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Abstract: In this article, the Poisson exponentiated Erlang truncated exponential distribution was developed and its properties such
as the quantile, moment, incomplete moment and inequality measures were derived. The parameters of the new model were estimated
using maximum likelihood estimation and simulation studies were performed to examine the finite sample properties of the parameters.
An application of the model was demonstrated using real dataset. Finally, a bivariate extension of the model was proposed.
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1 Introduction

The Erlang-truncated exponential (ETE) distribution [6] was developed by mixing the Erlang distribution with left
truncated one-parameter exponential distribution. The ETE distribution, like the exponential distribution, has a constant
failure rate which makes it practically impossible for the model to provide a reasonable parametric fit to data sets with
decreasing failure rate, increasing failure rate and non-monotonic failure rate such as the bathtub and unimodal failure
rates which are common in reliability studies and other related fields of studies. To improve the goodness-of-fit of the
ETE distribution in modeling data with different failure rates, researchers in recent times have proposed new
modifications of the model. Among them are: transmuted ETE distribution [11], extended ETE distribution [13],
generalized ETE distribution [8] and Marshall-Olkin generalized ETE distribution [12].
Different researchers have proposed methods for modifyingexisting standard or classical distributions to make them
more flexible for modeling lifetime data. These techniques have the ability to improve the goodness-of-fit of the modified
distributions in order to provide a reasonable fit to the dataset. Some of these methods include: transformed-transformer
(T-X) method [1], exponentiated generalizedT-X method [10], exponentiatedT-X method [2], exponentiated generalized
exponential-X family [9] and exponentiated generalized class [5].
In this study, another extension of the ETE distribution called the Poisson exponentiated Erlang-truncated exponential
(PEETE) distribution has been proposed by compounding the Poisson distribution with the exponentiated ETE
distribution. The motivation for proposing the new distribution is to provide a model for modeling data with different
kinds of failure rate, varied degrees of skewness and kurtosis. The rest of the paper is organized as follows: In section 2,
the probability density function (PDF), the cumulative distribution function (CDF), the survival function and hazardrate
function of the PEETE distribution were defined. In section 3, statistical properties of the new model were derived. In
section 4, the parameters of the model were estimated using the method of maximum likelihood. In section 5, Monte
Carlo simulations were performed to examine the finite sample properties of the estimators of the parameters. In section
6, an application of the model was demonstrated using real data set. In section 7, a bivariate extension of the model was
proposed. The concluding remarks were finally given in section 8.
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2 Model Definition

Let M represent the number of independent subsystems of a system functioning at a given time. Suppose thatM has a
zero truncated Poisson distribution with probability massfunction given by

P(M = m) =
θ m

m! (eθ −1)
, m = 1,2, ..., θ > 0. (1)

Let the failure time of each subsystem follow the exponentiated Erlang-truncated exponential distribution with CDF given
by

G(x) =
(

1− e−β (1−e−λ)x
)α

, α, β , λ , x > 0. (2)

If Z j is the failure time of thejth subsystem andX represents the time to failure of the first out of theM operating
subsystems such thatX = min{Z1, Z2, ...ZM}. Then the conditional CDF ofX givenM is

F(x|M = m) = 1−P(X > x|M)

= 1−P(Z1 > x, ..., ZM > x)

= 1− [P(Z1 > x)]m

= 1− [1−P(Z1 < x)]m

= 1−
[

1−
(

1− e−β (1−e−λ)x
)α]m

, x > 0.

Thus, the marginal CDF ofX is given by

F(x) =
1

(eθ −1)

∞

∑
m=1

θ m

m!

{

1−
[

1−
(

1− e−β (1−e−λ)x
)α]m

}

=
1− e

−θ
(

1−e−β(1−e−λ )x
)α

1− e−θ , x > 0, (3)

whereθ , α, β , λ > 0. The corresponding PDF of the PEETE distribution is obtained by differentiating equation3 and is
given by

f (x) =
θαβ (1− e−λ)e−β (1−e−λ )x

(

1− e−β (1−e−λ)x
)α−1

e
−θ

(

1−e−β(1−e−λ )x
)α

1− e−θ , x > 0. (4)

Lemma 1.The PDF of the PEETE distribution can be written in a mixture form as

f (x) =
α

1− e−θ

∞

∑
i=0

∞

∑
j=0

ωi j fET E(x; β j+1, λ ),x > 0, (5)

where fET E(x; β j+1, λ ) = β j+1(1− e−λ )e−beta j+1(1−e−λ )x is the PDF of the ETE distribution with parametersβ j+1 =
β ( j+1)> 0 andλ > 0 and

ωi j =
(−1)i+ jθ i+1Γ (α(i+1))
i! ( j+1)! Γ (α(i+1)− j)

.

Proof. Using the Taylor series expansion,

e
−θ

(

1−e−β(1−e−λ )x
)α

=
∞

∑
i=0

(−1)iθ i
(

1− e−β (1−e−λ)x
)α i

i!
.

Hence, the PDF of the PEETE distribution can be written as

f (x) =
θαβ (1− e−λ)e−β (1−e−λ )x

1− e−θ

∞

∑
i=0

(−1)iθ i

i!

