <?) (—=1))2) for z>0
j=0

We can also express pdf as follows

=2 3 a1 () () (Tl ey

)

1,j,k=0
ad j+k+1
foo=200n Y wig(e ™) )
1,j,k=0
where
i (b—1 i—1\ /— i4+1
Wisk = (—1)+) (b . ) (a+ql ) ( (a+ai+ ))
o i j k
Eq. @) represents the failure rate function for X variable of Ku-Histribution.
2abAe [lfe*;"} a-l
l+27)\x 1+e—AX
hix) = e ) ®)

_(1me M\ @
1 (l+e*)‘x)
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(a) PDF curves (b) hrf curves

Fig. 1: pdf & hrf curves at different selection of parameters

The cumulative hazard rate function and survival functiofi€w-HL model is
1—e M\ “

1—e M\ ¢
respectively.

Figure (1a) and (1b) represent the behavior of density fan@nd hazard rate function of KW-HL distribution at a
different combination of parameters. The observed modebla#htub failure rate.

2.2 Limiting behavior Kw-HL density and hazard rate functions

Lemma 1: For x approaches to origin, limits of Kw-HL density functignas follows

00 fora<1
l@of (x)= % fora=1 (11)
0 fora>1

Proof: As pdf of Kw-HL distribution is

20bhe M [1—e M%7 1 1—e M\t
lim £ (x) = lim 2{ —~ } 1— <7A)
x—0 x—=0 | (14 e Ax)° [ 1+e Mx 1+e ¥

The quantity

12
H

1—e M\ ¢ ot
lime ™ =1 |, liml+e™=2 and lim<{1—|(—r
x—0 x—0 x—0 14+ e—Ax

The above expression becomes

x—0

—Ax a—1
im (x) = lim <(20cb7\/4) [%} )

a—1

2 3
1 (177\x+“2"!) — ) +)
lim £(x) = lim_| (2abA/4)

x—0 x—0 2
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A 2
ocb)\> ot 1A Bl

lim f(x)= lim ( > 5

x—0 x—0

Now results can be formed easily.
Lemma 2: For x approaches to origin, limits of Kw-HL hazard rate is aléofvs

00 for a<1
limh(x) = q 93¢ for a=1 (12)
0 for a>1

Proof: The distribution function of Kw-HL distribution is

20cbAe A |:1767)\X:| a-1

2 —AX
. . 1+e—Ax 1+e
lim h(x) = lim ( ) =
x—0 x—0 1— 1-eMx
1+e M

The results are straightforward from the equation

2.3 Some special models of Kw-HL

An approximation to other probabilistic models shows theilfidity of models for different assumed values. By
considering the pdf of Kw-HL distribution from Eg6) here we present some special cases of observed model.

—If a =1andb =1, Kw-HL converts into half logistic distributioRlL(A).
—If b =1, observed distribution converts into exponentiated logistic EHL (a,A).
—If a =1, observed distribution becomes generalized half lagGHL(a,A).

3 Properties of Kw-HL Distribution

This section particularizes some structural quantitielwfHL distribution with algebraic expressions. These igdc
expressions are found more efficient to express statistiealsures instead of direct integration of density function

3.1 Moments

Theorem: Let X is a r.v belong to Kw-HL distribution with three shape paraenga, b andA > 0. Thert" ordinary
moment of proposed model is

l ad Wi,j,k
w. = 20bA ————T(r+1) (13)
' i’j’%o AL+j+Kk)
Proof: By definition,r'" moment of a distribution function is

o0
i

. =E(X") = Jxrf(x) dx
0

By using Eq. 7)
o0 o0 .
, j+k+1
W, = 20bA E Wijk J' x" (e’}"‘) dx
ij,k=0 0

Put Ax(1+j+k)=zandx = d dz

z X — 1
A1+j+Kk)? T A(1+j+K)
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o0

0 T
z
= 2abA w,,kj_—e**dz
m,;o R NCER R
o W. . k,
u/ = 2abA +F(r+ 1)
' .m.,;o (A(L+j+Kk)

The proof follows.
3.2 Incomplete Moment
Theorem: Let a random variabl¥ belongs to Kw-HL distribution then itst" incomplete moment is

b (x) =20bA Y m:}%r(w 1A (14 +K)) (14)
1,j,k=0

Proof: rt" incomplete moment for variable X is defined as

. Ax(1+j+k) )
z .
:Zab)\i’j’;oWi‘j‘k —(7\(1+j+k))”1e “dz
- Ax(1+j+k)
Wijk 1
_Zochi'j%OW J L1z g,

Incomplete gamma function completes the proof.

