Appl. Math. Inf. Sci.7, No. 4, 1421-1428 (2013) =) 1421

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070421

Semilinear hyperbolic boundary value problem for linear
elasticity equations

A. Rahmoune and B. Benabderrahmane

Laboratoire d’'Informatique et de Mamatiques, (LIM) Laghouat University(03000), Algeria

Received: 17 Nov. 2012, Revised: 26 Feb. 2013, Accepted: 142048
Published online: 1 Jul. 2013
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eliminating some hypotheses that have been imposed by other authdiffei@nt particular problems.

Keywords: Compactness, Existeng@ronwall’s inequality linear elasticity, Uniqueness of solution, Regularity, Semilinear hyperbolic
equation, Variational problem.

1. Introduction where F is a linear function. Assume certain
hypotheses on the data functions. Then, by us$iagdo

In [8], Lions considered a semilinear boundary value Galerkin techniques and compactness method, we will

problem associated to the.aplace operator with ~Prove the existence of the solution. Our main goal is,

Neumanrboundary conditions: without taking into account the condition en to prove
the uniqueness and the regularity of the solution.

Ty Auul"u=f in2x(0,T),
u=0 onI x(0,T), 1)
(,0) = g (), 0! (1, 0) = s (), = € 2. 2. Problem statement
Using the compactness method afaedo Galerkin  Let {2 be an open and bounded domainRf, recall that
techniques, the existence of a weak solution has beethe boundaryl” of (2 is assumed to be regular and is
composed of two relatively closed partdij, I, with

d. A ing that th diti <72 hold
proved. Assuming that the condition = olds, mutually disjoint relatively open interiors. We assume

n—
then it follows the uniqueness and the regularity of thethat meas (I) > 0. We pose
solution. Y, =1T;x(0,T),i = 1,2, whereT is a finite real. To
In this work, we consider a semilinear hyperbolic simplify the writing one will putu’ = 2% v = 2%,

boundary value problem governed by partial differential , — (04),i,j = 1,2,...,n stands for the stress tensor
equatipns thgt de_spribe the evolution of linear elasticfield. To simplify the notations, we do not indicate
materials  with Dirichlet and Neumann boundary  explicitly the dependence of the functionsand o with
conditions as follows : respect tar € 2 andt € (0, 7). Letn be the unit outward
normal vector on/". Here and throughout this work, the
R summation convention over repeated indices is used. The
S — divo (u) + u|”u = f, in 2 x (0,T), classical formulation of the problem is as follows. Find a

o(u) =F (e(u)), in 2 x(0,T), displacement field: : 2 x (0,7) — R”, a stress field
u=gonly x(0,T), o(u)n=00n Iy x (0,T), o:02x(0,T)— Sy,, such that

w(x,0) = ug(x), v (x,0) = ui(x), © € £,
2) ' —divo (u) + [ul"u = finQ,v €N, 3)
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o (u) = F(z,e(u)) inQ, (4) uy € L(92), (13)
u=gon i, € H} (%) (14)
o(u)n =0on X, ®) g Y

Referring to f], it is easy to verify the following result.

u(x,0) = ug(x)ini2,
{ ' (x,0) = uy(z) in 2. ®  Lemmal Assume that hypothese) holds. Then the

] function, still denoted by : H — H, defined by
Where S,, will denote the space of second-order

symmetric tensors ofR™. w , f ando (u) represent the F —F 0 15
displacement field, the density of volume forces and the () (-e(), ae.on (19)
tensor of constraints, respectivelyliv denotes the is continuous onH

divergence operator of the tensor valued functions and

o = (05), stands for the stress tensor field. The latter isLemma 2. Assume that10)-(14) hold. Then 8)-(6) is
obtained from the displacement field by the constitutiveequivalent to the following variational problem:

