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Abstract: New test-statistic for testing exponentiality against overall decreasing life class of life distributions in moment generating
function

(
ODLmg f

)
, based on U-statistic is studied. Selected critical valuesare tabulated for sample sizen = 5(5)50. The Pitman

asymptotic relative efficiencies(PARE) are studied for other testes. The power of the test is estimated by simulation. The problem in
case of right-censored data is also handled, and the power estimates of this test are also simulated for some commonly used distributions
in reliability. Finally, real data are given to elucidate the use of the proposed test statistic for complete and incomplete data in the
reliability analysis.

Keywords: life distributions,ODLmg f aging class , U-statistic, asymptotic normality, efficiency, Monte Carlo method, power and
censored data.

1 Introduction and Motivation

Over the past few decades, the idea of the measurement of success or failure concerning reliability has developed,
leading scientists to use this advantage to establish new branches of reliability such as classes of life distributions. Many
statisticians and reliability analysts have shown great interest in modeling survival data using classification of life
distributions based on different aspects of aging conceptsthat describe how a population of units or system improved or
deteriorates with age. The applications of classes of life distributions can be seen in reliability, engineering, biological
science, maintenance and biometrics.

Note that the exponential distribution forms the backbone of statistical reliability theory and maintenance modeling
see for example Barlow and Proschan (1981) and Zacks (1992).We mention for the common classes of life distributions
that contains most of previously known classes like increasing failure rate (IFR), increasing failure rate average (IFRA),
new better than used (NBU), new better than used in expectation (NBUE) and decreasing mean residual life (DMRL). For
some properties and interrelationships of these criteria we refer to Bryson and Siddiqui (1969).

Abouammoh et al. (2000) introduced the NRBU, RNBU, NRBUE, HNRBUE classes of life distributions and studied
the relation between them. Abouammoh and Khalique (1998) investigated a test statistic for testing exponentiality versus
NRBU based on total time of test (TTT)-transform empirically. Mahmoud, et al. (2002) investigated the test statistic for
NRBU based on U-Statistic. Diab et al. (2005) discussed a test statistic of RNBU by using U-test. Hendi and
Abouammoh (2001) investigated the two test statistics for testing exponentiality versus NBRUE and HNBRUE classes of
life distribution based on U-Statistic, and Abu-Youssef (2002) among others.

In reliability theory, ageing life is usually characterized by a nonnegative random variableX ≥ 0 with cumulative
distribution function (cdf)F and survival function (sf)F =1−F. For any random variableX, let

Xt = [X− t|X > t], t ∈ {x : F(x)< 1},

denote a random variable whose distribution is the same as the conditional distribution ofX − t given thatX > t. When
X is the lifetime of a device,Xt can be regarded as the residual lifetime of the device at timet, given that the device has
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survived up to timet. Its survival function is (see, for instance, Deshpande et al(1986))

Ft(x) =
F(t + x)

F(t)
, F(t)> 0,

whereF(x) is the survival function ofX.
Xt converges weakly to a nonnegative random variableX̃ with survival function,

WF(x) =
1
µ

V(x) whereV(x) =

∞∫

x

F(u)du , x≥ 0.

Whereµ =
∫ ∞

0 F (u)du.
From the above discussion, we see that there are three randomquantities related to life and these are the life itselfX,

the random residual lifeXt , and the equilibrium lifẽX, Hence it would be of interest to compare the residual lifeXt to its
equilibrium formX̃ .

Formally, ifX andY are two random variables with distributionsF andG (survival functions areF andG), respectively,
then

we say thatX is smaller thanY in the moment generating function ordering (denoted byX ≤mg f Y) if and only if
∫ ∞

0
eλ xF (x)dx≤

∫ ∞

0
eλ xG(x)dx, for all λ > 0.

Sepehrifar et al. (2012) defined overall decreasing life classODL and investigated the probabilistic characteristics of this
class of life distribution.

Definition 1.1:A life distributionF on (0,∞), with F(0−) = 0 is called overall decreasing life (ODL), if
∫ ∞

x
W(t)dt ≤ µW(x), x≥ 0,

whereµ =
∫ ∞

0 F(u)du< ∞.
We define the following new definition.

Definition 1.2. We say thatX is overall decreasing life class of life distributions in moment generating function order

(ODLmg f), if E (Xt)≤mg f E
(

X̃
)

This definition means that,
(
X ∈ ODLmg f

)
, if, and only if,

∫ ∞

0
eλ x

∫ ∞

x
W(t)dtdx≤ µ

∫ ∞

0
eλ xW(x)dx.