3.3 Moment generating function

Theorem: Suppose r.X have pdf of Kw-HL distribution described in EdqZ)(andM (t) represents its moment generating
function (mgf) as

> Wiyjyktm

A (L+j+k)™t

M (t) = 20bA Mm+1) (15)

|
ij,k,m=0 "

Proof: mgf for variable X is defined as

M (t) = 2abA Wi | e¥e AR gy

[ee]
ij,k=0

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

602 NS 2 R. M. Usman et al.: Kumaraswamy half-logistic distribution

Since

etxzfﬂm

o0
0 LLotm .
M (t) = 20bA E Wil’;’ﬁ J-xme’m‘(”k“) dx
0

ij.k,m=0
PutAx (14+j+k) =z

o0
m

Wi et™
M(t) =2xbA ) ;lj J(Ml _Zk))mﬂe”‘dz
- +j+

,j,k,m=0
3.4 Quantile Function

If q belongs to uniform distribution with interval (0,1), theandom variabl& = G(q) has density of Eq ). The quantile
function ofX is
)1/(1
(16)

)1/(1

Tl

N S CRE)
x:—XIog

S

1+(1—(1—q)

3.5 Skewness and Kurtosis

Skewness is used to measure the asymmetry and kurtosiglisouseasure the peakedness of probabilistic models. Both
measures are the descriptive measures of the shape of thabiity distribution. Skewness and kurtosis can be easily
determined by the following expressions based on first foemmmoments calculated by Eq 3.

visk) =2 and B

s

_ 4

2 17)

3.6 Mean deviation

If X belongs to Kw-HL distribution, then we can measure thattring of r.v X by the average deviation of observations
from mean and median. It particularly knows as mean devialmout mean and mean deviation about the median. It is
defined as

M.D ()Z) = J. Ix—ulf(x)dx and M.D ()N() = J. Ix—M]| f(x)dx
0 0

respectively, wherew represent the expected value of random variable X and calchlzulated from Eq.1Q) while

1 1/p) /@ 1/p) /@ . .
M = —sxlog 1+(1—(1—q) ) / 1+(1—(1—q) ) is median of X. The measures
M.D (X ) and M.D (X ) can be calculated from

M.D(X)=2uF(n)—2J (1) and M.D(X)=p—2J(M)

where]J (t) = }tf(t) dt
0

Mean deviation is practically used to explain the behavidanferroni and Lorenz curves. Mostly, these curves are
applied theoretically in many fields such as economicsbdity, demography, insurance, and medicihg] [
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3.7 Entropies

The entropy of a random variable X is the measure of variaifdhe uncertainty. A common measure of entropy is Rényi
entropy.

3.7.1 Rényi Entropy

Theorem: If the random variable X is defined as E§),(then the Rényi entropy is given by

o0

1 Yijk
logA+ 1= log i§0j+k+6 (18)

dlog2 blo Slogb
_ 8log2 | Sloga  Slog

R =T—5+75 "1 5

Proof: If r.v X belong to Kw-HL distribution then by definition, R§nhentropy is

whered >0 and b # 1.

% 28 (O hOAS e A8X []_ g—Ax70(a=D) 1 e—Ax\ @ 5(b—1)
1(5)=J _ 1- (=% _ dx
(14+e )2 [1e M 14+e M

0

On simplification the final expression becomes

(o)

_ 58 81,861 Yijk
1(8) =2°a®boA Z TS
1,j,k=0
Wi = (1)) (é(b.— 1)) (é(a— EI.) + cu) (—6(a+ 1) — cu)
i j k
So using this expression i (8), the result follows.
3.7.2 g-Entropy
The g-entropy (Hq) is defined by
1
Hg = c=qlog (1= (1-q) e (&)
By putting the above expression i (8) in above equation, we obtain
=L log (11— q){2atbirst i ik (19)
a-1 ijk=0j+k+6
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3.8 Order Satistics

Let X1,X2,X3,...Xn be arandom sample and its ordered values are denotéd aX 2, X(3), ... X(n ). The probability
density function (pdf) of order statistics is obtained gdihe below function

_ Tl_' s—1rq n—s
fom (x) = 5 Dl [FOOP T =F)I™ " (x)
The density of therth ordered statistics follows the Kw-HL distribution is dextvas follow