law of linear elasticity defined by]. F' is a linear elastic

constitutive law, ande(u) = 3 (Vu+ V7Tu) is the ‘
linearized strain tensor. The equatid@®), (without the non Findu € VN LP(£2)such that
linear term|u|” u, describs the evolution of linear elastic (v’ v) +a(u,v) - f o(u(t))ng (t)dly
materials, while §) and @) are the mixed boundary - (P.V)
conditions on X;,¢ = 1,2 and initial conditions, (|(| 2; ((isv) (VU G)V?LL([)()Q)

i = Uo =u1
respectively. re p_v+

We now define the space :

whereV = {v e H'(2),v=g on X} anda(u,v) =
H= LX) = {0 = (053) €Sn: 01y = 05 € LX)},  Joo(we(v)dw

(1)
which is a Hilbert space endowed with the inner
product 3. Existence and Uniqueness
(o,7) :/ 0iTijd, (8) o . .
Q Our main existence and uniqueness result concerning

and the associated norm is denotgd|,. When no problem B)-(6), which we establish in this section, is the
ambiguousness is to fear, we will put : following.

[0l 20y = vl = (/9112611‘) ; (9  3.1. Existence

and we will use the notation|v|| ., in possible Theorem 1. Assume that10)-(14) hold. Then there
ambiguousness case. exists at least one solution to probler8){6) and it
In the study of mechanical problem involving elastic satisfies

materials, we assume that the operdtor 2 x S,, — S,

satisfies the following conditions: ue L>(0,T;VNL(R2), p=v+2,  (16)
(a)Im > 0; (F(x,e),e) > mlle]|?, o ,
Ve € Sy,a.e.x € §2. u' € L=(0,T;5 L7 (£2)). (7)
b F yE€)s =(F ) »€)s H H
(v()e (T e(xSn)aQ. " (e ((f 7€) (10) Remark. Where as the problem is defined on the open
() For any e € Sp,z — F(x,e) interval (0, T), the relations@) don't have a sense, for that

reason we must justify the definition oft) and«’(t) at
point0 in the initial conditions ).

is measurable on (2.

And we assume that the given dafaug andwu, andg . .
verify Using the result of the Theorerfi, we are going to

FeLX(Q), (12) demonstrate the following Lemma.

Lemma3. Assume thatl0)-(14) hold. Then the initial
ug € VNLP(N2), p=v+2, (12)  conditions in 6) have a sense.

© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.7, No. 4, 1421-1428 (2013)www.naturalspublishing.com/Journals.asp

1423

N SS ¥

Proof.
Using hypothesesl()-(14), according to the Theorerh
we have

It introduces a sequenc@u,,) of functions having the
following properties :

«Vj=1,..,mw; € VNLP(D);
* The family{w,, ws, ..., w,, } is linearly independent;
00 ) / 0o ) x The V,,, = span{w;,ws,...,w,} generated by
uelL*(0,T;V)andu € L (O’T’L (Q)) - (18) {wy,wa, ..., w,, } is dense iV N LP(12).
Referring to B, it results Letu,, = u,,(t) be an approached solution such that
is continuous, possibly after a modification on a subset of =1

[0,7] with zero measure, them (0) is well defined,
therefore the first condition ir6{ has a sense.

On the other hand, 16) implies  that
e(u) € L>(0,T;L3(£2)). Thus, sinceF is continuous
and  L*(0) C v, we have
F (e(u)) € L*> (0,T; L*(£2)). Thus,
divo (u) = divF (e(u)) € L= (0,T;V"). (20)
Also, we have
Tol(ul” W dz < [, [u] V¥ da
= Jo vl M)”pl da 21)
= fo Mwil)ﬁ dr = fQ ul” da
= lulfe@): 5+ =1
which implies that
lul” u € L™ (O,T; LP’(Q)) Yue LP(Q).  (22)

Then, from @) we have

u" = f+ dive (u) — |u]”u € L2 (0,T; L2(R2)) + L® (o, TV + LP’(Q)) ,
(23)

whereV’denotes the dual df and
V' + LV () = {u +v;ueV'andv e L”/(Q)} .

