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Abstract: In this work, the matrix stability of the finite differencetsme based on Crank Nicolson method, for solving time-ifvaat
heat equations, is investigated. An iterative formula sspnted for the coefficient matrices of the error equatiopper bounds for
lo— norms of the coefficient matrices are obtained by a new melaséd on matrix diagonalization. A detailed numerical ysig)
including tables figures and error comparisons, are givetetoonstrate the theoretical results.
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1 Introduction

The fractional partial differential equations (FPDES) artension of classical partial differential equations ethi
involved in non-integer order derivative or integral. Dngithe last decades of twentieth century, fractional caktheory
has achieved significant attention due to its widespredityato model processes in the fields of science and engingeri
The most important and fundamental theoretical achievésradrout fractional calculus and FDEs can be found jg,3,
4,5,6]. Many phenomenon has been modeled more efficiently by dsiatjonal calculus than classical calculus. Hence,
the FPDEs have been used to describe many processes in fiphgsies, chemistry, biology and viscoelastici#yg, 9,
10,11]. As a result of this, scientists started to investigate aaalytical and numerical methods for solving the FPDEs. In
recent years, several numerical methods, including cgevere and stability analysis, have been developed forrdifte
type of FPDEs 12 13,14,18,19,20,21,22,23,24]. As in classical numerical methods, stability analysithis central and
the most critical point in fractional numerical methods aodar several stability method§,26,27,28,29,30,31] and
references therein) have been used for analysis of fradtinathods.

In this work, we firstly, constructed a high order direct difnce scheme which is based on Crank-Nicolson method
for time-fractional heat equations with the accuracy oo 12 4 h?) at the point(ty, Xj). Then, we proved the stability
of the proposed difference scheme via matrix stability Whscdeveloped by using matrix diagonalization.

We consider the following time fractional heat equation;

0,1], 1)
u(t,0) = p(t), u(t,1)=q(t), tel0,1].

wheref (t,x), p(t) andq(t) are all given and sufficiently smooth functions and the t@gg@ denotesy-order Riemann-
Liouville fractional derivative given with the formula:

t
0°utx) | rita s ) iawdsifo<a <1,
ota 9 0
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wherel™ (.) is the Gamma function. We assume here that the prollgiras an exact solutiant, x) € Cf;f‘ ([0,1] x [0,1])
which is smooth enough to satisfy the requirements of diietton.

The framework of the paper is as follows. In Section 2, we psgpan extension of the Crank-Nicolson different
scheme, to be used in the numerical simulations of the fnaatiheat equation. In Section 3, we prove the stability ef th
proposed method. This is followed by the simulations of tleelet on Section 4. The work is concluded in Section 5.

2 Discretization of the Problem

In this section, we introduce the basic ideas for the nuraksgclutions of the time fractional heat equatid) by an
extension of the Crank-Nicolson type difference scheme.

For any two positive integeid andN, we denote; = jh, ty =kr, Qn = {Xj|0 <j< M} ,Qr ={t|0<k<N}.The
computational domaif0, 1] x [0,1] is covered by} = Qp x Q;, where h=1/M, T = 1/N are the uniform spatial and
temporal mesh sizes, respectively. Suppégse { u|u= (up,us,...,um)} is a grid function space defined @, For any
grid functionu € V,, introduce the following notations:

1 1 1
O, 3 = 5 (Uisa —Ui), &t = e (Uiea = Uiea), 82U = h (C&UH% - &ui,%) ,

whereuiJr% = (U1 + ).
LetVT = {u| u= (u0ul,...,uN)} be grid function space defined @. For any grid functioru € V', introduce the
following notations

k—1
1
qauk‘*‘z = Qbulj('*'l—}— (e — o) Ulj(-i- z (@r1— (’Jr)ulj(_r — (@ —by) u(i)
r=1

as the discrete fractional derivative operator, whage= bp — ag; o = a—1—a — (r —1)b_1+ (r+1)b, for 1 <r <N

R (r+1)2-a_r2-a = (r+1)1-a_rl-a
and a; = ,_(Tl_a) [ 7a) },br = I'(Tl—a) [ a) } for 0<r <N.

Lemma 1.Suppos® <a <1, ye€ CZ[O,tk+%], it holds that

2%u(t,x 1 1 _ Ink
% . 6[C{uk+2 < mO(TZ C{+C{m)+o(.[2).