The corresponding dual class of life distribution is overall increasing life class of life distributions in moment generating
function order and is denoted by(OILmg f).

The rest of the article is structured as follows. In Section 2, we present a test statistic based on a U-Statistic for testing
H0 : F is exponential againstH1 : F is ODLmg f and not exponential, the Pitman asymptotic relative efficiencies (PARE)
are calculated. In Section 3 Monte Carlo null distribution critical points are simulated for sample sizesn= 5(5)50 and the
power estimates of this test are also calculated for some common alternatives distribution followed by some numerical
example. In section 4, we dealing with right-censored data and selected critical values are tabulated, the power estimates
for censor data of this test are tabulated also we discuss some applications to elucidate the usefulness of the proposed test
in reliability analysis for censored data.

2 Testing AgainstODLmg f Class

In this section, we test the null hypothesisH0 : F is exponential with meanµ againstH1 : F is ODLmg f and not exponential.
The following lemma is needed.

Lemma 2.1.If F belongs toODLmg f class andX is a random variable with distribution functionF then

∆ (λ ) =
1

λ 2 µφ (λ )− 1
λ 3 φ (λ )+

1
2λ

µ(2)−
1
λ

µ2+
1

λ 3 < 0,
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whereφ (λ ) = E
(
eλ x
)
=
∫ ∞

0 eλ xdF (x) , and µ(2) = 2
∫ ∞

0 xF (x)dx.

Proof: SinceF is ODLmg f we have
∫ ∞

0
eλ x

∫ ∞

x
W(t)dtdx≤ µ

∫ ∞

0
eλ xW(x)dx, (1)

we can write,

R.H.S= µ
∫ ∞

0
eλ xW(x)dx,

=

∫ ∞

0
eλ x

∫ ∞

x
F(u)dudx,

=
1

λ 2 φ (λ )− 1
λ

µ − 1
λ 2 . (2)

On the other hand,

L.H.S=

∫ ∞

0
eλ x

∫ ∞

x
W(t)dtdx,

=
1

λ µ

[∫ ∞

0
eλ x

∫ ∞

x
F(u)dudx−

∫ ∞

0

∫ ∞

x
F(u)dudx

]

=
1

λ 3µ
φ (λ )− 1

2λ µ
µ(2)−

1
λ 3µ

− 1
λ 2 . (3)

Substituting from (2) and (3) into (1), we get

1
λ 3 φ (λ )− 1

2λ
µ(2)−

1
λ 3 ≤ 1

λ 2 µφ (λ )− 1
λ

µ2

which completes the proof.
The test presented here depends on a sampleX1,X2, ...,Xn from a population with distributionF . Using the previous

Lemma we use∆ (λ ) as a measure of departure from exponentiality where

∆ (λ ) =
∫ ∞

0

[
1

λ 3 (λ µ −1)φ (λ )+
1

2λ
µ(2)−

1
λ

µ2+
1

λ 3

]
dF (t)

2.1 Empirical Test Statistic for ODLmg f Alternative

To estimate∆ (λ ) let X1,X2, ...,Xn, be a random sample fromF. It is noted that , underH0 : ∆ (λ ) = 0,while under
H1 : ∆ (λ )> 0 The empirical estimate of∆ (λ ) can be written as

∆̂n (λ ) =
1

n(n−1)(n−2)

n

∑
i=1

n−1

∑
j=1

n−2

∑
k=1

{
1

λ 3 (λXj −1)eλ Xk +
1

2λ
X2

j −
1
λ

XjXk+
1

λ 3

}

(4)

To make the test̂∆n (λ ) scale invariant, let̂δn (λ ) = ∆̂n(λ )
X2 whereX = 1

n ∑n
i=1Xi is the sample mean. Then

δ̂n (λ ) =
1

n(n−1)(n−2)X
2

n

∑
i=1

n−1

∑
j=1

n−2

∑
k=1

{
1

λ 3 (λXj −1)eλ Xk +
1

2λ
X2

j −
1
λ

XjXk+
1

λ 3

}
.