(24)
SinceL?(2) C V' + LP' (£2), in particular case we have

u" e L? (0, TV + LP’(Q)) : (25)
Then, referring to§] and using 17) we conclude that

W [0,T] — V' + LP () (26)

(urm (1)
is continuous, possibly after a modification on a subset of{

[0,7] with zero measure, then’ (0) is well defined,
therefore the second condition i6) has a sense.

We turn now to prove Theoreth
Proof of Theoreni . It consists of four steps:

Step 1 : Approached solution.

The Kj, being to be determined by the following
expression :

{ (ur (8), w5) + a(um(t), w;) —Ff a(um (t))ng

(f(t),UJj), 1 SJ g m,

(28)
which is a nonlinear system of ordinary differential
equations and will be completed by the following initial
conditions

(t)dIy

F(lum” wm (), w;) =

m
Uum (0) = uom = Z Qimw;  — ugin VN LP(£2),
=1

(29)

= Uim = Z Bimw; m:}oo up in LQ(Q) (30)
=1

As the family {w;, ws, ..., w,,} is linearly independent,

the systemZ8), (29) and @0) admits at least one solution

um € (0,7) having the following regularity

Uy (0)

U (1) € L2 (0,3 Vin) , uly, (£) € L2 (0, b Vi) -
(31)

A priori, the time interval (0,7") depends onm and

thereafter we shall demonstrate that does not depend

onm based on the following a priori estimates.
Step 2 : A priori estimates. Let

lul? = au, u) = /Q Fe()e(uyde.  (32)

Then, using 10), it can be shown thatu||, is a norm on

V equivalent to the normju|| on H!(£2).

Multiplying the equation28) by K. (t) and performing
the summation ovef = 1 tom, yiefds

(1) = [ ol (O)ng’ (1)
(F (1), ul, (1))

t), up (1)) + a (um(t),

+ (Jum]” um (t), up, (1) =

(33)

Sinceu,, € LQ(Ot i Vin), uh, € L%(0,tm; Viy), then

e(um),e(ul,) € L*(0,T; 2((2)) It follows from Lemma
1that

Fe(up)), F(e(u

1) € L7 (0,T; L% (12)) . (34)
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On the other hand, we have

ia (tm (1), um (1)) = (F

ai (e(um (1)) . e(up,

= a (um(t),ul,(t) +a(ul,

(up, (1)) s (um (1))

(1) + (F (e
).
(35)

<t) UM(

Then, using 10,b), we obtain

it llum @117
(36)

20 (m (1), up, () = G (um(t), um(t)) =

Also, we have

[t (8)]7 = (i, (), 1, (1)) -

t
[t (, t))“ip(g) = (lum|” wm (), up, (t)) s p=v + 2.
(37)
As the function of the injectiom — o (u (t)) of H!(£2) in
H= (I3) is continuous ang’ (t) € H(I), then

1d
P dt

J o (um (8))ng' (t) dI}

I

< Cllum (1) < 3C»

(1+ e 01F)

(38)
Then from 83), by Cauchy Schwarz’sinequality we may
conclude that

d
1 p
} r12 [ (2, )70 ()

iﬁﬁyﬁ>l+0uwm@m2
I+ [ lotum ()ng' (O] dl3.

< |(f ()] Jumn(

(39)
Therefore from88) we obtain that

DO =

&‘&

[ OF + Cu llum 9]] + 2 i 1@ Dl
< |(f(s)] [urn(8)] + 3Co IIum( )I? + 3Co.
(40)

Now, integrating inequality40) over (0,7"), we deduce
that

1 2 1, P

3 (I OF + Ca Jum®17) + Lm0

t
Wiy + [ 17 ua(s) s

H ds + 4 TCQ

S % |ulm‘2 + %Cl HUOmH + i Hum(o

+3 02 f [ltm (s

(41)
Then, from @1) by Young'sinequality, we have that

2 2 y 2
3 (it (O + Cr @) + & N @ o) < 3ol +
t

5 3
+%Cl [lwom |~ + . ”uOmeP(Q) + lj If(s | ds+ 5 j N E | ds

+1 ozf [t (8)]|* ds + LTCs.