—

t
Let H(t) = I'(ll—a) g’ t’fgads Then, we have the following approximation fidi(ty);

t
H(t) = — /(“Q ds

ri-a)) t—9°
1 kT oy
- r<1—a>rzl(r/l )Tak—s)ads
1 T ) g, (5=t (5=t)(5—t-1), 1
‘r(l—am(/l){ iyt Bty B0y )| s
k—1 k—1

T3 (@ =ty T (e (T Dby R

r=| r=|
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Now, using the idea of Crank-Nicolson method, we construdisarete approximation to the fractional derivatﬁgééi)
at the point = tk+%;

H —H
_ %H(t)‘ _ (tk+1)r (tk)+o(T2)

= Y+ (- woyk+2 (@rr1— @)Y — (@ b)Y+ Re 1

and

1-a_ | l1-a
= ,—(217’” [(k+1) T - } O(T370)+O(T2)

1-a_ 1-a
~ ity | M o(e2) 4 0(22).

T

Res

1-a 1-a_ | 1-a
On the other hand, puttinf(x) = x}~@ and using the mean-value theorem, we Fet ((kH)T <)

k<c<k+1 Then

= % f'(c) where

((k+1)1;:’—kl_“)] _ (1_;’2047 k<c<(k+1)
(1-a)
= kata

=1-a)r r-a+amy (smceki—r“@)

Res| < gy (G- o+ o) 0(e?)

B 1

- (2-a)
It is obvious that the convergence order of difference adgine is 2 ak — N.
NeglectinngJr% gives, the following approximation for fractional derives

O(12 4+ mN ) 4+ O(12),

0"u(tk+%,xj) k1| = k—r 0
T—%U + (w1 — wo)u +Z Q)rJrl_wr)uj — (=) uj. )

Here, it can be easily proved that the sequences which amnéfbcmnts of the approximation formula)(a, bk anda
satisfy the following Lemma.
Lemma 2.

eqy isincreasingl<ay<a <ap < --- < an-.

eby is decreasing, §> by > by > --- > by > 0.

o) is decreasingy > wp > w3 > -+ > wy > 0fork> 1 andwo>wlwhena22—m—§’z0.42
eay — kby is decreasing, @ Obg > a3 — 1b; > a, —2by > --- > any — Nby > 0.

ey —by>0forall 1 <k<N.

Using the notations given above, we obtain the followindedénce scheme for the probled) (

ay o k+3 k+3 .

&°u —d(u- +f 20<k<N-1,1<j<M-1

u°_r(xJ) 0<j<M, 3)

= plt), Uy = alt), 0<K<N,
and substituting formulas, we get

WU+ (an — @) uk+ Z (@1 @)U — (- by) uf
Ukt g k1 k+1 2 .
— J+l :hz +U + ]+l 2;-: +U] 1 4 f (tk+1/27xj)7 0 S k S N — 17 1 S J S M — 17 (4)

ugzo, 0<j<M,
u§ = p(t), Uy =a(ty), 0<K<N.
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3 Stability of the Method

3.1 The Matrix Stability of the Method

To analyze the matrix stability of the method we rewrite tifeedence schemedj in the following matrix form:
AUl =BU°+FO,
k—1
AU = RUK+ 5 (0 — wr11)UR "+ (a— ) UP+ FRX 1< k<N -1,
1

r=

(5)

whereAm_1)x m-1), Bjm-1)x(mM-1) @ndRv_1)x(m—1) are the matrices of the form

'ab_|_h_12 _2_# 0
1 1
0 T TR T
L 0 0 = (Lb+ﬁz
- 11
. L
3z 200 — @ —bo— 5 P
I 0 2 2y — w —bo—
and
r 1 1
e W g 0
1 1 1
0 e
I 0 0 3w -
BesidesFk andUX are the vectors as follows
Flte 3. %) + 50z (P(t) + Pltr1)) uk
f(t, 3.%) X
Fk: andUk—
f(tk+%7XM—2) UEA,Z
Flte gm-1) + 52 (A(t) + d(ter 1)) Um-1
Setting
> —%—ﬁz 0 0
1 1 0
22 R 2n2
P— RO
1 1 1
0o - - 3 g%
0 - 0 3% &
we can rewrite the matrices B andR,;
A= wol +P

B= (20— w1 —bp)l —P

R=(awp— )l —P.
Actually, since the coefficient matrices are symmetric, &e easily analyze norm of the matrices. Because we know
thatl, norm of the symmetric matrix equals to maximum of the absolalue of its eigenvalues. So, the norms of the
coefficient matrices are

1Al =, _max_ |ao+Ar|=p(A)

IBllz=_max_[2ap—w—bo—Ar|=p(B)

1<s<M—
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R, = —w—Ap|=p(R
IRl =, max_ |ap— @ —Ar|=p(R)

whereAp, denotes — th eigenvalue of matri¥, and if we formulate the eigenvalues of the mafix
1 1 STT

i 23
R =iz + T cos M

— M2 (1+ cos(%)) L s=12,...M—1,

and it is obvious that all eigenvalues of the ma®iare positive.

