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Abstract: New test-statistic for testing exponentiality againstralledecreasing life class of life distributions in momemeingrating

function (ODLmgs), based on U-statistic is studied. Selected critical vahrestabulated for sample size= 5(5)50. The Pitman

asymptotic relative efficiencig?ARE) are studied for other testes. The power of the test is estuirfayt simulation. The problem in
case of right-censored data is also handled, and the poti@iagss of this test are also simulated for some commonlg distributions

in reliability. Finally, real data are given to elucidateetbse of the proposed test statistic for complete and incetmplata in the
reliability analysis.

Keywords: life distributions,ODLngs aging class , U-statistic, asymptotic normality, efficignelonte Carlo method, power and
censored data.

1 Introduction and Motivation

Over the past few decades, the idea of the measurement odssuoc failure concerning reliability has developed,
leading scientists to use this advantage to establish nemches of reliability such as classes of life distributidviany
statisticians and reliability analysts have shown gresgrést in modeling survival data using classification o lif
distributions based on different aspects of aging condbptsdescribe how a population of units or system improved or
deteriorates with age. The applications of classes of Ig&ridutions can be seen in reliability, engineering, b@tal
science, maintenance and biometrics.

Note that the exponential distribution forms the backbohstatistical reliability theory and maintenance modeling
see for example Barlow and Proschan (1981) and Zacks (19&2jnention for the common classes of life distributions
that contains most of previously known classes like indrepiilure rate (IFR), increasing failure rate averageR#¥,
new better than used (NBU), new better than used in expeot@iBUE) and decreasing mean residual life (DMRL). For
some properties and interrelationships of these critegiaefer to Bryson and Siddiqui (1969).

Abouammoh et al. (2000) introduced the NRBU, RNBU, NRBUE ,RBUE classes of life distributions and studied
the relation between them. Abouammoh and Khalique (199@siigated a test statistic for testing exponentialitysusr
NRBU based on total time of test (TTT)-transform empirigallahmoud, et al. (2002) investigated the test statistic fo
NRBU based on U-Statistic. Diab et al. (2005) discussed & dtdistic of RNBU by using U-test. Hendi and
Abouammoh (2001) investigated the two test statisticsdsting exponentiality versus NBRUE and HNBRUE classes of
life distribution based on U-Statistic, and Abu-Youssdf{2) among others.

In reliability theory, ageing life is usually characterizby a nonnegative random variabte> 0 with cumulative
distribution function (cdffF and survival function (sflF =1 — F. For any random variabl¥, let

X =[X—t|X>t], te{x:F(x) <1},

denote a random variable whose distribution is the sameeasaihditional distribution oK —t given thatX > t. When
X is the lifetime of a deviceX can be regarded as the residual lifetime of the device atttigigen that the device has
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survived up to timé. Its survival function is (see, for instance, Deshpande €1286))

whereF (x) is the survival function oK.
X; converges weakly to a nonnegative random variableith survival function,

1_ - T

W (X) = = V() whereV (x) = /F(u)du, x> 0.
IJ X

Whereu = [;°F (u)du.

From the above discussion, we see that there are three raquimtities related to life and these are the life it3elf
the random residual lif&, and the equilibrium lifeX, Hence it would be of interest to compare the residuabfiféo its
equilibrium formX . L

Formally, if X andY are two random variables with distributioRsandG (survival functions ar& andG), respectively,
then

we say thaX is smaller thary in the moment generating function ordering (denoteXbymgs Y) if and only if

/mef\xf(x)dxg/mef\xé(x)dx forall A > 0.
0 0

Sepehrifar et al. (2012) defined overall decreasing lifetRDL and investigated the probabilistic characteristics of thi
class of life distribution.

Definition 1.1:A life distribution F on (0, ), with F(0~) = 0 is called overall decreasing lif©DL), if
| Wdt< iWe, x>0
X

wherep = ["F(u)du < co.
We define the following new definition.

Definition 1.2. We say thaiX is overall decreasing life class of life distributions in ment generating function order
(ODLingt), if E (%) <mgf E (x)
This definition means tha(x € ODLng f), if, and only if,

/Oooe“/XmV_V(t)dtdxg u/oooef\XV_V(x)dx

The corresponding dual class of life distribution is overadreasing life class of life distributions in moment gesting
function order and is denoted BQILmgt).

