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Abstract: This paper is devoted to discuss the stress-strength itéliabodel R= Pr(Y < X) when X and Y have an exponentiated
generalized inverse Weibull distribution (EGIW) with @ifent parameters. The problem of stress-strength retiaksl studied to
obtain estimates of a component reliability function of BGdlistribution. Reliability for multi-component stresgength model for
EGIW distribution is also studied. Maximum likelihood esttion for stress-strength reliability of underlying disttion is
performed. Bayesian estimator of R is obtained using ingm@e sampling technique. A simulation study to investigaig compare
the performance of each method of estimation is performetillly analysis of a real data set has also been presenteéitLigirative
purposes.

Keywords: Exponentiated generalized inverse Weibull distributi@iress-strength reliability, Maximum likelihood estinoast,
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1 Introduction

In reliability studies, the stress-strength model is oftsed to describe the life of a component which has a random
strength X and is subject to a random stress Y. The compoaisnifithe stress applied to it exceeds the strength, and the
component will function satisfactorily whenevér< X thusR = Pr(Y < X) is a measure of a component reliability
which has many applications in physics,engineering, ges\gisychology and economics.

The term stress-strength was first introduced by Church ardd{1] which introduced the estimation of R when X and

Y are normally distributed. Since then several studies leah ldone both from parametric and non-parametric point of
view. A good application on the different stress-strengtidels can be found in the monograph by Kotz etZl. $ome

of studies on the stress-strength model can be obtaine®i4h [5] which considered this problem when X and Y are
generalized exponential, Weibull and Burr type X distribns respectively. Stress strength Reliability for
three-parameter Weibull distribution has been discusgeiumdu and Raqgabg]. Krishnamoorthy et al.q] introduced

an inference on reliability in two-parameter exponentisdss-strength model. Stress-strength reliability fordely and
weighted Lindely distributions considered by Al-Mutaiti &. [8,9] respectively. Recently Hanagal and Bhalera0] [
discussed generalized inverse Weibull software relighgliowth model.

In this paper we study the stress strength reliability far Exponentiated Generalized Inverse Weibull Distribution
(EGIW) which introduced in11] as extension of exponentiated generalized family. TheVE@istribution has a p.d.f
f(x) and c.d.fF (x):

2 )
3)° 28

f(x) = aBOAOXOLe (71— e (P)°)0-11 - (1 e~ (%)%)a)B-L, (1)

)P, 2
where
x>0,A,60,a,B >0.
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The EGIW distribution is very flexible model that approachedifferent distributions when its parameters are
changed. Its flexibility is explained in the following,if X ia random variable with pdf in EQ); then we have the
following special cases:
1-If a = B =1, then Eq. {) reduces to the inverse Weibull distribution.
2-If o = 1, then we get the generalized inverse Weibull distribution
3-If 6 = 1, then we get the exponentiated generalized inverse erpiahe
4- If a = B = 6 = 1, then we get the inverse exponential distribution.

The rest of the article is organized as follows. In Sectioth®, problem of stress-strength reliability is studied to
obtain estimates of a component reliability function of BGdistribution. Reliability for multi-component stresgength
model for EGIW distribution is also studied in Section 3. Maum likelihood estimation for stress-strength relidlgibf
underlying distribution is performed in Section 4. In Sentb, a general procedure of deriving the Bayesian estinodtor
reliability using squared error loss function is presentgeerein we adopt the importance sampling technique to coenp
the approximation of this estimator. Section 6 presentedisition study to investigate and compare the performahce o
each method of estimation. Also a real data set analysisé®siresented, in section 7, for illustrating all the infiad
methods developed here. Finally, conclusions appear itidBek.

2 Stress-Strength Reliability

In this section, we derive the reliability R whénh~ EGIW (a1, B1,A1, 62) andY ~ EGIW(az, 32,22, 6,) are independent
random variables with pdf(x) andw(y), respectively. We have

R=Pr(Y <X)

_//f y) dydx.