(

1− e−β (1−e−λ)x
)α(i+1)−1

, x > 0. (6)
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For a real non-integerη > 0, the following identity holds.

(1− z)η−1 =
∞

∑
j=0

(−1) jΓ (η)
j!Γ (η − j)

z j , |z|< 1. (7)

Using the identity in equation (7) and the fact that 0<
(

1− e−β (1−e−λ)x
)α(i+1)−1

< 1, equation (6) can be expressed as

f (x) =
α

1− e−θ

∞

∑
i=0

∞

∑
j=0

ωi j fET E(x; β j+1, λ ),x > 0,

which is the mixture representation of the PDF of the PEETE distribution. From equation (5), it can easily be seen that
the PDF of the PEETE distribution is a weighted function of the ETE distribution with different parameters. The PDF of
the PEETE distribution reduces to the PDF of the Poisson Erlang truncated exponential (PETE) distribution whenα = 1.
Figure1 displays the shapes of the density function of the PEETE distribution for some selected parameter values.

Fig. 1: PEETE distribution density function

The survival function and the hazard rate function are

S(x) =

(

1− e−β (1−e−λ)x
)α

− e−θ

1− e−θ , x > 0, (8)

and

τ(x) =
θαβ (1− e−λ)e−β (1−e−λ )x

(

1− e−β (1−e−λ)x
)α−1

1− e
−θ+θ

(

1−e−β(1−e−λ )x
)α , x > 0, (9)
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respectively. The hazard rate function of the PEETE distribution exhibits different shapes such as the upside down
bathtub, increasing and decreasing failure for different combinations of the parameter values. The plot of the hazard rate
function is given in Figure2.

Fig. 2: PEETE hazard rate function

2.1 Statistical Properties

In this section various statistical properties of the PEETEdistribution were discussed.

2.2 Quantile Function

The quantile function is a useful function for generating random numbers from the PEETE distribution. The quantile
function of the PEETE distribution is given by

QX(p) =

− log

{

1−
[

− log(1−p(1−e−θ ))
θ

] 1
α
}

β (1− e−λ)
, p ∈ [0, 1]. (10)

Substituting p = 0.25, 0.5 and 0.75 into equation (10) yields the first quartile, the median and the third quartile
respectively.

2.3 Moment

The moments play a useful role in statistical analyses. Theyare used for estimating measures of central tendency,
dispersion and shapes among others.
Proposition 1.Therth non-central moment of the PEETE distribution is given by
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µ
′
r =

α
1− e−θ

∞

∑
i=0

∞

∑
j=0

ωi j
Γ (r+1)

[β j+1(1− e−λ )]r
, r = 1, 2, ..., (11)

whereΓ (a) =
∫ ∞

0 ya−1e−ydy = (a−1)! is the complete gamma function.
Proof. By definition

µ
′
r =

∫ ∞

0
xr f (x)dx

=
∫ ∞

0
xr α

1− e−θ

∞

∑
i=0

∞

∑
j=0

ωi j fET E(x; β j+1, λ )dx

=
α(1− e−λ)

1− e−θ

∞

∑
i=0

∞

∑
j=0

ωi j β j+1

∫ ∞

0
xre−β j+1(1−e−λ )xdx.

After some algebraic manipulation, the moment is obtained as

µ
′
r =

α
1− e−θ

∞

∑
i=0

∞

∑
j=0

ωi j
Γ (r+1)

[β j+1(1− e−λ)]r
, r = 1, 2, ....

2.4 Incomplete Moment

The incomplete moment has a critical role to play in statistical analyses. It is used for estimating the mean deviation,
median deviation and measures of inequalities such as the Lorenz and Bonferroni curves.
Proposition 2.Therth incomplete moment of the PEETE distribution is given by

ϕr(t) =
α

1− e−θ

∞

∑
i=0

∞

∑
j=0

ωi j
γ(r+1, β j+1(1− e−λ)t)

[β j+1(1− e−λ)]r
, t > 0, r = 1, 2, .... (12)

whereγ(a, t) =
∫ t

0 ya−1e−ydy is the lower incomplete gamma function.
Proof. By definition

ϕr(t) =
∫ t

0
xr f (x)dx

=

∫ t

0
xr α

1− e−θ

t

∑
i=0

∞

∑
j=0

ωi j fET E(x; β j+1, λ )dx

=
α(1− e−λ)

1− e−θ

∞

∑
i=0

t

∑
j=0

ωi j β j+1

∫ t

0
xre−β j+1(1−e−λ )xdx

=
α

1− e−θ

∞

∑
i=0

∞

∑
j=0

ωi j
γ(r+1, β j+1(1− e−λ)t)

[β j+1(1− e−λ)]r
.

The mean deviation,δ1(x) and median deviation,δ2(x), can easily be computed using the relationships
δ1(x) = 2µF(µ)− 2ϕ1(µ) and δ2(x) = µ − 2ϕ1(M). Whereµ = E(X) and M is the median of the PEETE random
variable.ϕ1(µ) andϕ1(M) are computed using the first incomplete moment.