The rest of the article is structured as follows. In Sectipw® present a test statistic based on a U-Statistic fonggsti
Ho : F is exponential againgi; : F is ODLngs and not exponential, the Pitman asymptotic relative efiicies (PARE)
are calculated. In Section 3 Monte Carlo null distributioitical points are simulated for sample sizes 5(5)50 and the
power estimates of this test are also calculated for somemmnalternatives distribution followed by some numerical
example. In section 4, we dealing with right-censored dathselected critical values are tabulated, the power ettgna
for censor data of this test are tabulated also we discuss appilications to elucidate the usefulness of the prop@std t
in reliability analysis for censored data.

2 Testing AgainstODLpyg¢ Class

In this section, we test the null hypothesig: F is exponential with meap againsH; : F is ODLpyg and not exponential.
The following lemma is needed.

Lemma 2.1.If F belongs tdODLyg¢ class andK is a random variable with distribution functiénthen

1

1 1 1 1
ARA) = 35HPA) = 550(A) + 55 M — T Ho + 55 7 0,
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wherep(A) =E (1) = [y e*dF (x), and pip) = 2 fg' XF (x)dx
Proof: SinceF is ODLyg we have

/Omef\X/XmV_V(t)dtdxg u/owe’\XV_V(x)dx, 1)

we can write,

RH.S= u/ome’\XV_V(x)dx

:/Ome“/xwf(u)dudx

1 1 1
ZFQU(/\)—XU—ﬁ- )

On the other hand,

L.H.S:/wef\x/mV_V(t)dtdx
A“{/ /F u)dudx— // dudx}

Substituting from (2) and (3) into (1), we get
1 1 1
Fq)()\) e

which completes the proof.
The test presented here depends on a sakiphs, ..., X, from a population with distributiofr. Using the previous
Lemma we usé (A) as a measure of departure from exponentiality where

00 = [ |53 Au-000) + 5re - 7H+ 53| dF (0

2.1 Empirical Test Statistic for ODlg s Alternative

To estimateA (A) let X1,Xp, ..., Xy, be a random sample frof. It is noted that , undeHp : A (A) = 0,while under
Hi:A(A) >0 The empirical estimate @f (A) can be written as

n n-1n-2

- 1 1 1
= X p = X2 - XX
&n(A) = DD Z, 2 1{ (AXj = 1)+ X ,\Xlkas}

(4)
To make the tesf, (A) scale invariant, led;, A)= % whereX = % Y1 X is the sample mean. Then
. n n-1n-2 e/\Xk 1 ) 1
oh(A) = v zijzlkz{” (AXj— +§X X,-Xk+ﬁ}.

(5)

The following theorem summarizes the asymptotic normmlitg?n (A)
Theorem 2.1.Asn— o, \/n {Sn (A)— Dn (A )} is asymptotically normal with mean 0 and variance

GZ:Var[ 2N —AAZ+AAZ) X+ A (1-AZ)X2—2(1—A)%eM

1
2)\3(1—)\){(
+ (2—4r +222-22%)}],
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under R the variance tends to
o DS, gal
A-=1D°(2r-1) 2

Proof: Using standard U-Statistic theory see (@889

0% =Var{E [@ (X1, X2, X3) [X1] + E [@ (X1, X2, X3) |X2] + E [ (X1, X2, X3) [X3]},

set,
1 1 1 1
9 (%1, %0, Xg) = 5 (AXa = 1) &P ZoXE = XX+ 55,
then,
N1 (X) = E[@(X1, Xz, X3) [X4],
_ i/m (Ax—1)e -Nxdx ixz_lxl/mxe—xolwri
A3 Jo 227 A o A
L 1-A(1-A)y 1, 1
2= At T oAy
also,

N2(X) = E[@ (X1, X2, X3) [X2],
_ Lo [T ox_1ex i/‘”zfx 1 /°°7x 1
_Aae" /0 (Ax—1)edx+ | XCe dx— =X | xe dx+

A PR
—(1-A) 4%, 1 1+A2
TGM_XXZ“LT’

N3 (X) = E[@(X1,X2,X3)[X3] = 0

W (X) = n1(X)+n2(X) +ns(X)
_ Wl—)\) {2 -2+ 03X+ A (1-22) X2 2(1- )™
+(2-4r+222-223)}.