The formula of Egs.X) and @) will complicate the integration, so we write f(x) and F(r)an expansion form, using
fractional binomial theorem (Se&7), as follows:

Pet - (1-e )

— aBOAOX O~ le’(A?> [1-e (%ot % (—1)11<B._1) [1- e (x)°)ai
0

= aBoAr?x - 1g-(5)° i@l){(p_l) [1_ef(é)6]a(h+l>fl

j1=0 jl
. SCILRS i (B-1\ < p(a(ji+1) =1\ ae;
= apfor®x 9 le (%° (_1)1(3, ) (_1)J2< . ) (e (x)°]2
le=0 "\ jzz—o j2
= apoA’X Oy 3 (-~ (B 1) (a(“ﬂ)*) o2+ D3P @)
j1=0j2=0 1 J2

Likelly for F(x),

§O<—1>J3(.B ) - ey

iz= I3

[ee] [ee]

_qy(ia+ia) B) (0'13) a2
j3z:oj42:o( & <13 ja ¢ )
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Now we can derive the stress strength reliability using &)snd @) as following:
R = Pr(¥Y< X)
= / / f(x)w(y) dydx
= [ om0 dx
0
_ /°° 1B,07 %O i g (= 1)tz +ia+io) <Bl_— 1) <(“1(Jl+1))—1) o (2t (4)°
0 J1

j1=0j2=0 I2

e < 52) <02j3> ja(2)®
X ) : e 14 dx
Jaz:o ,-420(13 J4

— C T T T q)(itiatistia Bl_l) <al(jl+1)—1> (ﬁz) <sz3>
alﬁljlz:omz:ouzo uzo( Y < j1 j2 IE ja

00

« [ aAfx0-1lg-liz+iatD)(%)? g

S S 2 ytieristia (B 1) (auin+ 1) =1\ (B2 (a2is 1
= a _q)(irtiztistia) (Bl_ ) ( 1(J1- ) ( 2ja) 1 .
lﬁljlz:oj'zz:oj'szzoj';:o( ) J1 j2 ja/ \ ia / (l2+]ja+1)

Note that when the exponents in Eg. &nd @) are integers, the expansions in Egk.(4) and 6) become finite and this
is a special case from fractional binomial theorem.

3 Reliability For Multi-Component Stress-Strength Model

Let the random sampleg Xi, Xo, -+ , Xk be independents(y) be the cumulative distribution function of Y arkx)
be the common cumulative distribution functionXf, X, - - - , Xk. The reliability for a multi-component stress-strength
model has developed by Bhattacharyya and Johrikgjnd:

Rsk = Priat least sof the (Xq,Xp, -+, Xi) exceed Y]
K 7k\ [ . _
=5 () [ a-ForFEm-acy). o

The reliability for multi-component stress-strength of #ixponentiated generalized inverse Weibull distribuigon

=5 ('f) a2 /0 i [1— (1—t"1)ﬁl}i [1—toa]PalkD)

1=S

% Q2,00 Oy 0 1e (3" 1a 1 o2 gy

k K i | ) o . .
= . ) (=D / 1 _ ta11Pulis k=)
izQ%;Aﬁy Vi, |11

XGZBZG)\ y~ —6-1 —(%)etaz—l[l_taz]ﬁz—l dy
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5, 3 ()T () v

A
% i 6 by—0-1 e (§)0taiztaziz+a—1 dy

33,3, 50U e

i2=0  j3=0

I
N~
1M -

1 . .
/ toriztaz(iz+) =1 g
0

33,5, 30O e ®

iI=sj1=0 j2=0 j3=0

X

where

4 Maximum Likelihood Estimation for Reliability
Suppose
X~ EG|W(C¥1, Bl,)\ s 9)

and
Y~ EGIW(“Z?BZa)\ ’ 6)

and they are independent random variables. We need to cemih& MLE of the vector of parameters
@ = (a1,B1,B2,02,A,6) to compute the MLE of R.

Supposexi, Xz, -+, X is random sample fronEGIW(a1,B1,A,0), and y1,y2,---,ym is random sample from
EGIW(a2,B2,A,0). The log likelihood function can be written as :

logL(x,y;@) = nloga+ nlogBs+miogaz+miogBz+ (n+m)logb + 6(n+m)logA
n m n A 0 m A 0
—(6+1)[> logxi + % logyj] = (-)" = > (=)
2,09 2 oI Zl v
n (M) 6 m A)G
+(a1—1) Zlog(l—e %) +(op—1 Z
= &
m (}\)9

#(Bi- S g~ (1-& %)%+ (B2-1) 3 togia— (1 1)