(5)

The following theorem summarizes the asymptotic normalityof δ̂n (λ )
Theorem 2.1.As n→ ∞ ,

√
n
[
δ̂n (λ )− ∆̂n(λ )

]
is asymptotically normal with mean 0 and variance

σ2 = Var

[
1

2λ 3(1−λ )

{(
2λ −4λ 2+4λ 3)X+λ

(
1−λ 2‘)X2−2(1−λ )2eλ x

+
(
2−4λ +2λ 2−2λ 3)}] ,
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under H0 the variance tends to

σ2 =
2λ −5

(λ −1)2 (2λ −1)
, λ > 0,λ 6= 1,

1
2

Proof: Using standard U-Statistic theory see Lee(1989)

σ2 =Var{E [φ (X1,X2,X3) |X1]+E [φ (X1,X2,X3) |X2]+E [φ (X1,X2,X3) |X3]} ,

set,

φ (X1,X2,X3) =
1

λ 3 (λX1−1)eλ X2 +
1

2λ
X2

1 −
1
λ

X1X2+
1

λ 3 ,

then,

η1 (X) = E [φ (X1,X2,X3) |X1] ,

=
1

λ 3

∫ ∞

0
(λx−1)e−(1−λ )xdx+

1
2λ

X2
1 −

1
λ

X1

∫ ∞

0
xe−xdx+

1
λ 3 ,

=
1−λ (1−λ )

λ 2 (1−λ )
X1+

1
2λ

X2
1 −

1
λ 2 (1−λ )

,

also,

η2 (X) = E [φ (X1,X2,X3) |X2] ,

=
1

λ 3 eλ X2

∫ ∞

0
(λx−1)e−xdx+

1
2λ

∫ ∞

0
X2e−xdx− 1

λ
X2

∫ ∞

0
xe−xdx+

1
λ 3 ,

=
−(1−λ )

λ 3 eλ X2 − 1
λ

X2+
1+λ 2

λ 3 ,

and,
η3 (X) = E [φ (X1,X2,X3) |X3] = 0

Set,

ψ (X) = η1 (X)+η2(X)+η3(X)

=
1

2λ 3 (1−λ )

{(
2λ −4λ 2+4λ 3)X+λ

(
1−λ 2)X2−2(1−λ )2eλ x

+
(
2−4λ +2λ 2−2λ 3)} .

It is easy to show thatE [ψ (X)] = 0, under H0 and

σ2 = Var[ψ (X)]

= Var

[
1

2λ 3(1−λ )

{(
2λ −4λ 2+4λ 3)X+λ

(
1−λ 2)X2−2(1−λ )2eλ x

+
(
2−4λ +2λ 2−2λ 3)} .

Then,

σ2
0 =

2λ −5

(λ −1)2 (2λ −1)
.

Settingλ = 0.01, we obtainσ2
0 = 5.18481

2.2 The Pitman Asymptotic Relative Efficiency

To asses the quality of this procedures, we compute the PAE ofour test , by using the concept of “Pitman’s asymptotic
eficiency (PAE)”which is defined as

PAE(△r(θ )) =
1

σ0
| ∂
∂θ

△r(θ )|θ→θ0
.

And compared with some other tests for the following alternative distributions:
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(i) Linear failure rate family (LFR) F1(x) = e−x− θ
2 x2

,x≥ 0,θ ≥ 0,
(ii) Makeham family F2(x) = e−x−θ(x+e−x−1),x≥ 0,θ ≥ 0,

(iii ) Weibull family F3(x) = e−xθ
,x> 0,θ ≥ 0,

(iv) Gamma family F4(x) =
∫ ∞

x e−uuθ−1du/Γ (θ ),x> 0,θ ≥ 0.

Note that forθ = 0, F1(x) andF2(x) goes to the exponential distribution and forθ = 1, F3(x) andF4(x) reduce to the
exponential distribution.

Since,

∆θ (λ ) =
∫ ∞

0

[
1

λ 3 (λ µθ −1)Eθ

(
eλ x
)
+

1
2λ

µ2(θ )−
1
λ

µ2
θ +

1
λ 3

]
dFθ (t) .