1
n! 1—e M\ “ °1 1—e M\ ¢ °
fem(x)=———— |1-<1— (| —+ 1— | —
(s—1)!' (n—s)! 14 e 1+eMx
20bAe M [1—e M7t 1\t
(14eMx)2 [1+e7"‘} 1= <1+e7"‘>

3.9 Maximum Likelihood Estimates

n—s

Since maximum likelihood estimators give the maximum infation about the population parameters, therefore, this
section presents the maximum likelihood estimates (MLHshhe parameters that are inherent within the Kw-HL
distribution function is given by the following: Le{y,...,X,, be random variables of the Kw-HL distribution of size n.
Then sample likelihood function of Kw-HL is obtained as

L(X]_,XZ, ...... X n,a,b,%):}:[lf(x)ZZ oa""b"A il;!-e W 1— (m)

Log-likelihood function is® = log[L (x1,x2,...... Xn;a,b,A)]

® =nlog2+nloga+nlogb+nlogh—A» x+(x—1)) log [1—{""} —(a+1)) log {1+ e*""}

+(b-1) Z|og[ (1+21:>T

Therefore, The MLE’s of parametera,b andA) which maximize the above log-likelihood function mustisfgt the
normal equations. We take the first derivative of the abogdikelihood equation with respect to parameters and equat
to zero respectively.

oL n SR . *(}12—3) |09L+ﬂ§}
Ja=so ==+ log[i-e x}meg[He X}Hb—l)z [1 (HW) } —0 (20)
T\ 1feAx
]b:%:%JrZIog l(%)jw (21)
o % o Ax
b= =Y xt (a1 17‘6 (et 1) %—(b—mz [1(1((1{%}))? ?jemz ~(22)
+e X

Since the above derived equations are in the complex folenetbre the exact solution of ML estimator for unknown
parameters is not possible. So it is convenient to use nearliNewton Raphson algorithm for exact numerically sotutio
to maximize the above likelihood function.
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Table 1: Mean estimates, bias and MSE of Estimated parameters

a b A Sample size Parameter Mean Bias MSE
1548 0.048 0.077
1524 0.024 0.049
2.083 0.083 0.239
1514 0.014 0.023
1509 0.009 0.016
2.029 0.029 0.066
1.507 0.007 0.011

50

15 15 2 100

150 1.505 0.005 0.007
2.015 0.015 0.030
2.611 0.111 0.313
50 2.039 0.039 0.087

2.196 0.196 0.929
2534 0.034 0.083
2.01 0.01 0.027
2.049 0.049 0.124
2516 0.016 0.04

25 2 2 100

150 2.006 0.006 0.014
2.027 0.027 0.058
3.673 0.173 0.754
50 2.548 0.048 0.138

2433 0433 136.1
3.548 0.048 0.199
2,518 0.018 0.043
2.09 0.09 0.221
3.525 0.025 0.092
2.508 0.008 0.021
2.041 0.041 0.091

35 25 2 100

150

> oo Yoo >Xcgal>Xagn >Xaon >Xaga|l>Xaoan >Xac o >a

4 Data Analysis

4.1 Smulation study

This section compares the parameters for different sanipds at different combination of parameters on the basis of
bias and MSE of Kw-HL distribution. We generate 10,000 sasjply using Monte Carlos simulation. All the algorithms
are coded in R language. We calculate ML estimates for a,b\d@abed on generated samples. Mean of these estimates
with bias and MSE are represented in the table below.

The values in Table 1 indicate that the MSE of ML estimatora,bfand\ decreases and their biases reduce towards
0 as sample size increases. While the increase in shapegtaranbias and MSE of estimated parameters increases.

4.2 Applications

We applied two data sets to illustrate the usefulness of topgsed model. The first data set was reported23y. [The
data represents the survival time of 72 infected with vintitebercle bacilli. The data are as follows: 0.1, 0.33, 0486,
0.59,0.72,0.74,0.77,0.92, 0.93, 0.96, 1.00, 1.00, 1.05,1.07,0.7,0.08, 1.08, 1.08, 1.09, 1.12,1.13, 1.1%,1. 20,
1.21,1.22,1.22,1.24,1.3,1.34,1.36, 1.39, 1.44, 1.43,1..59, 1.60, 1.63, 1.63, 1.68,1.71, 1.72,1.76, 1.83, .96,
1.97,2.02, 2.13, 2.15, 2.16, 2.22, 2.30, 2.31, 2.40, 2.48,,2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.612,4.
4.32,4.58, 5.55.