=

(7)
The MLE of a1, 31, B2, 02,A, 6 can be obtained as a solution of the following equations:
)\
Ent 21'09 e W —o, ®)
z?L m 4)9
=1
) n Q_i)e % x log(1— e_(xii)a)
— = —+ log[l—e (5)° +(BL—1) =0,
001 zi |ZL 1 e (Q_i)e)al]
(10)
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—(2)8 ~(3)°
L m_ I ()P ¢ —(1—e %" )®xlog(l-e ¥ )
=~ M Siog—e Y -1 =0,
se = mylet-e k1Y AT
(11)
oL on+m L1 Ag; &, 1 A6
v e B3 me 1 ()
+6(a1—1) e — 4+ 6(a2— 1) S
! i; 1—e &) ’ ng 1-e %)
(A0 - ~(y-)° -
coapny S WO o 32 GG
11— (1—e (X_i)a)o’l] Fl1-(1-e yT')G)“z]
(12)
and
9 C i e (101002
x - <”;m>+(n+m>logA—i;Iogxi— 3 gy = 3 ()10g(30)
e ()16
moa A n X ( )IOg( )
_ | -1
1(yJ) og(yj) (0 )i; (1—e(xAT>e)
m 7(yJ) A9| A
+o—1) y - ) Aog(y )
=oa-e W
o s e I W Gflogty)
2 1-(1-e & )]
(13)

These nonlinear equations are solved numerically usingtite process as Newton Raphson to get
dla aAZa B’\la B’\Za éa}\\ )
then we can get the MLE of R as follows
alBl Z z Z Z )Urtiztistia) <Bl._ 1) <al(Jl‘.|‘ 1) - 1) (BZ) <q2]3> . 1 . (14)
iZ0i%0i%0 %o 1 2 s ja /) (i2+]ja+1)

Similarly, We can calculate the MLE of reliability for muitiomponent stress-strength model from Eq. (6).

5 Bayesian Estimation

In this section we provide the Bayes estimate of R whgre (A, 60, 01,02, B1,32) are unknown parameters and all of
these parameters having independent gamma prior disaribas following:

m(A) ~ Gamma(by, ay),

1(6) ~ Gamma(by,ay),
n(ay) ~ Gamma(bs, ag),

m(az) ~ Gamma(bs, as),
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T[(Bl) ~ Gamma(bs, a5),

and
1(Bz) ~ Gamma(bs, ag).

The joint posterior PDF is defined as

o( @/data) = L(x,y/a1,B1,A, 6,0z, B2) (A ) i(6) ri(ar) 1i(a2) Ti(Br) 1 B)
- o Jo Jo Jo Jo Jo L(xy/a1,B1,A, 8,02, B)Ti(A)1(6) 1i(ay) 1i(az) 11(B1) 71 B2)d@p”

Then
: ()% a1 ~(G% api-1
g( Q/data) 0 alnalmﬁlnBZmen+m/\(n+m)e rlxi—G—l(l_e % )al— [1_ (1—8 X )al]ﬁl_
i=

Ang O2—1

n (A\0_¢m (A6 M A6
« e*Zizl(g) 72]:1(W) I—l yj—e—l(l_ ef(ﬁ) ) [1_ (1_ ef(ﬂ> )0{2][32—1
=1

% )\ al—le—bl/\ eaz—le—bzg alag—le—bg,al 026.4—1e—b4C{2Blag,—le—bsﬁlﬁzae—le—beﬁz
0 g1(6/data)gz(A /6,data)gs(a1/A, 6,data)gs(az/A , 6, data)gs(B1/data)ge( B2/ data)h(¢/data),

(15)
where
n m
01(6/data) 0 Gamma | by + Zlnxi + Z Inyj,ax+n+4+m|, (16)
i= =1
g2(A/8,data) O Gamma(by,a1 + (n+m)0), a7)
n
gs(a1/A,0,data) 0 Gamma <b3 - _Zil n(l— e*(%)")’ ag+ n) , (18)
i=
il ~()°
g4(02/A, 0, data) 0 Gamma | by — Z Inl—e Vi’ )ayu+m|, (19)
=1
9s(Br/data) 1 Gamma(bs,as+n), (20)
gs(B2/data) O Gamma(bg, a5+ m), (21)
and
n m n Bi—1 m B—-1
h(g/data) = & 252 [ {1_ (1- e‘@)e)‘”] [1— (1—e 6
o i= j=1
(A8
(@ (n+myg)e sama-e B g sfumae )
X (22)

