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Abstract: Recent advancements in wireless communication and microelectro-mechanical systems 

(MEMS) have made possible the deployment of wireless sensor networks for many real world 

applications. One of most challenging problems with the deployed sensor nodes is to identify their 
geographic locations given estimates of the distances between them. There have been a large number 

of localization algorithms, each of which makes a different geometric approximation. Among them, 

Multidimensional scaling (MDS) based algorithms outperform the others and have the advantage that 
they are robust for noise and sparse networks, with or without anchor nodes. Its distributed versions 

compute a local map for each node at first and then merge these maps to a global map. Additional 

refinement technique can improve the relative maps by forcing them to conform more closely to the 
distances to nearby neighbors. In this paper, we reformulate the network localization problem as a 

constrained least square problem mathematically in detail, and then develop a new refinement 
algorithm which is based on two hop distance constraints and Levenberg-Marquardt optimization 

technique. Our simulation results demonstrate that the proposed algorithm has good performance in 

terms of both success rate and node position estimation. 
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1  Introduction 

Wireless sensor networks (WSNs) consist of 
hundreds of wirelessly connected sensor nodes that 

collect sensor data and monitor an area of interest. 

For its prevalent applications like environmental 
monitoring or target tracking, the ability of such 

sensor node to determine its geographical location 

is of fundamental importance. Although global 
positioning systems (GPS) are getting popular and 

more accessible, they do not too cheap to embed on 

all of the nodes. 
Recently, various localization systems have 

been developed for ad hoc wireless sensor 

networks. Most of the node localization algorithms 
are based on estimation of distances between 

neighbor nodes. The estimated can be measured 

through either received signal strength indicator 
(RSSI), time of arrival (TOA), time difference of 

arrival (TDOA), or Angle of Arrival (AOA)[1]. 

The problem of position computation is to compute 
a node’s position based on the available 

information of distances and known locations of the 
reference nodes. Trilateration method is the most 

intuitive method to compute location by the 
intersection of three or more circles. Cricket system 

uses active beacons and passive ultrasonic receivers 

to measure distance between sensor nodes and 
beacons[2]. Then, a mobile node can compute its 

position through multilateration method for an 

indoor environment. 
On the other hand, another important topic is the 

network localization algorithm, whose objective is 

to derive the geolocations of all nodes in a sensor 
network from a set of known locations and range 

measurements between sensor nodes. Niculescu 

and Nath proposed APS (Ad hoc Positioning 
System) that enable sensor nodes to estimate its 

distance to the beacon nodes in a multihop way[3]. 

In this system, DV-Distance method propagates 
distances between a beacon node and a target node 

hop by hop, instead DV-Hop method propagates 

the number of hops. Other works focused on the 
centralized approaches which collect all 

information of distances among the nodes into a 
central node and then solve its resultant 
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mathematical optimization problem. Doherty et al. 

formulated the localization problem as convex 

optimization problem with connectivity constraints 
and used semidefinite programming (SDP)[4]. 

Shang et al. used classical multidimensional scaling 

(MDS) to derive positions of the nodes given the 
distance measurements between them[5]. They also 

developed the distributed version which is called as 

MDS-MAP(P)[6]. MDS is good at finding the right 
topology of the network, but not the precise 

locations of nodes, because MDS uses shortest path 

distances to approximate the distance between 
nodes more than 1 hop away and the approximation 

may not be accurate[5-7]. 

In this paper we first describe the concept of 
MDS and its related network localization 

algorithms in detail. Then we develop a refinement 

algorithm, MDS-MAP(P, O) which is based on 
MDS and Levenberg-Marquardt algorithm with 

barrier constraints. This method refines the relative 

local maps with avoiding the inaccurate 
information of shortest path distance and the 

infeasible solution beyond geometric constraints. 

The rest of this paper is organized as follows: 
Section 2 introduces MDS based localization 

algorithms, in particular, MDS-MAP and MDS-

MAP(P). Then we present a new refined algorithm, 
MDS-MAP(P, O) for the distributed network 

localization problem. Section 3 provides detailed 

comparison of the performance among MDS based 
localization algorithms for sensor networks. Section 

4 concludes this paper. 