(42)
Since by assumptions, there exists a constant- 0 such
that

[*ds + 17Cy < O3, Ym € N*.

(43)

t
S utml + 31 womI” + 5 wom 170y + 3[15(s)

It then follows from @2) that

3 (Jup e F+ommmUW)+lw%<mmm

<Cs+} fOu N+ Ca u (9)]°) ds

(44)
Hence

[2t},, ()] + Ch ([ (1)) <2C;+f(|u )+ Co [lum (s )”2) ds, ¥t € (0,T).

Then, byGronwall's inequality, we have that @)

[ty ()] + lum (£)[| < €' (independent of m).  (46)
Then, using44), we arrive at

[um (@) Loy < C (independent of m). 47)

From where, we deduce tha}, is independent offn.
By passing to the limit wherex — oo, from (46) and
(47) we conclude that

(um) is bounded in L> (0,T;V N LP(£2)),
(ul,) is bounded in L> (0,T; L*(£2)) .

m

(48)

Step 3 : Passage to the limit.
It follows from (48) that there exists a subsequerieg )
of (u,,) such that

w, — win L (0,T;V N LP(02)) weak star, (49)
u;, — u'in L (0,T; L*(£2)) weak star.  (50)
From @8), it is obtained that sequencés,,), (u.,) are

bounded inL?(0,7;V) C L?(0,T;L*(2)) = L*(Q),
L?(Q), respectively.

Then, in particular(u,,, ) is a bounded sequencefifi' (Q).
It is known, seed], that the injection of/ 1 (Q) in L?(Q)

is compact. Then, fromdQ) and 60) we have
u,, — u strongly in L*(Q). (51)

v + 2, using @48) we have
bounded sequence in

H 1 1 _
Settmg; + = 1,p =
(|t ]” wm) is a
L (O,T;LP/(Q)).
Therefore, we have

lu” wy — |u|” win L™ (O,T; Lp'(())) weak star.

(52)
Let j be fixed ang: > j. Then, by £8) we have

(upi(t),w;) + a (uu(t), wj) —[{ o (uy ())ng (1) Al + (] wu(t), wy) = (f (1), w;) -
(53)

Therefore, 49), (50) imply
a(uy, w;) — a(u,w;) in L>(0,T) weak star, (54)
(uf,wy) —> (u, w') in L>(0,T) weak star, (55)
[ o (t)ng (t)dly —> f ))ng (t) dI1inL>(0,T) weak star. (56)

Iy
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Hence Settingw = u — v, sincel’ is linear we have
(u(t), wy) — (u"(t),w;) inD'(0,T).  (57) w” = divF(e(w)) + (lu]” v — [v]"v) = 0in Q, (66)
Also, using 62) we have
962 w(0) = w'(0) = 0in 2, (67)
(Jupl” wpwi) — (Jul” u,w;) in L=(0,T) weak star.
(58) w=0o0nX, o(w)n=0on Xy, (68)
Then 63) takes the form
o . p —
(00 05) + e )~ [ o0 )T + w0 ) = ()0 we LF0.TVNLAQ), p=v+2, (69
(59) "e L>(0,T; LP (22 = 70
Finally, be using the density &f,, in VN LP(£2) we obtain w' e L*(0,T; LP(12)), p=v + 2. (70)

(w”(t),v) +a(ut),v) — [

n

o(u(t))ng (t)dly + (Ju]” u(t),v) = (f(t),v), Vv € V.0 LP(12).
(60)
Thenu satisfies 8).