K K
Let U;be approximate solution ob) and defines = Uf —Uj, k=0,1,...,N; j = 0,1,2,...,M. Then we obtain the
following error equations for the difference scherfg (

Ae =B &,
AL RS (@ — 1)+ (- b @, 1< k<N- 1
r=1

To simplify analyzing the coefficient matrices, we rearranlie system above and rewri according toe? for all
1< k< N-1 then we get following formulas for the coefficient matriggsor 1 <k <N —1;

Z1=A1B, ©)
Z1=ARZFA N — ) Zk g+ A (o1 — ) Z A w—by), 1 <k<N-—1.

which are obtained by following calculations;

et = A1BE = 7,€°,

E=ARe+A w—b)e=ATRZE + A (w— )’ = (AR +A H(w — b)) € = Z,€,

and generally
k—1
gl A IRE+AT 3y (- W1)€" + A (w—by) €°
r=1
=ARZE+A  w — w)Z 1€+ A w1 — w)Z1® + A (e —by) €°
= (A RZHA N @ — ) Zk 1+ +A N 1— @)Z+ A (ak—by)) €
=Z1€% 1<k<N-1
We note that the iteration matrix of the Crank-Nicolson noetlfior solving classical heat equation, is of the form
Z; = A~'R. But, in fractional problems there akedifferent types of iteration matrices (i.&). So, the matrix stability

of the fractional case has some difficulties according tesital case. In this work, we deal with these difficulties.
First, we will denote some lemmas to ease stability analysis

Lemma 3.[32] If A is an eigenvalue of a matrix M andM) is any rational function of M, then(A ) is an eigenvalue of
r(M) corresponding to the same eigenvectors.

Lemma 4.[32] Similar matrices have the same eigenvalues.

Let P be the matrix satisfyiny ~1PV = Dp, where the diagonal entries Dfp are eigenvalues d? and the columns
of V are the corresponding eigenvectors. Since, the matficescan be expressed as a rational function of the mBtrix
(i.e.;Zx =r(P)), from the Lemm& and Lemmad, we have tha{Dz, )ss = r((Dp)ss).

Theorem 1. Let Z, be a coefficient matrix of the difference scherdjenthich is formulated byg). Then,

1Zall, <1, 1<n<N.

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

116 %N S\ S. Erguner, | Karatay: On tHe stability of Crank-Nicolson...

Proof. To show the matrix stability of the difference schemg (ve will prove that thd, norm of the all iteration
matrices are less then unity via mathematical induction.

Firstly, Zy = A"1B = (apl +P) " (2 — w1 — bg) | — P) and thus

1Zall, = [|A~8
_ -1 —1
= | (vDav 1) (vDav ) |

= | (vEn V) (voev Y|

- V(DA)_lDBV‘1H2

r 1

T (AB)1
=V vt

. . .
L (AaIm-1 (A8)m-1 2
[ 200—w1—bo—(Ap)q
wo+(Ap)y
2wp—w —bo—(Ap),
_ V (*b""()\P)Z V—l
2wp—w1—bo—(Ap)m-_1
w+(Ap)v—_1 2

= VD2V,

As we mention abové
that

Z1ll, = p(Z1) = p(Dz,)
2 — w1 —bg— (Ap)g

Z1]|, = p (Z1) . Since similar matrices have the same eigenvaluesandO0, (Ap), > 0, we have

EEEA w+ (Ap)s
~ max 2%~ w1—bo—(Ap)g|
1<s<M-1 o+ (Ap)g

o If2wp— i —bo— (Ap)s > 0, then

2ap— w1 —bo— (Ap)s @+ (wp—wr—bo—(Ap)s) o+ (—a— w—(Ap)s)
w+Ap)s o+ (Ap)s a @+ (Ap)s