2.5 Inequality Measures

In this subsection, the Lorenz,LF(x), and Bonferroni,BF(x) curves were derived. They are the most widely used measures
of income inequality of a given population.
Proposition 3.The Lorenz curve for the PEETE distribution is given by

LF(x) =
α

µ(1− e−θ)

∞

∑
i=0

∞

∑
j=0

ωi j
γ(2, β j+1(1− e−λ)x)

[β j+1(1− e−λ )]
. (13)
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Proof. By definition

LF(x) =
1
µ

∫ x

0
z f (z)dz

=
α

µ(1− e−θ)

∞

∑
i=0

∞

∑
j=0

ωi j
γ(2, β j+1(1− e−λ)x)

[β j+1(1− e−λ )]
.

Proposition 4.The Bonferroni curve for the PEETE distribution is given by

BF(x) =
α

µ
(

1− e
−θ

(

1−e−β(1−e−λ )x
)α)

∞

∑
i=0

∞

∑
j=0

ωi j
γ(2, β j+1(1− e−λ)x)

[β j+1(1− e−λ)]
. (14)

Proof. The proof follows directly from the definition

BF(x) =
1

µF(x)

∫ x

0
z f (z)dz.

2.6 Entropy

Entropies have been extensively used in information theory. They are good measures of randomness or variation of a
random variable. In this subsection, the Rényi entropy [14] of a random variable having the PEETE distribution is given.
Proposition 5. If the random variableX has a PEETE distribution, then the Rényi entropy ofX is given by

IR(δ ) =
1

1− δ
log

[

A
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ j+k jkδ i−k−1θ iΓ (δ (α −1)+αi+1)Γ (k+1)

i! j! k![β (1− e−λ )]Γ (δ (α −1)+αi− j+1)

]

, (15)

whereδ 6= 1, δ > 0 andA =
(

θαβ (1−e−λ )
1−e−θ

)δ
.

Proof. Using similar concepts for expanding density,

f δ (x) = A
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ j+k(δθ )i[β j]
kΓ (δ (α −1)+αi+1)

i!J!K!Γ (δ (α −1)+αi− j+1)
xke−β δ (1−e−λ )x. (16)

By definition,

IR(δ ) =
1

1− δ
log

[

∫ ∞

0
f δ (x)dx

]

, δ 6= 1,δ > 0.

Thus,

IR(δ ) =
1

1− δ
log

[

∫ ∞

0
A

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ j+k(δθ )i[β j]
kΓ (δ (α −1)+αi+1)

i!J!K!Γ (δ (α −1)+αi− j+1)
xke−β δ (1−e−λ )xdx

]

=
1

1− δ
log

[

A
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ j+k(δθ )i[β j]
kΓ (δ (α −1)+αi+1)

i!J!K!Γ (δ (α −1)+αi− j+1)

∫ ∞

0
xke−β δ (1−e−λ )xdx

]

=
1

1− δ
log

[

A
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ j+k jkδ i−k−1θ iΓ (δ (α −1)+αi+1)Γ (k+1)

i! j! k![β (1− e−λ)]Γ (δ (α −1)+αi− j+1)

]

.

The Rényi entropy tends to the Shannon entropy asδ −→ 1.
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2.7 Stochastic Ordering

Stochastic ordering is the commonest way to show ordering mechanism in lifetime distributions. Suppose
X1 ∼ PEETE(θ , α1, β , λ ) andX2 ∼ PEETE(θ , α2, β , λ ), thenX1 is said to be stochastically smaller thanX2 in the

1.stochastic order(X1 ≤st X2) if the associated CDFs satisfy:FX1 ≥ FX2 for all x.
2.hazard rate order(X1 ≤hr X2) if the associated hazard rate functions satisfy:hX1 ≥ hX2 for all x.

3.likelihood ratio order(X1 ≤lr X2) if the ratio of the associated PDFs given by
fX1

(x)
fX2(x)

decreases inx.

WhenX1 andX2 have a common finite left end-point support, the following implications hold

X1 ≤lr X2 =⇒ X1 ≤hr X2 =⇒ X1 ≤st X2.

Suppose that the densities ofX1 andX2 are

fX1(x) =
θα1β (1− e−λ)e−β (1−e−λ )x

(

1− e−β (1−e−λ)x
)α1−1

e
−θ

(

1−e−β(1−e−λ )x
)α1

1− e−θ , x > 0,

and

fX2(x) =
θα2β (1− e−λ)e−β (1−e−λ )x

(

1− e−β (1−e−λ)x
)α2−1

e
−θ

(

1−e−β(1−e−λ )x
)α2

1− e−θ , x > 0,

respectively. Then the ratio of the two densities is

fX1(x)
fX2(x)

=
α1

α2

(

1− e−β (1−e−λ)x
)α1−α2

e
θ
[(

1−e−β(1−e−λ )x
)α2

−
(

1−e−β(1−e−λ )x
)α1

]

, x > 0.