Step 4 : Initial condition verifications.
It follows from (49) and 60) that

u,(0) = u(0) weakly in L*(£2). (61)
Then, using29) we deduce in particular that
u,(0) = upy — ug in VN LP(£2). (62)

Thus, the first condition ing) is obtained.
On the other hand, by usin§?) we have

(uﬁ(t), w;) — (W' (t),w;) in L>=(0,T) weak star.
(63)
Hence
(u,(0),w;) — (u'(0),w;).

Since (u),(0), w;) — (u1,w;), we have(u/(0),w;) =
(u1,w;), ¥j. Then the second condition iB)(is satisfied.

(64)

3.2. Uniqueness

Many authors, for some particular problems have showed

the uniqueness of the solution basing on the conditigh

2 . . . .
——. In this subsection the uniqueness of the solution

n—
will prove, by eliminating this condition.

Theorem 2. Assume the conditions of Theorelmand
also

v < f—fz, ke N*, n# 2 (vany finished son = 2).

(65)
Then, there exists a unique solutiarto problem 8)-(6)
and it satisfies16), (17).

Proof.
Let u, v be two solutions of problenB}-(6), to the sense
of the Theoreni.

Multiplying the equation §6) by w’ and integrating over
2. Then, by usingGreeris formula together with the
conditions 67), (68), we obtain

32 (W OF) +a(t).w/() = Jo (o v~ ful’ v u'de.
(71)
Then by (L0,b) we have

o (w(t), w' (1)) = %a(w(t),w(t)) -, % (F(e(w))) e(w)d
> Cl% [[w]? - S (F(e(w")) e(w)dx = 01% w]® = a (w(t), ' (t)).

(72)
In this case 71) takes the form
1d , i}
2 (WP +Ci i) < /Q<Iv| o= lul’ wyw'de.
(73)

Also, we have

|[o (ol v = [ul” wyw'dz| < (v +1) [ sup (Jul”, [v]) [w| o] da.
(74)

Next, by usingHolder’sinequality we have

ool v = ful” we'da] < Ca (el @y + 0Pl ey) e Ol aey e’ @)

(75)
where;. + . + 3 = 1.
Also, by referring to §] we have
k|| .
ooy = ], ,, FEa €N e

Therefore by(76) we havel|[v|”| ;. = [[v[|7.n () and

v o k % .
[vllprac2y = H|v| Hm(n) for all v € N. Using 65 we
have vn < kg, then, this condition implies that
”v”Lvn(Q) < Hv”qu(Q)~

Since;; +;+3 = 1, by referring to ] we haveH ' (2) C
L9(12), from WhereH|v|kHZ o < H|v|’€Hk < Cll”,
therefore

ol ey < Clloll”

which implies that

(77)

[Jo (" v = Jul” w) w'dz| < Cs (|[ull” + [lv]|") [[wl] Iw7’élg-
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Sinceu, v € L (0,T;V N LP({2)) we obtain

/ (|v]” v — Ju]” u)w'dz
7

Then, byYoung’sinequality from {3) we conclude that

< Cylfwl[|w']. (79)

38 (/O +Cr Jw®)]) < Calfoll '] <
<

(80)
L4 (I OF + lw®)]) -

Integrating equation above together with the initial

conditions 67), we obtain

t
(W @F + 01 @) < € (lw ) + lwts)]*) ds.
(81)
Finally, useGronwall's inequality to findw = 0. ]
Lemmad4. Assume the conditions of TheordmThen,

for all » € N the solutionu found to the Theorer. is
unique.

Proof.
For alln > 2, setting

k:E(V(n22)> +1, (82)
whereFE (z) denotes the integer part of
Then, we have
2k . .
v < —3 k € N*, n # 2(vany finishedson = 2).
n_
(83)

Thus, using Theoren2, there exists a unique solution

satisfies 16), (17). O

4. Regularity of the solution

Theorem 3. Under the conditions stated in Theorein
and the additional assumptions

ferl*Q), (84)
ug € VN H?(1), (85)
ui €V, (86)

v < n2—_k2, k € N*n # 2(v any finished son = 2).