Where,

µθ =

∫ ∞

0
Fθ (x)dx, µ2(θ ) = 2

∫ ∞

0
xFθ (x)dx, Eθ

(
eλ x
)
=

∫ ∞

0
eλ xdFθ (x) .

ThePAE(∆θ (λ )) can be written as,

PAE(∆θ (λ )) =
1

σ0

∣∣∣∣
∫ ∞

0

{
1

λ 3 (λ µθ −1)Eθ

(
eλ x
)
+

1
2λ

µ2(θ )−
1
λ

µ2
θ +

1
λ 3

}
dF8

θ (t)

+

∫ ∞

0

{
1

λ 3 (λ µθ −1)
∫ ∞

0
eλ xdF8

θ (x)+
1

λ 2 µ 8
θ

∫ ∞

0
eλ xdFθ (x)

+
1
λ

∫ ∞

0
xF

8

θ (x)dx− 2
λ

µθ µ 8
θ

}
dFθ (t)

∣∣∣∣ .

Using MATHEMATECA 9 program to calculate the Pitman asymptotic efficiency for alternative families we obtain

(i) Linear failure rate family:

PAE(∆θ (λ )) =
1

σ0

∣∣∣∣∣
2−λ

(λ −1)2

∣∣∣∣∣ , λ 6= 1

(ii) Makeham family:

PAE(∆θ (λ )) =
1

σ0

∣∣∣∣
λ −3

4(2−3λ +λ 2)

∣∣∣∣ , λ 6= 1,2

(iii ) Weibull family:

PAE(∆θ (λ )) =
1

σ0

∣∣∣∣
λ −λ 2+ log[1−λ ]

λ 2 (λ −1)

∣∣∣∣ , λ 6= 0,1

(iv) Gamma family:

PAE(∆θ (λ )) =
1

σ0
|0.3425|, at λ = 0.01

Table 1.gives the efficiencies of our proposed test△θ (λ ) comparing with the tests given by Mugdadi and Ahmad

(2005),δ(3) and Mahmoud and Abdul Alim (2008),δ (2)
Fn

respectively. We have maximum value atλ = 0.01

Table 1: Comparison between thePAE of our test and some other tests:

Distribution △θ (λ ) δ(3) δ (2)
Fn

Linear failure rate 0.8917 0.408 0.217
Makeham 0.1666 0.039 0.144
Weibull 0.6669 0.170 0.05
Gamma 0.1504 - -

Also, the Pittman asymptotic relative efficiency(PARE) of our test△θ (λ ) ın comparing toδ(3),δ
(2)
Fn

is calculated

wherePARE(T1,T2) =
PAE(T1)
PAE(T2)
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Fig. 1 Relation between critical values, sample size and confidence levels.

Table 2. show that the asymptotic relative efficiencies for our test:

Distribution PARE
(
△θ (λ ),δ(3)

)
PARE

(
△θ (λ ),δ

(2)
Fn

)

LFR 2.18554 4.1092
Makeham 4.27179 1.1569
Weibull 3.92294 13.338

3 Monte Carlo Null Distribution Critical Points

We have simulated the upper percentile points for 90%, 95%, 98% and 99%. Table 3 gives these percentile points of
statisticsδ̂n (λ ) in Equation (2.5) withλ = 0.55. These calculations are based on 5000 simulated sample sizen= 5(5)50
from the standard exponential distribution.

Table 3. The upper percentile ofδ̂n (λ ) with 5000 replications atλ = 0.55.

n 90% 95% 98% 99%
5 0.21549 0.29752 0.44056 0.59486
10 0.08308 0.10459 0.13597 0.17652
15 0.04813 0.05869 0.07167 0.08472
20 0.03321 0.03965 0.04778 0.05609
25 0.02457 0.02863 0.03529 0.03999
30 0.01958 0.02242 0.02627 0.02897
35 0.01601 0.01844 0.02117 0.02339
40 0.01360 0.01516 0.01737 0.01897
45 0.01162 0.01316 0.01494 0.01616
50 0.01019 0.01156 0.01293 0.01377

It is noticed from Table 3 and Fig 1 that the critical values are increasing as the confidence level increasing and is
almost decreasing as the sample size increasing atλ = 0.55.
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3.1 The Power Estimates

The power of the proposed test will be estimated at(1−α)% confidence level,α = 0.05 with suitable parameters values
of θ at n = 10,20 and 30 with respect to three alternatives linear failure rate (LFR), Weibull and Gamma distributions
based on 5000 samples.