W

W+ (Ap)s

[2a]l2 =

<1,

o if2ap—wr—bo— (Ap)g < 0, then

Hzl||2 _ —20n + (L}l-i-bo-l-()\p)s
wo+ (Ap)g
_ —2wo+ i+ bo+ (Ap)g
B wo+ (Ap)g
(Ap)s+ (—2wn + w1+ bo)
(/\P)s+(*b

Here, we have two subcases;

o if —2ap+ w1 +Dbg < 0, then it is obvious thatzy ||, < 1,

(@© 2018 NSP
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o if —2w0+w1+b >0, then
_ (Ap)g+ (—200 + wr + o)
[Zall, =

(Ap)s+ ao

& =2+ w4 by < ap

& Wi+ by < 3y

< p+bp < 3wp

< by < 2wy

& 2ag < bg
and it is always true, sinds — 2ag = ”%_aa) (s —5%) = r{{fa) ((1-0:;722—0:)) > 0.
So, we have obtained that

<1

[ZAY PRSE
Assume thaf|Z||, < 1 foralln=1,2,....k and a rational function d®. Then,

Z1 = ARZ+ A (w1 — ) Z 1+ A (W — w3)Zc o+ + AT (W1 — @) Zy + A (ax — by) is also a rational
function of P and

1Zsally = |[ATRAHA N wr — ) Zk1+ -+ A (W1 — W)Zr+ A (a— b ||,
= | (v (VDR ) (VDY) + (V(DA) V) (@1 - ) (VD7 V) 4

+ (VO V) (a1 = @) (VDY) + (VDY) (6 B

= |V [(DA) " DRDz, + (Da) (61— @)Dz ; +++-+ (Da) ™ (k-1 = @)Dz, +(Dw) ™ (ed— b V2|
= max 832 (Az)s+ (wl(/\;”?) Az )t + (M(()‘liA_)sak) Do)t %
R %&Sj)s (Az)e+ ﬁ (Mg )t

2 (b))t it )k A,

wherew_ 1 —w>0for 1<k <N, max (/\p)s>0,and1 < 1.

o _max  (Az)

Here, we obtain the following linear maximization problefritee form;
max [c1. (Az) s+ Co: Az 4) g -+ G (Azy) + (@ = b)) @

1<s<M—

with the Constraint (/\Zk)s| < 1, andcy,cs, ...k are positive constants. At the expressi@) the first termic;. Az and
the remaining termss,. (/\Zk—l)s+ -4 Ck. (Azy)s + (ax — by) , can be considered, separately.
Some estimates for the expressi@nhdre obtained, when we substitutg_ = +1 and allAz,, = +1, simultaneously

for 1 <n<k-—1and then||Z.1]|, is bounded by the maximum ¢y, T, T3, T4} where

1. Ty = || Zesall when(Az ) = +1and(Az, ) = +1forall 1<n< k-1,

2. To = ||Zcs1ll, when(Az ) = +1 and(Az,)s = —Lforall 1<n< k-1,

3. T3 = [ Zs1ll, when(Az ) = —1and(Az,); = +1forall 1<n<k-1,

4. Ty = ||Zes1ll, when(Az ) = —1and(Az,)s = —1forall 1 <n<k-—1.
Now, we will investigate each cases in detail to shipwe 1 forall 1 < k < 4.

1. CASE:
T, = wo—wl—()\p)s() D@ gy Be2m W gy Ger Ok g ) — by
wo+ (Ap)s wo+ (Ap)s wo+ (Ap)g wo+ (Ap)g wo+ (Ap)s
|- —(Ap)s | w1 —by
] wt(e)s  aot (Ap)s
| ao—bk—(Ap)s
| wo+(Ap)s
(@© 2018 NSP
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o If wp—bx—(Ap)s >0, then

wp — bk — (Ap)s

<1, since (Ap)s> 0,bx > 0 andwy > 0.
@+ el (el = 0B = Oanden

Ti=

o If ab—bk—()\p)s<0,
_ —wt+bt+(Ar)s  (Ap)g+ (—awo+hy)