)6

(A '
b ™O by — 57 In(1—e &) )Jasnby — 57 In(1—e 57 jastm

Therefore, the Bayes estimate of reliability, Bayunder the squared error loss function

Jo R+ g1(6/data)gz(A /6, data)gs(ai/A, 6,data)ga(az/A, 6,data)gs(B1/data)gs(B2/data)h(p/data)de

jg”gl(e/data)gz()\/6,data)gg(al/)\,6,data)g4(az/)\,6,data)g5([31/data)gs([32/data)h(g/data)dg '
(23)

Rg =

It is impossible to compute E@8) analytically, therefore instead, we propose to approxénitaby using importance
sampling technique as suggested by Chen and Sgo [
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5.1 Importance Sampling Technique

In statistics, importance sampling is the hame for the gdnechnique of determining the properties of a distributiy
drawing samples from another distribution. The focus ofontignce sampling here is to determine as easily and acturate
as possible the properties of the posterior from a repraeasample from the second distribution.

Sinceg; (08 /data), g2(A /0, data), gs(a1/A, 8,data), ga(a2/A, 8,data), gs(B1/data), gs(B2/data) follow gamma, it
is quite simple to generate from them. Now we use the follovéatgorithm assuming that,--- ,a¢ andby,--- ,bg are
known a prior, and assuming initial values %oy 0, a1, az, B1, B».

Importance Sampling Algorithm:

—Step 1: Generaté; fromg;(./data).
—Step 2: Generat&; fromgy(./0,data).
—Step 3: Generate
ag; fromgs(./A,6,data),

and
ap1 fromga(./A, 6,data).
—Step 4: Generate
Bi1 fromgs(./data),
and
B21 fromgg(./data).

-Step 5: Repeat this procedure N times to obt@ A1, 11, 021, B11,B21), -+, (O, AN, 01N, 02N, Bins Bon)-
—Step 6: An approximate Bayes estimate of R under a squarediess function can be obtained as

s NN RN(8, A, aai, i, Bri, Boi /data)
21 h(8, A, o, a2, Bri, Boi/data)

where
Ri = R(ela)\ia aliaaZUBliaBZi)a

as defined in Egp), fori=1,---,N .

Using the same technique, We can obtained the Bayesianagistimof reliability for multi-component stress-strength
model.

6 Simulation Study

In this section, we mainly present some simulation expeamnis see the behavior of the proposed methods for various
sample sizes and for parameter valags= 0.75,a, = 1.5, 31 = 3.5, 3, = 2.2, A = 1.008,0 = 0.61, so that the true
reliability value is 0847751 We compared the performances of the MLEs and the Bayes ¢etiméth respect to the
squared error loss function in terms of biases and mean esj@arors (MSEs). We have taken sample sizes namely
(n,m) = (5,5),(10,10), (20,20), (30, 30).

For Bayesian estimation, we used importance sampling rdathder the informative gamma priors. For choosing a
suitable hyper-parameters, the experimenters can incatgtheir prior guess in terms of location and precisiortier
parameter of interest. Such that
mean = a/b, andvarience = a/b?.
We assume a small value of prigarience(0.005), and taken the mean equal to the parameter of interest. br ea
parameter priors we solve the two equations of the mean anddtience, we obtain the following values of hyper-
parameters :
a; = 2016, a» = 76.25,a3 = 107.14, a4 = 500, as = 2500,as = 9565 andb; = 200,by, = 125,b3 = 142857,by =
333333,bs = 714.286,bg = 434.783.