Differentiating the ratio of the densities yields

d
dx

fX1(x)
fX2(x)

= B(α1−α2)
(

1− e−β (1−e−λ)x
)α1−α2−1

+

Bθ
(

1− e−β (1−e−λ)x
)α1−α2

[

(

1− e−β (1−e−λ)x
)α2−1

−
(

1− e−β (1−e−λ)x
)α1−1

]

,

where

B =
α1

α2
β (1− e−λ)e

−β (1−e−λ )x+θ
[(

1−e−β(1−e−λ )x
)α2

−
(

1−e−β(1−e−λ )x
)α1

]

.

If α2 > α1, d
dx

fX1
(x)

fX2(x)
< 0, which implies(X1 ≤lr X2).

2.8 Order Statistics

In this subsection, the order statistics of PEETE distribution were derived. SupposeX1, X2, . . . , Xn is random sample from
PEETE andX1: n < X2: n < .. . < Xn : n are the corresponding order statistics. The PDF,fr : n(x), of therth order statistic
Xr : n is

fr:n(x) =
1

B(r, n− r+1)
[F(x)]r−1 [1−F(x)]n−r f (x),

whereF(x) and f (x) are the CDF and PDF of the PEETE distribution respectively, and B(· , ·) is the beta function. Since
0< F(x)< 1 for x > 0, using the binomial series expansion of[1−F(x)]n−r, which is given by

[1−F(x)]n−r =
n−r

∑
i=0

(−1)i
(

n− r
i

)

[F(x)]i ,
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we have

fr:n(x) =
1

B(r, n− r+1)

n−r

∑
i=0

(−1)l
(

n− r
i

)

[F(x)]r+i−1 f (x). (17)

Substituting the CDF and PDF of the PEETE distribution into equation (17) and using similar concept for expanding the
density gives

fr:n(x) = θα
∞

∑
m=0

∞

∑
k=0

n−r

∑
i=0

r+i−1

∑
j=0

ζi jkm
fET E(x; βm+1, λ )
(1− e−θ)r+i , (18)

where

ζi jkm =
(−1)i+ j+k+m[θ ( j+1)]kΓ (n+1)Γ (r+ i)Γ (α(k+1))

i! j! k! (m+1)! (r−1)! Γ (n− r− i+1)Γ (r+ i− j)Γ (α(k+1)−m)
.

The density of therth order statistic is a weighted function of the density of ETE distribution with parametersβm+1 =
β (m+1) andλ .

3 Parameter Estimation

In this section, the maximum likelihood estimators of the unknown parameters of the PEETE distribution were derived.
SupposeX1, X2, . . . , Xn form a random sample of sizen from the PEETE distribution, then the log-likelihood function is
given by

ℓ= n log(θαβ (1− e−λ))− n log(1− e−θ)− (1− e−λ)
n

∑
i=1

xi −θ
n

∑
i=1

(1− e−β (1−e−λ)xi)α+

(α −1)
n

∑
i=1

log(1− e−β (1−e−λ)xi). (19)

Finding the partial derivatives of the log-likelihood function with respect to the parametersθ , α, β and λ , the score
functions are obtained as

∂ℓ
∂θ

=
n
θ
− ne−θ

1− e−θ −
n

∑
i=1

(1− e−β (1−e−λ)xi)α , (20)

∂ℓ
∂α

=
n
α
+

n

∑
i=1

log(1− e−β (1−e−λ)xi)−θ
n

∑
i=1

(1− e−β (1−e−λ)xi)α log(1− e−β (1−e−λ)xi), (21)

∂ℓ
∂β

=
n
β
− (1− e−λ)

n

∑
i=1

xi +(α −1)
n

∑
i=1

xi(1− e−λ)e−β (1−e−λ )xi

1− e−β (1−e−λ)xi
−

θα(1− e−λ )
n

∑
i=1

xie
−β (1−e−λ )xi(1− e−β (1−e−λ)xi)α−1, (22)

∂ℓ
∂λ

=
ne−λ

1− e−λ −β e−λ
n

∑
i=1

xi +(α −1)β e−λ
n

∑
i=1

xie−β (1−e−λ )xi

1− e−β (1−e−λ)xi
−

θαβ e−λ
n

∑
i=1

xie
−β (1−e−λ )xi(1− e−β (1−e−λ)xi)α−1. (23)
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The maximum likelihood estimates of the parameters are obtained by equation the score functions to zero and the system
of non-linear equations solved numerically. To construct confidence intervals for the parameters of the PEETE distribution,
the observed information matrixJ(ΘΘΘ) was used. The observed information matrix for the parameters is given by

J(ΘΘΘ) =−













∂ 2ℓ
∂θ2

∂ 2ℓ
∂θ∂α

∂ 2ℓ
∂θ∂β

∂ 2ℓ
∂θ∂λ

∂ 2ℓ
∂α2

∂ 2ℓ
∂α∂β

∂ 2ℓ
∂α∂λ

∂ 2ℓ
∂β 2

∂ 2ℓ
∂β ∂λ

∂ 2ℓ
∂λ 2













,

whereΘΘΘ = (θ , α, β , λ )′ . The elements of the observed information matrix are given in the appendix. When the regularity
condition holds and the parameters are within the interior of the parameter space, but not on the boundary, the distribution
of

√
n(Θ̂ΘΘ −ΘΘΘ) converges to the multivariate normal distributionN4(000, I−1(ΘΘΘ)), whereI(ΘΘΘ) is the expected information

matrix. The asymptotic behavior is still valid whenI(ΘΘΘ) is replaced by the observed information matrix estimated at
J(Θ̂ΘΘ).