It is easy to show the [ (X)] = O, under K and

0? = Var[y (X)]
= Var [m{(m —AAZ LA XA (122 X2 —2(1—A)%eM
+(2-4A+222-223)}
Then,
o2 — 2\ -5
NV IETCIPY ST

SettingA = 0.01, we obtaingé = 5.18481

2.2 The Pitman Asymptotic Relative Efficiency

To asses the quality of this procedures, we compute the PATaofest , by using the concept of “Pitman’s asymptotic
eficiency (PAE)"which is defined as
1 0

PAE(A(0)) = golﬁﬂr(e)laﬁeo-

And compared with some other tests for the following altéweadistributions:
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(i) Linear failure rate family (LFR) F1(x) = e*X*gXZ,x >0,6 >0,
(i) Makeham family ~ Fp(x) = e x0xte™-1) x>0 g >0,
(iii ) Weibull family ~ Fa(x) =’ ,x> 0,0 >0,

(iv) Gamma family  Fa(x) = J;" e Yu®~1du/r (8),x > 0,6 > 0.

Note that for6 = 0, F1(x) andF(x) goes to the exponential distribution and k= 1, F3(x) andF4(x) reduce to the
exponential distribution.
Since,

800 = [ 35 1o~ )0 () + 5 1i(6)— 5 i+ 7] aFo 1),

Where,
Ho= [ Foldx 1ma(0)=2[ xFo(ax Eo(e)= [ edr(.
ThePAE(Ag (A)) can be written as,

PAE(d (1)) = — !

= /Ooo{)\—13(/\u9—l)E9(@X)+%H2(9)—%H5+F}dﬁ\)(t)
+/0°°{)\_13(,\ug_1)/0me"xng,(x)+)\—12u‘9/ome"xdFs(X)
+/\1/0°°xf‘9(x)dx— ;ueué}dFe(t)‘-

Using MATHEMATECA 9 program to calculate the Pitman asyntigtefficiency for alternative families we obtain

(i) Linear failure rate family:

1| 2-A
PAE(Ag(A)) = — , A£1

@o(M) = 5o |51 #

(i) Makeham family:
PAE(As (M) = = |23 | )12

O T o |4(2=3x +A2)| ’

(i ) Weibull family:
1 |A—A%+log[l—A]

(iv) Gamma family:
1
PAE(Ag (A)) = o |0.3425, atA =0.01
0

Table 1.gives the efficiencies of our proposed tgt{A) comparing with the tests given by Mugdadi and Ahmad
(2005),93) and Mahmoud and Abdul Alim (2008(5,&? respectively. We have maximum valuefat 0.01

Table 1: Comparison between tRAE of our test and some other tests:

Distribution No(A) &g 32
Linear failure rate| 0.8917 0.408 0.217
Makeham 0.1666 0.039 0.144
Weibull 0.6669 0.170 0.05
Gamma 0.1504 - -

Also, the Pittman asymptotic relative efficien@§ARE) of our testAg(A) 1n comparing t05(3),5é:) is calculated

WherePARE(Ty, To) = pagi )
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Fig. 1 Relation between critical values, sample size and confaléawels.

Table 2. show that the asymptotic relative efficiencies fartest:

Distribution | PARE(Ag()), 8(3)) PARE(AQ(A),5§>)

LFR 2.18554 4.1092
Makeham 4.27179 1.1569
Weibull 3.92294 13.338

3 Monte Carlo Null Distribution Critical Points

We have simulated the upper percentile points for 90%, 953% @nd 99%. Table 3 gives these percentile points of

statisticsd, (A) in Equation (2.5) withh = 0.55. These calculations are based on 5000 simulated sampie=si5(5)50
from the standard exponential distribution.