 

2  MDS Based Localization Algorithms 

2.1 Basic concept 

Multidimensional scaling (MDS) is a set of data 

analysis techniques that display the structure of 

distance-like data as a geometrical picture. The 
distance between every pair of objects measures 

their dissimilarities. MDS starts with matrices 
representing distances or similarities between 

objects and find a placement of points in a low-

dimensional space, usually two- or three-
dimensional. By describing objects as points in a 

low-dimensional space, their essential information 

can be preserved while reducing the complexity of 
original data. Then, MDS is closed related with 

Principal Component Analysis (PCA) and 

clustering analysis. 
MDS techniques can be classified as to whether 

the similarities data are qualitative (nonmetric 

MDS) or quantitative (metric MDS). The number 

of similarity matrices and the nature of the MDS 

model can also classify MDS techniques. This 

classification yields classical MDS (one matrix, 
unweighted model), replicated MDS (several 

matrices, unweighted model), and weighted MDS 

(several matrices, weighted model). Due to the 
page limit, we will only briefly introduce the 

classical MDS technique on which the localization 

is based on.
7  

In classical MDS, the dissimilarities are usually 

the Euclidean distances between pairs of objects. 

Let ijp denote the dissimilarity between object i  and 

j , ijd  denote the Euclidean distance, and  
1

N

i i
x


 

denote the coordinates of objects.  
1
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i i
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
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. Then we have 

2
2 2 ( ) ( )T

ij ij i j i j i jd p x x x x x x            (1) 

The above equation can be rewritten as follows. 
2 2T T T

ij i i j j i jd x x x x x x     (2) 

If we define 1[ , , ]NX x x   as a row vector, then 

the squared distance matrix, 2
, 1[ ]
N

ij i jD d    can be 

expressed as 

( ) ( ) 2T T T T TD X X e e X X X X            (3) 

where e  is the all ones vector, ( )   is the 

diagonal matrix operator, representing 

1 1( ) [ , , ]T T T T

N NX X x x x x   . 

Next, the geometric center of objects in X  can 
be obtained by the following equation. 

1
( )gc X Xe

N
      (4) 

Then, we can shift the objects amount up to the 
geometric center, represented as the follows. 

1
1 1

1
( )

1 1
[ ,..., ]

T T

N N

i N i
i i

X gc X e X Xee XH
N

x x x x
N N 

   

   
           (5) 

where 
1 TH I ee
N

   is a geometric centering 

operator. 

Now, if multiplying both sides of D  by the 
centering operator H , we will have 

( ) ( ) 2T T T T THDH H X X e H He X X H HX XH   

               (6) 

Since ( ) ( ) 0T T T TH X X e H He X X H   , we 

have  
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 (7) 

Given TB HXX H , we can compute matrix X  

up to linear translation and orthogonal 

transformation through singular value 
decomposition (SVD) of B . 

B V V        (8) 

The coordinate matrix becomes 
1/2X V        (9) 

Thus, retaining the first n (2 for 2-D or 3 for 3-

D) largest eigenvalues and eigenvectors leads to a 

solution in lower dimension. 
 

2.2 Two basic methods 

MDS-MAP is classical method to obtain the 
coordinates of nodes given an approximation of the 

Euclidean distances between them. The algorithm 

has the following steps[6].
 

1) Compute shortest paths between all pairs of 

nodes in the region of consideration. The shortest 

path distances are used to construct the distance 
matrix for MDS. 

2) Apply classical MDS to the distance matrix, 

retaining the first 2 (or 3) largest eigenvalues and 
eigenvectors to construct a 2-D (or 3-D) relative 

map. 

3) Given sufficient anchor nodes (3 or more for 
2-D networks, 4 or more for 3-D networks), the 

coordinates of the anchors in the relative map are 

mapped to their absolute coordinates through a 
linear transformation. The best linear 

transformation between the absolute positions of 

the anchors and their positions in the relative map 
is computed.  

While MDS-MAP is a central shortest path 

approximation, in the new MDS-MAP(P) each 
node constructs a local map using its local 

information and then the local maps are merged to 
form a global map. The procedure of MDS-

MAP(P) is as follows[6]:
 

1) Set the range for local maps, R. For each 
node, neighbors within R hops are involved in 

building its local map. The value of R affects the 

amount of computation in building the local maps, 
as well as the quality. 