= w+(Ap)s  (Ap)st <
& —w+ b < wy
& by < 2ay,
and it is always true, because we have already showeththaby < 2wy.
So,T; < 1.
2. CASE:
wp — w1 — (Ap)g W — Wy (k-2 — W1 (k-1 — Ok w — by
Kl (Ap)s W+ wo + (Ap)s =D+ wo+ (Ap)s =D+ wo+ (Ap)s =D+ wo+ (Ap)s
e —(Ap)g | —n+2m— by
] ao+(Ap)s wo + (Ap)g
| an— 2w + 20— b — (Ap)
B o+ (/\P)s '

o I wp—2(wr— wx) —bk— (Ap)g > 0, then

W~ (2(@ — W)+t (Ap)g) o
wo+ (Ap)s wo+ (Ap)s
since 2w, — wx) > 0,bk > 0, (Ap)s > 0 andwy > 0,

o if wp—2(w — k) —bk— (Ap)s <0,
T, _ ~@+2(wn— @)+ bt (Ae)s
y =

W+ (Ap)g

~ (Ap)g+ (—ap+2(wn — ) + by)
(Ap)s+ o

Here, we have two subcases;

T2 = <1,

o If —awp+2(wp — wx) + bk < 0, then it is obvious thak, < 1,
o if —ap+2(w — ax) +bg> 0, then
(Ap)s+ (—wo+2(wr — i) +by)

T = <1
? (Ap)s+ @b
& —wo+2(w — ax) + b < wo
< 2(w — ax) + bk < 2an
< 2(wp— ax) + bk < 2an
& by < 20,
it is true, sinced, < ay < 2ax forall k > 1.
So, in the second cade < 1.
3. CASE:
W — w1 — (Ap)g W — W W2 — Wk—1 k-1 — Wk ¢ — bk
T3 = -1)+ 1)+ +
* RN N ey W w+ 0w Dt e, VT @t O

—+w+(Ap)g  wr—by
wo+ (Ap)g wo + (Ap)s

— 0+ 20 — b+ (Ap)g
wo+ (Ap)g '
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o If —wp+ 2w — b+ (Ap)g > 0,

T —ap+ 2w — b+ (Ap)s  (Ap)s+ (—an+ 201 — by)
3= -
o + ()‘P)s ()‘P)s+ o

b)
and here we have two subcases;

o if —wp+ 2w, — b < 0, then it is obvious thals < 1,
o if —wp+ 2w, — b > 0, then
T. = (Ap)s+ (—ap+ 2wy — by)
3 =
()\P)s+0->o
& —wp+ 2 — by < ay
& 2w — b < 2an
and it is always true, sincesd — by < 2wy < 2wy.
o If —wo+ 20— b+ (Ap) < O, then
_ W2t (Ap)g w20+ 01— (Ap)s o —2wnt @ — (Ap)g Wb (@it (Ap)y)
o + (/\P)s o+ ()‘P)s o+ (/\P)s o + (/\P)s
W
W+ (Ap)sg

So, in the third casés < 1.

<1

T3

<1

4. CASE:
wo — w1 — (Ap)g W — Wy (k-2 — Ok-1 k-1 — Gk W — by
T ey ) 0o T e 0e, U  r 0ms D @t (e
|+t (Ap)s | —@r+ 20 — by
| w+(Ap)s wo + (Ap)s
| —wo+ 20— b+ (Ap)g
B o+ (Ap)g

o If —wp+ 20— b+ (Ap)s > 0,

T, _ ~W0+ 20— bt (Ap)g
4=
wo+ (Ap)s
(Ap)s+ (— o+ 20 — by)
(/\P)s+ o
and here we have two subcases;
o if —ap+ 20— bk < 0, then it is obvious thal, < 1,
o if —ap+ 2w — by > 0, then
_— (Ap)s+ (—an+ 2w — by)
4 =
(Ap)s+ o
& —wp+ 20— b < ap
& 20— bk < 20p
and it is always true sinces — by < 20 < 2wy.

<1

o If —wp+ 2w — bk + (Ap)s < 0, then

_ W20 b~ (Ap)s _ G- 20+ ok~ (Ap)s _ Go— (@t (Ap)g) b
0o + (/\P)s o+ (/\P)s o+ ()‘P)s o+ (/\P)s

So, in the fourth cas&; < 1.
Since,||Z1]|, is bounded by the maximum ¢y, T2, Tz, T4} we obtain;

Ta <1

1 Zks1ll, < max{T1, T2, T3, Ta} < 1.
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We have proved that, all possible upper bounds for the comffienatrix of every step of the calculation is less than
unity. Since||Za||, < 1 for all n,

1€"2 < l1Znll, ||eo||2 < ||eo||2'

Therefore, we can obviously claim that the difference sahenstable for any values & andN, on the grounds that the
round-off errors do not increase.