4 Simulation Study

In this section, a Monte Carlo simulation was performed to investigate the finite sample properties of the maximum
likelihood estimators for the parameters of the PEETE distribution. The results of the simulation were obtained from
2,000 Monte Carlo replications. In each repetition, a random sample of sizen = 25, 50, 75 and 100 were generated from
the PEETE distribution. Table1 displays the mean estimates, average bias, root mean squareerror (RMSE), coverage
probability (CP) and average width (AW) of the confidence intervals for the parameters of the PEETE distribution. The
results revealed that the average bias, the RMSE and AW decrease as the sample size increases. In addition, the CPs of
the confidence intervals are quite close to the nominal 95%. The mean estimates of the parameters are generally close to
the actual values as the sample size increases. Hence, the results revealed that the estimates of the parameters are stable
and their asymptotic properties can be used for constructing confidence intervals even for reasonably small sample size.

5 Application

This section presents the application of the PEETE distribution using real data set. The goodness-of-fit of the model was
compared with that of its sub-model (PETE distribution), Inverse Weibull Poisson (IWP) distribution [3] and
Exponentiated Kumaraswamy Dagum (EKD) distribution [7] using Cramér-von (W∗) Misses distance values and
Anderson-Darling (AD) test statistics as well as Akaike information criterion (AIC), corrected Akaike information
criterion (AICc) and Bayesian information criterion (BIC). The data were reported by [4] and consist of the survival
times (in days) of 72 guinea pigs infected with virulent tubercle bacilli. Table2 displays the data set.
The density functions of the IWP and EKD distributions are;

f (x) =
θαβ x−β−1e−αx−β

eθe−αx−β

eθ −1
, θ , α, β , x > 0, (24)

and

f (x) = αβ θabx−θ−1(1+β x−θ)−α−1
(

1− (1+β x−θ)−α
)a−1[(

1− (1+β x−θ)−α
)a]b−1

α, β , θ , a, b, x > 0, (25)

respectively. The maximum likelihood estimates of the parameters of the fitted distributions and their corresponding
standard errors in brackets are shown in Table3. The estimated parameters for the PEETE distribution and its sub-model
were all significant at the 5% significance level.
The goodness-of-fit statistics displayed in Table4 revealed that the PEETE distribution provides a better fit tothe data
compared to the PETE, IWP and EKD distributions. The conclusion is based on the fact that it had the lowest value for
the statistics. The likelihood ratio test statistic for thetest of hypothesisH0 : α = 1 vsH1 : H0 is false gave a value 38.824.
The correspondingP-value= 4.6380× 10−10 < 0.05. Thus, the null hypothesis was rejected in favor of the PEETE
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Table 1: Simulation results: Mean estimates, Bias, RMSE, CPand AW
θ α β λ n Parameters Estimates Bias RMSE CP AW

4.5 0.2 2.1 0.1 25 θ 3.2749 -1.2251 1.9328 0.8660 10.9282
α 0.2198 0.0198 0.0424 0.9745 0.1840
β 4.6493 2.5493 5.0133 0.9845 1661.2690
λ 0.8563 0.7563 1.5057 0.9255 841.2298

50 θ 3.7299 -0.7701 1.4662 0.8680 7.8690
α 0.2129 0.0129 0.0297 0.9610 0.1210
β 3.4281 1.3281 3.0450 0.9645 548.0638
λ 0.4509 0.3509 0.8627 0.8085 163.6414

75 θ 4.0460 -0.4540 1.0496 0.9160 5.7757
α 0.2094 0.0094 0.0235 0.9560 0.0925
β 2.7099 0.6099 1.7290 0.9680 132.8608
λ 0.2932 0.1932 0.6123 0.7110 30.4660

100 θ 4.2003 -0.2997 0.8034 0.9435 4.7515
α 0.2060 0.0060 0.0191 0.9635 0.0773
β 2.4033 0.3033 1.1106 0.9645 41.5491
λ 0.2061 0.1061 0.3351 0.6315 6.7270

0.64 0.3 0.1 3.2 25 θ 3.1843 -2.3157 2.8077 0.7395 10.8286
α 0.2945 -0.0055 0.0527 0.9835 0.2499
β 0.8152 0.7152 1.1687 0.9955 300.9816
λ 3.6602 0.4602 1.1582 0.9990 858.1100

50 θ 3.6257 -1.8743 2.4368 0.7245 8.8408
α 0.2985 -0.0015 0.0374 0.9745 0.1721
β 0.5895 0.4895 0.7949 0.9890 123.2901
λ 3.5637 0.3637 0.9282 0.9959 432.8220

75 θ 3.8937 -1.6063 2.2051 0.7245 8.0128
α 0.3008 0.0008 0.0310 0.9760 0.1376
β 0.4697 0.3697 0.5991 0.9880 53.0148
λ 3.6334 0.4334 1.3407 0.9985 174.035