2) Compute local maps. Each node does the 

following job: 
Compute shortest paths between all pairs of 

nodes in its local mapping range R to construct the 

distance matrix for MDS. Then apply the classical 

MDS to the distance matrix and retain the first 2 (or 

3) largest eigenvalues and eigenvectors to construct 

a 2-D (or 3-D) local map. The local map can be 
refined optionally. With use of the node coordinates 

in the MDS solution as the initial point, a least 

squares minimization is performed to make the 
distances between nearby nodes match the 

measured ones. 

3) Merge local maps. Local maps can be merged 
sequentially or in parallel. There are various ways 

of merging local maps sequentially, such as 
randomly or as to certain order best for an 

application. Then, the global map also can be 

refined by the optimization techniques. 
4) Given sufficient anchor nodes (3 or more for 

2-D networks, 4 or more for 3-D networks), 

transform the global map to an absolute map based 
on the absolute positions of anchors. 

 

Since the position estimates by MDS are 
produced based on shortest path distances to 

approximate the distance between nodes more than 

1 hop away, the resulting topology and the 
approximation may not be accurate. The position 

estimation accuracy may be enhanced by the 

optimization technique, which will be described in 
detail at the following section. 

 

2.3 Constrained Optimization Problem 

As mentioned previously, the refinement 

process can be formulated as a constrained 

optimization problem. Its exact objective function 
can measure not only distances between one-hop 

neighbors, but also distances between some multi-

hop neighbors. A refinement range R can be 
defined in terms of hops to specify what 

information is considered. For example, R = 1 

means only distances between immediate neighbors 
are considered. On the other hand, R = 2 means 

distances to all nodes within two hops are 

considered. Different values of R offer trade-offs 
between computational cost and solution quality. 

We consider the case of R = 2. 

Let ˆ ˆ( , )i i ix x y for i =1, ,N represent the 2-D 

coordinates of the N nodes in a local map. When 

distance measures between 1-hop neighbors are 

available, ijp , defined as the proximity between 

nodes i  and j ,  is the distance measure if they are 

1-hop neighbors, or the shortest path distance if i  

and j  are more than 1 hop away. 

Considering the noisy environment on 
measuring distance within the radio range, the 
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refinement problem can be formulated as the 

following least square problem. 

2

, ,

1
min ( ) { ( )}

2

M

ij ij ij
x

i j i j

F x w d p


   

 for i,j=1,…,N  (10) 

where ijw  is the weight. If 0ijw   for all i  and j  

that are more than 2-hop away, then only the 2-hop 

connectivity or distance measures are used. The 
refinement improves the map by giving local 

information between neighbor nodes more weight 

than that between far away nodes, which may be 
less accurate. 

Now consider the problem objective as follows. 

2

, 1,

1 1
( ) ( ) ( ) ( )

2 2

T

ij
i j i j

F x f x f x f x
 

        (11) 

where ( ) ( )ij ij ij ijf x w d p  . 

 The gradient and Hessian of the objective are as 
follows. 

2 2

, 1,

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T

M
T

ij
i j i j

F x J x f x

F x J x J x f x f x
 

 

   
       (12) 

where ( )J x is the Jacobian and 2 ( )F x is the 

Hessian of ( )F x . The Jacobian is a 2M N matrix 

containing the first partial derivatives of the 

function components. 

,
,

( )
ij

ij l
ij l

l

f
J x J

x

 
      

 for ,i j =1,…,M, and 

l =1,…,2N    (13) 

For the index ij  consisting of the 1 or 2 hop 

neighbors in the Jacobian, each term of that row is 
as follows. 

,

ˆ ˆ

ˆ ˆ

ˆ ˆ( )
2*

ˆ ˆ
2*

0

i j

ij

ij

j i

ij

ij

ij l i j

ij

ij

j i

ij

ij

x x
w for l i

d

x x
w for l j

d

J x y y
w for l i

d

y y
w for l j

d

for others


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
 
 



 
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
 
 




         (14) 

Now let us consider the difference between 
distance measure and shortest path length. The 

distance measure between 1-hop neighbors is same 

with the shortest path. However, in case of 2-hop 
neighbors that use the shortest path length instead 

of effective distance, there is considerable 

difference between the distance d  and the shortest 

path length p . Thus, the following constraints must 

be satisfied from their geometric relationship. 

max( , )

ij ij

iNi jNj ij

d p

p p d









 

 
           (15) 

where iN  and jN  are one-hop neighbors of node i  

and j ,  ,  are positive constants. Figure 1 is 

depicted as an example of geometric relationship 
between neighbor nodes. It implies that the 

effective distance between two hop neighbors is 

shorter than the shortest path length and is longer 
than maximum distance between one hop 

neighbors. 

i reachable signal  

range of node k

j

k
dij

reachable signal 

range of node j

dik

dkj

dij < pij =dik + dkj

max(dik, dkj) < dij

reachable signal 

range of node i

 
Figure 1: An example of geometric relationship between 
neighbor nodes. The reachable signal range of each node is 
denoted by dot. 