The maximum likelihood and Bayes estimates of the stressgth reliability are obtained in Table 1.
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Table 1: Average Bias and MSE of R using different estimators

Estimators MLE Bayesian
(m,n) R Bias MSE Rs Bias MSE
(5,5) 0.90616| 0.05841| 0.01502| 0.88337| 0.0316 | 0.00425
(10,10) 0.89713| 0.04938| 0.01116| 0.87597 | 0.02822| 0.00124
(20,20) 0.89001| 0.04226| 0.00612| 0.86825| 0.0205 | 0.00096
(30,30) 0.87338| 0.02563| 0.00379| 0.86002| 0.01227| 0.0007

7 Real data analysis

In this section, we present a data analysis of the strengthidaoduced in 15]. The data stand for the strength data
measured in GPA, for single carbon fibers and impregnate@-t@ébon fiber tows. Single fibers were tested under
tension at gauge lengths of 1, 10, 20 andnB0 Impregnated tows of 1000 fibers were tested at gauge len§22; 50,
150 and 306wm. For illustrative purpose, we consider the data sets comgithe single fibers of 20 mm (Data Set 1) and
10 mm in gauge lengths (Data Set 2), with sample sizes 69 angsp@ctively. Data sets are provided below:

Data set 1:(strength measurements)

0.312, 0.314, 0.479, 0.552, 0.7, 0.803, 0.861, 0.865, 0 @858, 0.966, 0.997, 1.006, 1.021, 1.055, 1.063, 1.098,, 1.
1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.30591.8.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511,
1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633,2].6.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809,
1.818,1.821, 1.848,1.880, 1.954, 2.012, 2.067, 2.089022.096, 2.128, 2.233, 2.433, 2.585, 2.585.

Data set 2:(stress measurements)

0.101, 0.332, 0.403, 0.428, 0.457, 0.550, 0.561, 0.59870.8.645, 0.6540, 0.674, 0.718, 0.722, 0.725, 0.732, 0.775
0.814, 0.816, 0.818, 0.824, 0.859, 0.875, 0.938, 0.94®%61.0.117, 1.128, 1.137, 1.137, 1.177, 1.196, 1.230, 1.325,
1.339, 1.345, 1.420, 1.423, 1.435, 1.443, 1.464, 1.4734].4.532, 1.546, 1.577, 1.608, 1.635, 1.693, 1.701, 1.737,
1.754,1.762, 1.828, 2.052, 2.071, 2.086, 2.171, 2.22272 2425, 2.595, 3.2.

We fit the two data sets separately with the exponentiate@rgéped inverse Weibull distribution(EGIW) . we
provide the Kolmogorov-Smirnov (K-S),Anderson-DarliAgD) and Cramr-von Mises goodness-of-fit tests in Table 2.
Obviously, the (EGIW) model fits well to Data Set 1 and DataXSet
The MLE and Bayesian estimates of R for the real data are geohin Table 3.

Table 2: P-value of different goodness-of-fit tests for data set 1, 2.
K-S A-D Cramr-von

data set 1.| 0.231248| 0.143961| 0.152425
data set 2.| 0.192997| 0.126852| 0.213019

Table 3: Maximum likelihood ,Bayesian estimates of the parametedsR

ax az B B2 A 6 R
MLE | 2.7192| 1.9639| 4.4707 | 2.0057 | 0.9511| 1.0789 | 0.55826
Bayes| 1.1070| 1.5513| 3.6196 | 2.1963| 1.5344 | 1.06724| 0.7493

In case of multi-component stress-strength model, the maixi likelihood and Bayes estimates of the stress-strength
reliability based on the real data sets, are presented ile fidfor different values of andk.
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Table 4: The Maximum likelihood ,Bayesian estimatesRajy.

(s,K) MLE Bayes
(1,3) | 0.73573| 0.82293
(1,5) | 0.83869| 0.91084
(2,4) | 0.54955| 0.70667
(3,3) | 0.16096| 0.34609
(3,5) | 0.42262| 0.6608

From Table 4 we notice that: For fixed k, as s increases thevele ofRs decreases, also for fixed s, as k increases
then the value oRs increases.

8 Conclusion

In this paper we presented two methods for estimatg Pr(Y < X) when X and Y both follow exponentiated
generalized inverse Weibull distribution with differerdrameters. We investigated Maximum likelihood and Bayesia
estimation methods of R and their performances are exarhyeomulation study.
We have computed the Bayes estimate of R based on the indamegadmma priors and using squared error loss
function. Since the Bayes estimate cannot be obtained ilicéxfprm, we have used he importance sampling technique
to compute the Bayes estimate. Simulation results suggesthie performance of the Bayes estimator is better than
maximum likelihood for all different sample sizes, also,xinaum likelihood method provides very satisfactory result
as sample size increased.

It is hoped that our investigation will be useful for resésns dealing with the kind of data considered in this paper.
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