100 θ 4.1381 -1.3618 1.9598 0.7475 7.6524
α 0.3023 0.0023 0.0270 0.9700 0.1164
β 0.3782 0.2782 0.4563 0.9800 35.5386
λ 3.5550 0.3550 1.0751 0.9648 165.2170

2.5 0.3 0.1 0.5 25 θ 2.2951 -0.2049 1.3294 0.9499 8.6878
α 0.3186 0.0186 0.0635 0.9835 0.3037
β 0.1799 0.0799 0.1633 0.9490 592.4642
λ 0.5303 0.0303 0.1398 0.9950 2055.8740

50 θ 2.4004 -0.0996 1.1981 0.9800 6.5996
α 0.3132 0.0132 0.0470 0.9725 0.2116
β 0.1439 0.0439 0.1011 0.9590 189.9837
λ 0.5174 0.0174 0.1402 0.9758 832.5282

75 θ 2.4144 -0.0856 1.1194 0.9570 5.4190
α 0.3121 0.0121 0.0396 0.9605 0.1723
β 0.1294 0.0294 0.0726 0.9935 107.3689
λ 0.5165 0.0165 0.1262 0.9695 534.3913

100 θ 2.4589 -0.0411 1.0211 0.9590 4.7641
α 0.3110 0.0110 0.0354 0.9600 0.0.1476
β 0.1241 0.0241 0.0637 0.9290 78.5896
λ 0.5060 0.0060 0.1186 0.9790 398.3197

Table 2: Survival times of guinea pigs
0.1 0.33 0.44 0.56 0.59 0.72 0.74 0.77 0.92 0.93 0.96 1.0 1.0 1.02 1.05
1.07 1.07 1.08 1.08 1.08 1.09 1.12 1.13 1.15 1.16 1.2 1.21 1.221.22 1.24
1.3 1.34 1.36 1.39 1.44 1.46 1.53 1.59 1.6 1.63 1.63 1.68 1.71 1.72 1.76
1.83 1.95 1.96 1.97 2.02 2.13 2.15 2.16 2.22 2.3 2.31 2.4 2.45 2.51 2.53
2.54 2.54 2.78 2.93 3.27 3.42 3.47 3.61 4.02 4.32 4.58 5.55
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Table 3: Maximum likelihood estimates of parameters and standard errors

Model θ̂ α̂ β̂ λ̂ â b̂

PEETE 6.3462 2.8121 154.5800 0.0025

(0.0534) (0.4075) (5.6981×10−6) (3.9763×10−4)

PETE 100.6900 150.8300 3.7323×10−5

(1.6448×10−12) (1.0945×10−12) (4.4278×10−6)

IWP 8.3210 0.1650 1.645

(2.0720) (0.0460) (0.120)

EKD 2.9310 1.8640 5.9970 1.3820 0.4520

(2.0110) (7.3390) (7.5200) (1.7450) (1.8700)

Table 4: Goodness-of-fit statistics

Model AIC AICc BIC AD W∗

PEETE 195.7286 196.6379 204.8353 0.3645 0.0547

PETE 232.5525 233.1495 239.3825 0.5908 0.0954

IWP 215.7000 216.0000 222.5000 2.0980 0.3100

EKD 197.0000 197.9000 208.4000 0.4150 0.0628

distribution. This implies that the PEETE distribution is significantly better than the PETE distribution. The estimated
asymptotic variance-covariance matrix for the parametersof the PEETE distribution is

J−1 =−









2.8470×10−3 2.1744×10−2 −3.0404×10−7 1.9133×10−5

2.1744×10−2 1.6607×10−1 −2.3221×10−6 1.4613×10−4

−3.0404×10−7 −2.3221×10−6 3.2468×10−11 −2.0428×10−9

1.9133×10−5 1.4613×10−4 −2.0428×10−9 1.5811×10−7









.

Hence, the approximate 95% confidence interval for the parameters θ , α, β and λ are [6.2416, 6.4508],
[2.0134, 3.6108], [154.5800, 154.5800] and[0.0017, 0.0033] respectively. Figure3 displays the empirical density and the
fitted densities of the guinea pig data. From the figure, it canbe seen that the PEETE distribution provides a better fit to
the data compared to the other fitted models.

6 Bivariate Extension

Suppose the pair(X , Y ) are bivariate random variables of the PEETE distribution with marginal distribution functions
FX(x) andFY (y) and CopulaC. Given that the copula related to(X , Y ) is a member of Ali-Mikhail-Haq family of copula
defined by

C(u, v) =
uv

1−φ(1− u)(1− v)
, |φ |< 1.