The second data set was originally used B4|[Data consists of 30 observations of March precipitatiorir{ches)
in Minneapolis/St Paul. The observations are: 0.77, 1.784,,aL.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.(&4,,1.
2.10,0.52,1.62,1.31,0.32,0.59,0.81,2.81, 1.87, 1.8%,4.75, 2.48, 0.96, 1.89, 0.90, 2.05. The summary statist
the data sets is given in Table 2.

The comparison of the Kumaraswamy Half Logistic distribatis being made with Kumaraswamy Logistic (Kw-L),
Beta Exponential (BE), Beta Weibull (BW), Type Il Half Logis Weibull (TIIHLW) and Exponentiated Half Logistic
(EHL) distribution. The numerous accuracy measures ircfudkeike Info Criterion (AIC), Bayes Info Criterion (BIC)
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likelihood (L), Anderson-Darling testA’*) and Cramer-von Mises test(*) are being calculated. The density functions

Table 2: Descriptive Statistics for data sets

Data  Min. Q1 Median Q3 Mean Max.
Setl 0.080 1.080 1560 2.302 1.837 7.000
Set2 0.320 0915 1470 2.088 1.675 4.750

of other existing distribution are given as follows:
Beta Exponential Distribution

Beta Weibull Distribution

f(x;a,b,v,A)

A a a a—1
f(x;a,b,7\) = me bxx(l—e )\X)

__ MY o (1_ emw) “*1(1_ (1_ efmw))bflxyfl

" Betda,b]

Type Il Half Logistic Weibull Distribution

nyleféxV (1_ eftbﬂ))‘*l
f(x;A,0,y) = 2\dy

(1+ (1— e*éxy)}‘)z

Exponentiated Half Logistic Distribution

f(x;A,0) =

20N e M 1M\t
(1+e—x)? (1+ e7"<)

Table 3: ML estimates for survival time of infected guinea pigs.

EHL(N,y) 1.09538  1.99161 - -
KwHL(a,b,A)  1.61665 3.8294810° 0.0000198 -
BE(a,b,A) 2.55961  1.77383 0.58859 -

TIIHLW(A,v,5) 1.66869 1.41133 0.379459 -
BW(a,b,A,y) 1.94921 0.726736 0.906026  1.20367

Table 4: ML estimates for March precipitation data

EHL(A,y) 1.28559 2.35058 -
BE(a,b,A) 3.214041 1.58825 0.803263
TIIHLW(A,y,8)  1.82277 1.4654 0.450975
KwHL(a,b,A) 1.80925 2.4674010°  0.0000243

_ Model SelectionThe model selection is carried by using goodness of fit measocluding maximized log-likelihood
(1), Akaike information criterion (AIC), Bayesian informati criterion (BIC), Anderson Darling te$f\j) and Cramer
Von Mises(W(j). Using these goodness of fit criteria findings of Table 5 anddvs that proposed model give superior

fit than other models.

5 Conclusion

The study introduces a new generalization of half logiststribution named as Kumaraswamy half logistic distribati
and elaborates explicit expression for its fundamentapg@riies. The study also explains the behavior of estimated
parameters by using Monte Carlos simulation approach. Bablife applications have also presented for explainirg th
better fit of the observed model as compared to some existoupls.
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Table 5: Some statistics for models fitted to

survival time of infebgriinea pigs.

Model AIC BIC L A* W

EHL(A,y) 208.387 21294 -102.194 0.59843 0.08869
KwHL(a,b,A) 114.223 121.053 -54.1115 0.25968 0.06352
BE(a,b,A) 211.834 218.664 -102.917 0.70161 0.10251
TIIHLW(A,vy,8) 211.156 217.986 -102.578 0.64029 0.09285
BW(a,b,A,y) 213.590 222.697 -102.795 0.69309 0.10284
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Table 6: Some statistics for models fitted to March precipitatioradat

Model AIC BIC L A* w*
EHL(A,y) 80.4299 83.2323 -38.2149 0.116806 0.0153267
BE(a,b,A) 82.1707 86.3743 -38.0854 0.109457 0.0147817

TIIHLW(A,y,5) 82.2453 86.4489 -38.1226 0.111972 0.0152154
KwHL(a,b,A) 41.6990 45.9026 -17.8495 0.167878 0.0111148
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