(87)
Then, there exists a unique solutiarto problem 8)-(6)
and it satisfies the following regularities:

ue L™ (0,T;VNH*R2)), (88)
u € L>®(0,T;V), (89)
u’ € L™ (0,T;L*(02)) . (90)

Proof.

Consider the sequence of functiops, ) such that
*Vji=1,..mw; €V NH*);
« The family{w;, wa, ..., w,, } is linearly independent;
x The V,, = span{wy,ws,...,wy} generated by

{w1,wa, ..., w,, } is dense i/ N H2(£2).

Let u,, = wu,,(t) be an approached solution satisfigg)(

and @8).

Also, we assume that the initial data satisfy

Uom — ug in V N H?(9), (91)

Uty — up n V.

Then, it follows from 8) that

(92)

(ulh (0),w;) = (f(0) + divF (£ (uom)) — |wom|” vom.w;), 1 <j < m.
(93)
SinceF is continuous, then we conclude fro®ij that

|divE (& (uom))| < C. (94)
By Holder'sinequality,
v\ 2k 2k N
Jo (\uom\7> g, | dz < | (juoml ) me Bl meas() < (95)
< el P e rii=1 (96)
L (2)
112k
From (76) it follows |||ugm|" = Jluom |,
(o) Lk (2)
Also, from @7) it results %2 < g, then||up,||*, <
Lk (2)

C ||uom ||*” . Consequently,

\2E
/2 (|u0m|k) Uom
s

Then, from @1) we conclude that

dz < C |luom || [uom|? . (97)

(|wom|” wom) s bounded in L?(£2). (98)

Multiplying the equation§3) by K7, (0) and performing
the summation ovef = 1 to m, yields

(upm (0), 4y, (0)) = (f(0) + divF (¢ (uom)) — |uom|” wom, ur,(0)) .
(99)
Then,

[t O)F < (1L£O)] + 1divF (= (wom))| + luom!” ) [u7, (0]
(100)
Therefore, usingX(l) and @4), we obtainf(0) € L?(2).
Then,
|tm (0)] < Ca. (101)
On the other hand, by derivating to tim&8] takes the
form

(W0 w5) 1 0 (1), 10) = [ 0t (D) () 1) (o, (0, 205) = (7 1) 05).

(102)
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Multiplying (102 by K7, (t) and performing the
summation ovej = 1 tom, y|elds

{ 1 (1) (0, u) = [ o
(103)

—+1) (jum <%>\
As the function of the injection — o (u (t)) of H(£2) in
H= (I3) is continuous ang” (¢) € Hz (I'), then

\ +a(ul, t))ng” (t)dIn + (f (t),u

(1‘) i (1) -

ff o(up, ()ng” (t) dln| < Cllus, ()] < 3C3 (1 + [, (t)||2> :

(104)
Since,. + ; = 3, usingHolder'sinequality we conclude
that

(v + 1) (Jum ()" i, (8), ugy, ()] < C lum O N o2y Nt (0 Loy ur, (f)k\_)~
Then, using 16) and as/n < kq by (77) we obtain %)
et D" L2y < Cllum (O] < Cs.

We also have

v+ 1) |(fum ()] ur,

(106)

(#) s um ()] < Ca [lug, O] fur, (8)] -

(107)
Since
%G(Uin(t)mén (1)) = alup,(t), up, () + alup, (t), uy, (1) =
= 2a(up, (), up, () = % et ()T
(108)
we have
d
a(ur, (8),u (1) = 52 i ONF > 3C14 llu, O
(109)
Then, by using08), (109 from (103) it follows
ziﬂuum+cm%ﬂm]<q%)"
+f g" (t)dln — (v + 1) (lum ()", (1), (1))
(110)