If the marginal distribution functions are

FX(x) =
1− e

−θ1

(

1−e−β1(1−e−λ1 )x
)α1

1− e−θ1
, θ1, α1, β1, λ1, x > 0,

and

FY (y) =
1− e

−θ2

(

1−e−β2(1−e−λ2 )y
)α2

1− e−θ2
, θ2, α2, β2, λ2, y > 0.
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Fig. 3: Empirical and fitted densities of guinea data

Then joint CDF of the bivariate PEETE distribution is given by

FXY (x, y) =

(1− e−θ1)−1(1− e−θ2)−1



1− e
−θ1

(

1−e−β1(1−e−λ1)x
)α1







1− e
−θ2

(

1−e−β2(1−e−λ2)y
)α2





1−φ



1− (1− e−θ1)−1



1− e
−θ1

(

1−e−β1(1−e−λ1)x
)α1











1− (1− e−θ2)−1



1− e
−θ2

(

1−e−β2(1−e−λ2 )y
)α2









,

θ1, α1, β1, λ1, θ2, α2, β2, λ2, x, y > 0, |φ |< 1.

The conditional distribution functions are given by

FX |Y (x|y) =

(1− e−θ1)−1



1− e
−θ1

(

1−e−β1(1−e−λ1 )x
)α1





1−φ



1− (1− e−θ1)−1



1− e
−θ1

(

1−e−β1(1−e−λ1)x
)α1











1− (1− e−θ2)−1



1− e
−θ2

(

1−e−β2(1−e−λ2 )y
)α2









,

θ1, α1, β1, λ1, θ2, α2, β2, λ2, x, y > 0, |φ |< 1,

and
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FY |X(y|x) =

(1− e−θ2)−1



1− e
−θ2

(

1−e−β2(1−e−λ2 )y
)α2





1−φ



1− (1− e−θ1)−1



1− e
−θ1

(

1−e−β1(1−e−λ1 )x
)α1











1− (1− e−θ2)−1



1− e
−θ2

(

1−e−β2(1−e−λ2 )y
)α2









,

θ1, α1, β1, λ1, θ2, α2, β2, λ2, x, y > 0, |φ |< 1.

The joint PDF is obtained by finding

fXY (x, y) =
∂ 2FXY (x, y)

∂x∂y
.

7 Conclusion

This study proposed the Poisson exponentiated Erlang truncated exponential distribution and studied its statistical
properties. The method of maximum likelihood was used to estimate the parameters of the new distribution. Simulation
studies were performed to assess the finite sample properties for the estimators of the parameters and the results revealed
that the estimators of parameters were stable. The application of the distribution was demonstrated using real data setand
the empirical results obtained showed the PEETE distribution is a better model compared with competing models in
terms of goodness-of-fit. Finally, the bivariate Poisson exponentiated Erlang-truncated exponential distribution was
proposed. We recommend that further studies should be carried out by comparing the maximum likelihood method with
other techniques for estimating model parameters in order to identify which of them is most appropriate for estimating
the parameters of the PEETE distribution.
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Appendix

Elements of the observed information matrix.

∂ 2ℓ

∂θ 2 =
ne−2θ

(1− e−θ)2 +
ne−θ

1− e−θ − n
θ 2 ,

∂ 2ℓ

∂θ∂α
=−

n

∑
i=1

(

1− e−β(1−e−λ)xi
)α

log
(

1− e−β(1−e−λ)xi
)

,

∂ 2ℓ

∂θ∂β
=−α(1− e−λ)

n

∑
i=1

xie
−β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)α−1

,

∂ 2ℓ

∂θ∂λ
=−αβ

n

∑
i=1

xie
−λ−β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)α−1

,

∂ 2ℓ

∂α2 =− n
α2 −θ

n

∑
i=1

(

1− e−β(1−e−λ)xi
)α

log
(

1− e−β(1−e−λ)xi
)2

,

∂ 2ℓ

∂α∂β
=

n

∑
i=1

(1− e−λ )xie
−β(1−e−λ)xi

1− e−β(1−e−λ)xi
−θ (1− e−λ)

n

∑
i=1

xie
−β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)α−1

−αθ (1− e−λ)
n

∑
i=1

xie
−β(1−e−λ )xi

(

1− e−β(1−e−λ)xi
)α−1

log
(

1− e−β(1−e−λ)xi
)

,

∂ 2ℓ

∂α∂λ
=

n

∑
i=1

β xie
−λ−β(1−e−λ)xi

1− e−β(1−e−λ)xi
−θβ

n

∑
i=1

xie
−λ−β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)α−1

−αβ θ
n

∑
i=1

xie
−λ−β(1−e−λ)xi

(

1− e−β(1−e−λ )xi

)α−1
log

(

1− e−β(1−e−λ)xi

)

,

∂ 2ℓ

∂β 2 =− n
β 2 +(α −1)

n

∑
i=1







(

1− e−λ)2
x2

i e−2β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)2 −

(

1− e−λ)2
x2

i e−β(1−e−λ)xi

1− e−β(1−e−λ)xi







+αθ (1− e−λ)2
n

∑
i=1

x2
i e−β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)α−1

−αθ (α −1))(1− e−λ)2
n

∑
i=1

x2
i e−2β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)α−1

,
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∂ 2L
∂β ∂λ

=−e−λ
n

∑
i=1

xi +(α −1)