Table 3. The upper percentile at()\) with 5000 replications at = 0.55.

n 90% 95% 98% 99%

5 0.21549 0.29752 0.44056 0.59486
10 0.08308 0.10459 0.13597 0.17652
15 0.04813 0.05869 0.07167 0.08472
20 0.03321 0.03965 0.04778 0.05609
25 0.02457 0.02863 0.03529 0.03999
30 0.01958 0.02242 0.02627 0.02897
35 0.01601 0.01844 0.02117 0.02339
40 0.01360 0.01516 0.01737 0.01897
45 0.01162 0.01316 0.01494 0.01616
50 0.01019 0.01156 0.01293 0.01377

It is noticed from Table 3 and Fig 1 that the critical values arcreasing as the confidence level increasing and is
almost decreasing as the sample size increasiig-a0.55.
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3.1 The Power Estimates

The power of the proposed test will be estimate(lat )% confidence levely = 0.05 with suitable parameters values
of 8 atn = 10,20 and 30 with respect to three alternatives linear failate (LFR), Weibull and Gamma distributions
based on 5000 samples.

Table 4.The power estimates &f()\)

Distribution Parametefl Sample Size
n=10 n=20 n=30
2 0.9980 1.0000 1.0000
Linear Failure Rate Family 3 0.9994 1.0000 1.0000
4 0.9992 1.0000 1.0000
2 1.0000 1.0000 1.0000
Weibull Family 3 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000
2 0.9992 0.9998 0.9998
Gamma Family 3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

It is clear from Table 4 that our test has good powers for &drahtives and the powers increases as the sample size
increases. The power is getting as smaller asdbBéngr approaches the exponential distribution.

3.2 Applications Using Complete (Uncensored) Data

Here, we present some of a good real examples to illustratesé of our test statisti(z% (A) in the case of non censored
data at 95% confidence level.

Data-set #1.

Consider the data that given in Abouammoh €t18194). These data represent set of 40 patients suffering fromdbloo
cancer (leukemia) from one of ministry of health hospitalSaudi Arabia. In this case, we git(A ) = 0.0734397 which
is greater than the critical value of the Table 3. Then we gidde the alternative hypotheses which show that the data set
hasODLgt property but not exponential.

Data-set #2.

Consider the data set given in Grubbs (1971), This data ¢inemes between arrivals of 25 customers at a facility.
It is easily to show thad, (A ) = 0.155362 which is greater than the critical value of Table 3Mve accepil; which
shows that the data set ha@®Lmg¢ property but not exponential.

Data-set #3.

Consider the data-set given in Fisher (1966) which reptegendifferences in heights between cross- and self-
fertilized plants of the same pair grown together in one lothis case, we gel, (A) = 0.421684 and this value exceeds
the tabulated critical value in Table 3.1t is evident at tlym#icant level %95,that the data set @BLmgt property.

Data-set #4.

Consider the data set in Kochar (1985) In an experiment aidélcstate university to study the effect of methyl
mercury poisoning on the life lengths of fish goldfish werejscied to various dosages of methyl mercury. At one
dosage level the ordered times to death in day. We can sethéhadlue of test statistic for the data set by (5) is given by
on(A) =7.77932 and this value greater than the tabulated criticalevad Table 3. This means that the set of data have
ODLgt property and not exponential.

4 Testing AgainstODLmg¢ Class for Censored Data

In this section, a test statistic is proposed to ksversusH; with randomly right-censored data. Such a censored data is
usually the only information available in a life-testing d&b or in a clinical study where patients may be lost (cerdore
before the completion of a study. This experimental sitoratian formally be modeled as follows.
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Supposen objects are put on test, anfi, Xy, ..., Xy denote their true life time. We assume that X5, ..., X, be
independent, identically distributed (i.i.d.) accordittga continuous life distributiorfF. Let Y1,Y>,...,Y, be (i.i.d.)
according to a continuous life distributi@ Also we assume that sandY’s are independent.