Table 4.The power estimates ofδ̂n (λ )

Distribution Parameterθ Sample Size
n= 10 n= 20 n= 30

2 0.9980 1.0000 1.0000
Linear Failure Rate Family 3 0.9994 1.0000 1.0000

4 0.9992 1.0000 1.0000
2 1.0000 1.0000 1.0000

Weibull Family 3 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000
2 0.9992 0.9998 0.9998

Gamma Family 3 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000

It is clear from Table 4 that our test has good powers for all alternatives and the powers increases as the sample size
increases. The power is getting as smaller as theODLmg f approaches the exponential distribution.

3.2 Applications Using Complete (Uncensored) Data

Here, we present some of a good real examples to illustrate the use of our test statisticŝδn (λ ) in the case of non censored
data at 95% confidence level.

Data-set #1.
Consider the data that given in Abouammoh et al(1994).These data represent set of 40 patients suffering from blood

cancer (leukemia) from one of ministry of health hospitals in Saudi Arabia. In this case, we getδ̂n (λ ) = 0.0734397 which
is greater than the critical value of the Table 3. Then we accept H1 the alternative hypotheses which show that the data set
hasODLmg f property but not exponential.

Data-set #2.
Consider the data set given in Grubbs (1971), This data givesthe times between arrivals of 25 customers at a facility.

It is easily to show that̂δn (λ ) = 0.155362 which is greater than the critical value of Table 3. Then we acceptH1 which
shows that the data set haveODLmg f property but not exponential.

Data-set #3.
Consider the data-set given in Fisher (1966) which represent the differences in heights between cross- and self-

fertilized plants of the same pair grown together in one pot.In this case, we get̂δn (λ ) = 0.421684 and this value exceeds
the tabulated critical value in Table 3.It is evident at the significant level %95,that the data set hasODLmg f property.

Data-set #4.
Consider the data set in Kochar (1985) In an experiment at Florida state university to study the effect of methyl

mercury poisoning on the life lengths of fish goldfish were subjected to various dosages of methyl mercury. At one
dosage level the ordered times to death in day. We can see thatthe value of test statistic for the data set by (5) is given by
δ̂n (λ ) = 7.77932 and this value greater than the tabulated critical value in Table 3. This means that the set of data have
ODLmg f property and not exponential.

4 Testing AgainstODLmg f Class for Censored Data

In this section, a test statistic is proposed to testH0 versusH1 with randomly right-censored data. Such a censored data is
usually the only information available in a life-testing model or in a clinical study where patients may be lost (censored)
before the completion of a study. This experimental situation can formally be modeled as follows.
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Supposen objects are put on test, andX1,X2, ...,Xn denote their true life time. We assume thatX1,X2, ...,Xn be
independent, identically distributed (i.i.d.) accordingto a continuous life distributionF . Let Y1,Y2, ...,Yn be (i.i.d.)
according to a continuous life distributionG. Also we assume thatX’ sandY’sare independent.

In the randomly right-censored model, we observe the pairs(Z j ,δ j), j = 1, ...,n whereZ j = min(Xj ,Yj) and

δ j =

{
1 if Z j = Xj

(
jth observn is nucensored

)

0 if Z j =Yj
(

jth observn is censored
)

Let Z(0) = 0< Z(1)< Z(2)< ... < Z(n) denote the orderedZ’ sandδ( j) is theδ j corresponding toZ( j) respectively.
Using the censored data(Z j ,δ j), j = 1, ...,n. Kaplan and Meier (1958) proposed the product limit estimator.