×
n

∑
i=1







xie
−λ−β(1−e−λ)xi

1− e−β(1−e−λ)xi
− β

(

1− e−λ)x2
i e−λ−2β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)2 − β

(

1− e−λ)x2
i e−λ−β(1−e−λ)xi

1− e−β(1−e−λ)xi







−αθ
n

∑
i=1

xie
−λ−β(1−e−λ)xi

(

1− e−β(1−e−λ )xi
)α−1

+αβ θ
(

1− e−λ
) n

∑
i=1

x2
i e−λ−β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)α−1

−αβ θ (α −1)
(

1− e−λ
) n

∑
i=1

x2
i e−λ−2β(1−e−λ )xi

(

1− e−β(1−e−λ)xi
)α−2

,

∂ 2ℓ

∂λ 2 =− ne−2λ

(1− e−λ)2
− ne−λ

1− e−λ +β e−λ
n

∑
i=1

xi

+(α −1)
n

∑
i=1






−β 2x2

i e−2λ−2β(1−e−λ)xi

(

1− e−β(1−e−λ)xi

)2 +
β xi

(

−1− e−λ β xi
)

e−λ−β(1−e−λ)xi

1− e−β(1−e−λ)xi







−αβ 2θ (α −1)
n

∑
i=1

x2
i e−2λ−2β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)α−2

−αβ θ
n

∑
i=1

xie
−λ−β(1−e−λ)xi

(

1− e−β(1−e−λ)xi
)α−1

(−1− e−λ β xi).

R Algorithm

EETEDensityFunction
PEETEPDF <− f unction(x, theta,alpha,beta, lambda)
{
A <−theta ∗ alpha ∗ beta∗ (1− exp(−lambda))∗ ((1− exp(−theta))(−1))
B <−exp(−beta ∗ (1− exp(−lambda))∗ x)
C <−(1−B)(alpha−1)
D <−exp(−theta ∗ ((1−B)al pha))
f xn <−A∗B∗C∗D
return( f xn)
}

PEETE CDF
PEETECDF <− f unction(x, theta,alpha,beta, lambda)
{
CA <−(1− exp(−beta ∗ (1− exp(−lambda))∗ x))al pha
B <−1− exp(−theta)
f xn <−(1− exp(−theta ∗A))/B
return( f xn)
}
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PEETE Hazard Function
PEETEHazard <− f unction(x, theta,alpha,beta, lambda)
{
A <−theta ∗ alpha ∗beta ∗ (1− exp(−lambda))
B <−exp(−beta ∗ (1− exp(−lambda))∗ x)
C <−(1−B)(alpha−1)
D <−exp(−theta+ theta ∗ ((1−B)al pha))
f xn <−(A∗B∗C)/(1−D)
return( f xn)
}

PEETEMoment
PEETEMoment <− f unction(theta,alpha,beta, lambda,r)
{
f unc <− f unction(x, theta,alpha,beta, lambda,r)
{
(xr)∗ (PEETEPDF(x, theta,alpha,beta, lambda))
}
results <−integrate( f unc, lower = 0,upper = In f ,subdivisions = 10000,
theta = theta,alpha= alpha,beta = beta, lambda= lambda,r = r)
return(resultsvalue)
}

Negative Log-likelihood function of PEETE
PEETELL <− f unction(theta,alpha,beta, lambda)
{
A <−theta ∗ alpha ∗beta ∗ (1− exp(−lambda))∗ ((1− exp(−theta))(−1))
B <−exp(−beta ∗ (1− exp(−lambda))∗ x)
C <−(1−B)(alpha−1)
D <−exp(−theta ∗ ((1−B)al pha))
f xn <−− sum(log(A∗B∗C∗D))
return( f xn)
}

Fitting PEETE to Real Data Set
library(bbmle)
f it <−mle2(PEETELL,start = list(theta = theta,alpha = alpha,beta = beta,
lambda = lambda),method = ”Nelder−Mead” ,data = list(x))
summary( f it)
Computing the variance-covariance matrix
vcov( f it)

c© 2018 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.7, No. 2, 245-261 (2018) /www.naturalspublishing.com/Journals.asp 261

Suleman Nasiru received his BSc and MSc degrees in Mathematical
Science (Statistics Option) and Applied Statistics respectively from
the University for Development Studies, Tamale, Ghana. He is
currently a PhD Mathematics (Statistics Option) candidateat the Pan African
University. His research areas include: Probability theory, Generalized classes
of distributions, Time series analysis, Development of control Charts and
Statistical modeling.

Bol A. M. Atem recently attained an MSc in Mathematics
(Statistics Option) jointly awarded by Pan African University and Jomo Kenyatta
University of Agriculture and Technology in Nairobi, Kenya. His main research
interests are in: Mathematical Statistics especially Distribution Theory, Ruin
Theory, Catastrophic Risks Underwriting and Financing, and Mathematical
Finance.

Kwara Nantomah (PhD) is a full time Senior Lecturer and the Head
of the Department of Pure and Applied Mathematics of the Faculty of Mathematical
Sciences at the University for Development Studies, Navrongo, Ghana. His research interest
includes: real analysis, functional analysis, theory of inequalities and special functions.

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Model Definition
	Parameter Estimation
	Simulation Study
	Application
	Bivariate Extension
	Conclusion