4 Numerical Analysis

Example 1.
a9 (t’ o 52 t, ) 1 2{370 24(570 72077{1 .
;ta A~ :;>(<2X + ( t(3/2 r(7/2) + raz — r(15/2)) sin(27)
4—4712(t—%+t 7)sin(271x); 0<x<10<t<1,
u(0,x) =0,0<x<1,
ut,0)=0, u(t,1)=0, 0<t<1.
Exact solution of this problem i (t,x) = (t — 5 + - —)sm(ZnX) The approximate solutions by the proposed

method, exact solutions and errors are givenin F|g.uﬂ€he errors when solving this problem are listed in the Talter
various values of time and space nodes. The errors in the igbélculated by the formula

Ex= max |u(ty,Xn) —UK
0<n<M (k’ n) n
0<k<N

and theerror rateformula isEy/Ex 1.
On the other hand, the norms of the coefficient matrices asdilple upper bounds for these norms are shown in Table 2.

) WM‘/\\\\\\\\\\\\\\\\\\\ .
ll////l/ R
MR &}Q\\\\%

()

—F—N=16 M=16
+ N=32M=32
% N=BA M=B4

0.008

0.006

0,004

0002

S RRHIODON K005,
e =
0 Rty

Fig. 1: (a) The approximate solutions of Examgdléy the proposed method wh&iv32, M=32 anda = 0.5. (b) The exact solutions
of Examplel whenN=32,M=32 anda = 0.5. (c) The errors for some valuesfandN when t=1 andx = 0.5.

(@© 2018 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl4, No. 2, 111-122 (2018)www.naturalspublishing.com/Journals.asp NS = 121

Table 1: The errors for some values bf, N anda

a =0.45 a=0.6 a=09

M N Error Rate| Error Rate| Error Rate
8 8 0.04049702 - 0.04048122 - 0.04031204

16 16 0.01056806 3.83 0.01051883 3.85 0.01051606 3.83
32 32 0.00269188 3.92 0.00269155 3.91] 0.00269780 3.90
64 64 0.00068101 3.95 0.00068226 3.95 0.00068405 3.94
128 | 128 | 0.00017149 3.97| 0.00020520 3.32| 0.00017220 3.97

Table 2: Norms and some upper bounds for the norms of each iteratitmces

Z T T T- T. max {T;
[1Zk]l 1 2 3 4 1§i§4{ it

0.9960384 0.9960384
0.9903764| 0.9918672| 0.9918672| 0.9943106| 0.9943106| 0.9943106
0.9848617| 0.9910144| 0.9944255| 0.9951634| 0.9917523| 0.9951634
0.9793399| 0.9905730| 0.9952014| 0.9956048| 0.9909765| 0.9956048
0.9738669| 0.9902909| 0.9956228| 0.9958869| 0.9905550| 0.9958869
0.9684144| 0.9900905| 0.9958971| 0.9960873| 0.9902808| 0.9960873
0.9629987| 0.9899387| 0.9960937| 0.9962392| 0.9900841| 0.9962392
0.9576091| 0.9898184| 0.9962435| 0.9963594| 0.9899343| 0.9963594
0.9522527| 0.9897202| 0.9963625| 0.9964576| 0.9898154| 0.9964576
0.9469240| 0.9896379| 0.9964599| 0.9965399| 0.9897179| 0.9965399
0.9416268| 0.9895678| 0.9965416| 0.9966101| 0.9896362| 0.9966101
0.9363579| 0.9895070| 0.9966114| 0.9966708| 0.9895664| 0.9966708
0.9311196| 0.9894537| 0.9966720| 0.9967242| 0.9895059| 0.9967242
0.9259097| 0.9894064| 0.9967251| 0.9967715| 0.9894527| 0.9967715
0.9207296| 0.9893641| 0.9967722| 0.9968138| 0.9894056| 0.9968138
0.9155780| 0.9893259| 0.9968144| 0.9968519| 0.9893634| 0.9968519

Bl oo~ o o & w| N[k =
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)]
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5 Conclusion

The matrix stability analysis of fractional and classicalah equations are discussed. The iteration matrices of the
difference scheme to solve a time fractional heat equatomgbtained. The problem of finding the norm of the iteration
matrices, is reduced to a linear maximization problem by rierix diagonalization method. After finding some
estimates, upper bounds are obtained for the norm of thatit@r matrices less than unity which shows the matrix
stability of the difference scheme. A numerical examplersspnted and the results are in good agreement with the
theoretical claims.
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