In the randomly right-censored model, we observe the péir;), j = 1,...,n whereZ; = min(X;,Y;j) and

5 1ifZi=X (" observn is nucensorgd
71 0if z=Y; (j™" observnis censored

LetZ(0)=0< Z(1) < Z(2) < ... < Z(n) denote the ordere?isandqj) is thed; corresponding td, ;) respectively.
Using the censored datd;, d;), j = 1,...,n. Kaplan and Meier (1958) proposed the product limit estimato

FaX)=1-R(X)= [] {(—i)/—j+1} Xe0.2)
[izg)=<X]

Now, for testingHp : A (A) = 0, againstH; : A (A) > 0, using the randomly right censored data, we propose the
following test statistic:

B0 = [ |3 OB =D 00+ g5~ 12+ 55| F10),

where,@(A) = 5’ €"*dF (x) For computational pUrposes’ (A) can be rewritten as

~ 1 />~ 1 1 1
)= [ |3 An- D0+ b~ 5+ 53] 2 ©)
where,
n i-1 n -1 6
U= Zlm_l —Zi_1)), Z |_|Cp 0 —Z1-1));
and,

n

o= - ez <jnzc5<q)_j|—|lcg<q>> ‘- Z <k 205 k— 105 )
j; R ’ =] l_L ! l_L

WhereCy = = k+1

Table 5. gives the critical values percentilesflﬂ‘()\) test for sample sizes = 5(5)30(10)81, 86.based on 5000
replications.

Table 5. Critical values for percentiles Af (A) testath = 0.55

n 90% 95% 98% 99%

5 116580 1.26058 1.35252 1.41201
10 1.18099 1.26657 1.34111 1.37197
15 1.13501 1.23818 1.31547 1.35936
20 1.07032 1.18395 1.28310 1.31544
25 0.98278 1.11435 1.23061 1.27834
30 0.92051 1.06680 1.18682 1.24833
40 0.79518 0.95872 1.10180 1.17032
50 0.66343 0.83783 1.00606 1.11748
60 0.58566 0.77149 0.95579 1.04114
70 0.49344 0.68441 0.88579 0.98454
81 0.42276 0.58798 0.81735 0.95729
86 0.37183 0.54065 0.77197 0.88220

In view of Table 5, and Fig. 2 it is noticed that the criticalues are increasing as the confidence level increasing and
is almost decreasing as the sample size increasing.
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Fig. 2 Relation between critical values, sample size and confelewels

L C

4.1 The power estimates fdxr (A)

50 60

70 81 86

Table 6 shows the power estimate of the test statfs‘ti@‘)\) at (1— a)% confidence levedr = 0.05 using LFR, Weibull
and Gamma family. The estimates are based on 5000 simukatgules for sizes = 10,20 and 30.

A
Table 6. Power estimates df (A) atA = 0.55.

C

Distribution Parametaf Sample size
n=10 n=20 n=30
2 0.9986 1.0000 1.0000
LFR family 3 0.9986 1.0000 1.0000
4 0.9976 1.0000 1.0000
2 0.9982 1.0000 1.0000
Weibull family 3 0.9988 1.0000 1.0000
4 0.9994 1.0000 1.0000
2 0.9274 0.9008 0.916
Gamma family 3 0.9258 0.9996 0.9998
4 0.8882 1.0000 1.0000

We notice from Table 5. that our test has a good power, anddieipincreases as the sample size increases.

4.2 Applications for Censored data

We present two good real examples to illustrate the use ofestirstatisticsA® (A) in the case of censored data at 95%

confidence level.
Data-set #5.

Consider the data from Susarla and Vanryzin (1978),whignesent 81 survival times (in months) of patients
melanoma. Out of these 46 represents non-censored datatdamg into account the whole set of survival data (both
censored and uncensored). It was found that the value oftaisstic for the data set using formula (6) is given by

A° (A) =—1.19327 and this value is less than the tabulated criticalevalTable 5. This means that the data set have the
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exponential property.

Data-set #6.
On the basis of right censored data for lung cancer patiemts Pena (2002). These data consists of 86 survival times
(in month) with 22 right censored. Now account the whole desuwvival data (both censored and uncensored), and

computing the test statistic given by formula (6). It wasrfduhatA° (A) = 2.37579« 10'° which is greater than the
tabulated value in Table 5.1t is evident at the significam¢l€695,that the data set h@DLmg¢ property.
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