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Abstract: Two-phase sampling design offers a variety of possibilities for effective use of auxiliary information. A new 

class of regression-cum-ratio estimators has been proposed for two-phase sampling using information on two auxiliary 

variables. The Mean Square Error (MSE) of the proposed estimators has been obtained up to first order approximation. 

Efficiency comparison of the proposed estimators has been made with some traditional estimators. Numerical illustration 

has been carried out to examine the efficiency of the estimator. 

Keywords: Auxiliary variable, Bias, Mean Square Error, Two phase sampling, Exponential chain-type estimator, 

Efficiency. 

 

 

1 Introduction 

In planning surveys, it is beneficial to take advantage from some auxiliary information either at stage of estimation or 

survey planning, in order to estimate a finite population, mean with higher degree of precision. For this purpose, many 

researchers suggested several ratios, product, and regression estimators by considering the relationship between the study 

and auxiliary variables, e.g. Hansen and Hurwitz (1943), Sukhatme (1962), Srivastava (1970), Chand (1975), Cochran 

(1977), Kiregyera (1980, 1984), Srivastava, Khare and Srivastava. (1990), Bahl and Tuteja (1991), Singh, Chauhan and 

Swan. (2006, 2007, 2011), Singh and Choudhury (2012), Khare, Srivastava and Kumar. (2013), proposed a generalized 

chain ratio in regression estimator for population mean using two auxiliary characters, Singh and Majhi (2014) using the 

information on two-auxiliary variables, three different exponential chain-type estimators of population mean of study 

variable have been proposed in two-phase (double) sampling and Khan, (2015, 2016) presents a ratio estimator for the 

estimation of finite population mean of the study variable under double sampling scheme when there is unusually low and 

unusually high values and analyzes their properties. 

 

2. Symbols and Notations 

Let us consider a finite population of size N of different units },....,,{ 21 NUUUU  . Let y and x be the study and the 

auxiliary variable with corresponding values iy and ix respectively for the 
thi unit },...,3,2,1{ Ni   defined in a finite 

population U with 

means, 



N

i

iy
N

Y
1

1
and 
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N

i

ix
N

X
1

1
 of the study as well as auxiliary variable respectively. 
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be the population variances of the study and the 

auxiliary variable respectively and let 
yC and xC be the coefficient of variation of the study as well as auxiliary variable 

respectively, and 
yx be the correlation coefficient between x and y. Let y and x be the study and the auxiliary variable in 

the sample with corresponding values iy and ix respectively for the 
thi  unit },...,3,2,1{ Ni   in the sample with unbiased 
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 be the corresponding sample variances of the study 

as well as auxiliary variable respectively. Let 
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is the corresponding sample regression coefficient of y on x based on a sample of size n. 

Also
Y

S
C

y

y  , 
X

S
C z

X  and 
Z

S
C z

z   are the coefficients of variations of the study and auxiliary variables 

respectively. 
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3. Some Existing Estimator  

Let us consider a finite population U={U1,U2,U3 y ..UN} of size N units.To estimate the population meanY  of the variable 

of interest say y  taking values iy  in the existence of two auxiliary variables say x and y taking values ix  and iz for the ith 

unit UI.we assume that there is high correlation between y and x as compared to the correlation between  y and z ,

 .0..  yzyxei   .When the population X  of the auxiliary variable x  is unknown ,but information on the other 

cheaply auxiliary variable say z  closely related to x  but compared to x  remotely to y  ,is available for all units in the 

population .In such situations we use  a two –phase sampling .In two phase sampling scheme a large initial sample of size 

)( Nnn  is drawn from the population U by using (SRSWOR)scheme and measure x  and z  to estimate X  .In the 

second phase ,we draw a sample (subsample)of size n   from the  first phase sample of size ).(., nnein   by using 

(SRSWOR) or directly from the population U and observed the study variable y . 

The variance of the usual simple estimator 



n

i

io y
n

yt
1

1
 up to first order of approximation is given by 

2)( yo StV               (1) 

The classical ratio and regression estimators in two –phase sampling and their mean square errors up to first order of 

approximation are, given by 

 

x
x

y
t 1           (2) 
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        (4) 

 

     (5) 

 

Chand (1975) suggested the following chain ratio type estimator the suggested estimator is, given by 

 

Z
z

x
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y
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
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(6) 

 

The mean square error of the suggested estimator is,given as 

 

 )2()2()( 2

1

2

2

22

3 zyyzzxyyxxy CCCCCCCYtMSE     (7) 

 

Khare et al. (2013),proposed a generalized chain ratio in regression estimator for population mean, the recommended 

estimator is given by  
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(8) 

Where  is the unknown constant , and the minimum mean square error at the optimum value of 

 

xyz

xyz

C

C




 

is, given  by 

 

      (9) 

 

 

4 .The Proposed Estimator  

On the lines of Khare et al. (2013),we propose a difference –type estimator for population mean under two- phase sampling 

scheme using two auxiliary variables;the suggested estimator is, given by 






















 
























 z

x

X
zkx

z

Z
xkytm 21



     (10) 

Where are 1k  and 2k  the unknown constants. 

To obtain the properties of the proposed estimator we define the following relative error terms and their expectations. 

Let  
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Rewriting equation (10) in terms of e’s we get, 
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Expanding the R.H.S of the above equation, and neglecting terms of e’s having power greater than two, we have  
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(11) 

On squaring and taking expectation on both sides of equation (11), and keeping terms up to second order, we have 
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Further, simplifying we get, 
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Now to find the minimum mean squared error of tm, we differentiate equation (12) with respect to k1 and k2 respectively 

and putting it equal to zero, that is 
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 Putting 1  and substituting the optimum values of 1k  and 2k  in equation(12) we get the minimum mean square error 

(MSE) of the proposed estimator tm up to order one is, given as 
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5.Efficiency Comparisons 

In this section, we have compare the propose estimator with the other existing estimators. 

a. By equations(1) and (13), 
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b. By equations (3) and (13), 
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c. By equations(5) and (13), 
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d. By equations (7) and (13), 
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e. By equations (9) and (13), 
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6 Numerical Comparisons 

To illustrate the performance of various estimators of Y , we consider the data used by Anderson (1958). The variates are 

y: Head length of second son, 

x: Head length of first son, 

z: Head breadth of first son, 

7,10,73.0,69.0,71.0

04.0,05.0,05.0,2.7,2.7,12.151,72.185,84.183,25
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
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We have computed the percent relative efficiency (PRE) of different estimators of Y with respect to usual estimator y   and 

compiled in the Table 1.1 

We have use the following expression for Percentage Relative Efficiency(PRE) 
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Table 1: The mean square error (MSE’s) and the percent relative efficiencies (PRE’s) of the estimators with respect to to 

 

Estimator  

 

MSE’s 

 

PRE(to, t1) 

 

0t  

 

8.44 

 

100.0 

 

1t  

 

7.09 

 

118.92 

 

2t  

 

6.69 

 

126.15 

 

3t  

 

5.47 

 

154.96 

 

4t  

 

4.69 

 

179.95 

 

mt  

 

4.39 

 

192.20 

 

7. Conclusion 

In this article we have proposed a difference –type estimator for population mean under two- phase sampling scheme using 

two auxiliary variables for the population mean of a study variable when information is available on an auxiliary variable in 

simple random sampling without replacement (SRSWOR).From the above table, we have observed that the proposed 

estimator has smaller mean square error and has higher percent relative efficiency than the other existing estimators. 
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