Fn(X) = 1−Fn(X) = ∏
[ j :Z( j)≤X]

{(n− j)/(n− j +1)}δ( j) ,X ∈ [0,Zn]

Now, for testingH0 : ∆ (λ ) = 0, againstH1 : ∆ (λ ) > 0, using the randomly right censored data, we propose the
following test statistic:

∆̂c (λ ) =
1

µ2

∫ ∞

0

[
1

λ 3 (λ µ −1)φ (λ )+
1

2λ
µ(2)−

1
λ

µ2+
1

λ 3

]
dF (t) ,

where,φ (λ ) =
∫ ∞

0 eλ xdF (x) For computational purposes,∆̂c (λ ) can be rewritten as

∆̂c (λ ) =
1

µ2

∫ ∞

0

[
1

λ 3 (λ µ −1)Φ +
1

2λ
µ(2)−

1
λ

µ2+
1

λ 3

]
ζ , (6)

where,

µ =
n

∑
i=1

i−1

∏
m=1

c
δ(m)
m (Z(i)−Z(i−1)), µ(2) = 2

n

∑
l=1

Z(l)

l−1

∏
p=1

c
δ(p)
p (Z(l)−Z(l−1)),

and,

Φ =
n

∑
j=1

eλ Z(i)

(
j−2

∏
q=1

c
δ(q)
q −

j−1

∏
q=1

c
δ(q)
q

)
, ζ =

n

∑
k=1

(
k−2

∏
v=1

c
δ(v)
v −

k−1

∏
v=1

c
δ(v)
v

)
.

WhereCk =
n−k

n−k+1.

Table 5. gives the critical values percentiles of∆̂c(λ ) test for sample sizesn = 5(5)30(10)81,86.based on 5000
replications.

Table 5. Critical values for percentiles of∆̂c (λ ) test atλ = 0.55

n 90% 95% 98% 99%
5 1.16580 1.26058 1.35252 1.41201
10 1.18099 1.26657 1.34111 1.37197
15 1.13501 1.23818 1.31547 1.35936
20 1.07032 1.18395 1.28310 1.31544
25 0.98278 1.11435 1.23061 1.27834
30 0.92051 1.06680 1.18682 1.24833
40 0.79518 0.95872 1.10180 1.17032
50 0.66343 0.83783 1.00606 1.11748
60 0.58566 0.77149 0.95579 1.04114
70 0.49344 0.68441 0.88579 0.98454
81 0.42276 0.58798 0.81735 0.95729
86 0.37183 0.54065 0.77197 0.88220

In view of Table 5, and Fig. 2 it is noticed that the critical values are increasing as the confidence level increasing and
is almost decreasing as the sample size increasing.
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Fig. 2 Relation between critical values, sample size and confidence levels

4.1 The power estimates for
f

△
c

(λ )

Table 6 shows the power estimate of the test statistic∆̂c(λ ) at (1−α)% confidence levelα = 0.05 using LFR, Weibull
and Gamma family. The estimates are based on 5000 simulated samples for sizesn= 10,20 and 30.

Table 6. Power estimates of
f

△
c

(λ ) atλ = 0.55.

Distribution Parametarθ Sample size
n= 10 n= 20 n= 30

2 0.9986 1.0000 1.0000
LFR family 3 0.9986 1.0000 1.0000

4 0.9976 1.0000 1.0000
2 0.9982 1.0000 1.0000

Weibull family 3 0.9988 1.0000 1.0000
4 0.9994 1.0000 1.0000
2 0.9274 0.9008 0.916

Gamma family 3 0.9258 0.9996 0.9998
4 0.8882 1.0000 1.0000

We notice from Table 5. that our test has a good power, and the power increases as the sample size increases.

4.2 Applications for Censored data

We present two good real examples to illustrate the use of ourtest statisticŝ∆c (λ ) in the case of censored data at 95%
confidence level.

Data-set #5.
Consider the data from Susarla and Vanryzin (1978),which represent 81 survival times (in months) of patients

melanoma. Out of these 46 represents non-censored data. Now, taking into account the whole set of survival data (both
censored and uncensored). It was found that the value of teststatistic for the data set using formula (6) is given by
∆̂c (λ ) =−1.19327 and this value is less than the tabulated critical value in Table 5. This means that the data set have the
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exponential property.

Data-set #6.
On the basis of right censored data for lung cancer patients from Pena (2002).These data consists of 86 survival times

(in month) with 22 right censored. Now account the whole set of survival data (both censored and uncensored), and
computing the test statistic given by formula (6). It was found that∆̂c (λ ) = 2.37579∗ 1010 which is greater than the
tabulated value in Table 5.It is evident at the significant level %95,that the data set hasODLmg f property.
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