But by the inequalities o€auchy SchwartandYoungthe
second member ofL(L0) is raised in absolute value by

U, (10))0g" () ALy = (v + 1) (lum (O] g, () i, (1))

(f (@), up, () + [ o
I

(O] + 3Gz (1+ lut, (1) + Ca i O] a2, (1)
s%\f O + 365 (ju OF + llup, (D) + 3C,
(111)
whereCs; = 1+ Cs + 2C4. It then follows from (10) that

2 3 2 2 2
OF + Cullun O] < 3157 @F + 365 (jutn OF + s ) + 3Co-

(112)

L [y
2dt m

Integrating equationl(l?) over (0, t), we obtain

3 [l OF + Cull (1] < 3 S 17/ )P ds + 5 i (O)

1

2

2 1 10 f

+3 Cl‘lum( )H +§CQT § g‘

jf
0
(1t () + [ ()17 ds

(113)

Then, by 84),(101),(92), it follows from (113) that

O + € 1 < G (14 (W + an(9]7) )

(114)
where
Cs = max 2flf )P ds + & [ull,(0)]% + 101 [, (0)]° + 2 CoT34 Cs

Thus, byGronwaII sinequality, it follows that

[u ()] + ||ul, (#)]] < C (independent of m) (115)
Therefore,
(ur.(t)) is bounded in L>= (0,T;V), (116)
(ull,(t)) is bounded in L™ (0,T; L*(£2)) .

Then, there exists a subsequencegf,(t)), denoted by
(u,) such that

ujy (t) — u(t) inL> (0,T; L*(£2)) weak star.
(117
But, by (1) we have that

u,, — u strongly in L*(Q). (118)

Also, by (62) we obtain

lup|” w,(t) — |u|” u(t) inL>® (O,T; LpI(Q)> weak star.

(119)
Let j be fixed ands > j. Then, using49), (117) and 62),
we deduce that

a(uu(t),'wj) — a(u(t),wj) in L°°(0,T) weak star, (120)

f{ a(uy (t)ng (t)dly — j o(u(t))ng(t)dlin L°(0,T) weak star, (121)

( ull (1), w ) — (v’ (t),w;) in L% (0,T) weak star, (122)

(Jup | upw;) = (Jul¥uw,w;) in L%(0,T) weak star. (123)
Thus, it follows from £8) that

(u”(t), w;) + a(u(t), w;) — rf o(u(t))ng (t)dly + (Ju]” u(t), w;) = (f,w;) Yw,.

(124)

Again, using the density df,,, in V. N H?(£2) we find

v), Yv € VN H?(R),

(125)

("(t),v) + a(u(t),v) = [ o(u(t))ng

e

@) dry + (Jul"u,v) = (f(1),

which implies that: satisfies 8), (89) and ©0).
On the other hand, using), |u|” u € L* (0,T; L*(£2))
andf € L> (0,T; L*(£2)), it then follows from ) that

h = divo (u) =u" + |u]” u— f € L™ (0,T; L*(£2)) .
(126)

Sincedivo (u), see ], is an isomorphism froni” onto

V'. Let G be its inverse. Then, sinae € L (0,T;V)

we have
u(t) = Gh(t). (127)

As (2 is assumed regular. Then, by referringTpdnd [11]
we haveG € £ (V'; H%(£2)), which implies 88).
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5. Conclusion

Consider the following function

F (e(u)) = 2e(u) — Trace(e(u))I, (128)
wherel denotes the identity operator afittace denotes
the trace operator. Then, probler8)«(6), without the
conditiono(u)n = 0 on X5, is reduced to the following
problem considered blionsin [8] :

u' = Au+ [ul"u= finQ,
u=gon X,
u(z,0) = up(z); ' (2,0) =ui(x),a.e x € L.
(P)
SinceF' is linear and satisfies the hypothes#6)( Then,
it is easy to verify that Theorenis 2 and3 are verified for
the problem P).
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