 
Considering the above constraints, the above 

problem can be reformulated by the following 

equation. 

2

, ,

1
min ( ) { ( )}

2
ij ij ij

x
i j i j

F x w d p


            

subject to ( ) 0kc x  , 2k N  
2 2

1

( ) ( )
N

k
k

c x c x


         (16) 

where 2N  is the number of two hop neighbor 

pairs and ( )kc x is ( )k k kc x d p 

    or 

( ) max( , )k iNi jNj kc x p p d 

   . 

Then this constrained problem can be 

reformulated as follows. 

2

,
, 1,

1 1
min ( ) ( ) ( ) ( )

2 2

T

B B B B ij
x

i j i j

F x f x f x f x
 

      (17) 

where , ( , ) ( ) ( )B k k k k kf x w d p B x     

Now introduce logarithmic barrier function in 

order to include inequality constraints[8].
 

 2
log( ( )) log( ( ))

( )  

0  

k k

k

for hop
c x c x

B x neighbor

for others

 
   

 



   (18) 
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For the index k consisting of the 2 hop 

neighbors i and j in the Jacobian, the each term of 

that row is as follows. 
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 


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(19) 

The Jacobian can be computed analytically. For 

a 2-D n-node network, the problem has 2N  

variables and 22N constraints. Thus this nonlinear 

least square problem can be solved by optimization 

techniques such as Levenberg-Marquardt 

method[9]. Usually only the first few iterations of 
the optimization algorithm give significant 

improvement. Thus the maximum number of 

iteration is set to a small number, e.g., 30. In this 
paper, we use a variant Levenberg-Marquardt 

algorithm with the barrier constraints to solve this 

problem. The algorithm is as follows. 
 

==================================== 

0k  ; 2  ; 0x x ; 0   

( , ) ( , )T

B BA J x J x  ; ( , ) ( , )T

B Bg J x f x   

found = 1(|| || )g   

*max{ }iia   

while (not found and maxk k ) 

    1k k   

    solve ( ) BA I h g    

    if  2 2|| || (|| || )Bh x    

       found = true 

    else 

       new Bx x h   

       ( ( ) ( ) / ( (0) ( ))new BF x F x L L h     

       / 2   

       if 0   

newx x  

( , ) ( , )T

B BA J x J x  ; ( , ) ( , )T

B Bg J x f x   

found = 1(|| || )g   

31
*max{ ,1 (2 1) }

3
     ; 2   

       else 

          *   ; 2*    

end 
==================================== 

 

3  Simulation Results 
In this section, we evaluate the proposed 

localization method through simulation. We assume 

that the nodes in the sensor network are randomly 
deployed in 20m x 20m square topology with 100 

nodes and 4 anchors on each side. The range model 

is the noisy disk model of ranging in which each 
node obtains a range estimate with Gaussian noise 
  to all neighbors within a maximum range 250 

centimeters. The simulation program was 
implemented by using Silhouette, which is a sensor 

network localization simulator[10]. 

This simulation does not only measure node 
position but also average success rate as well as 

sum of position estimation error. The average 

success rate denotes as the average ratio of the 
number of nodes that have been localized to all 

nodes under 5 different node configurations. The 
sum of position estimation errors represents the 

average sum of the square of difference between 

true and estimated position for all nodes. 
Figure 2 shows that the localization results 

based on the MDS-MAP, MDS-MAP(P), and the 

proposed algorithm, MDS-MAP(P, O)  on a 
randomly deployed configuration. The dots denote 

the true node positions under a predefined 

coordination system. The true and estimated 
locations of the same node are connected by a solid 

line. 

The longer the line, the larger the error is. The 
figure shows that the MDS based localization 

algorithms work well on the uniform topology and 

MDS-MAP and MDS-MAP(P, O) outperform than 
MDS-MAP(P) method. MDS-MAP performs well 

on the regular uniform topology. The distributed 

version, MDS-MAP(P) can be improved by  
refining the local maps. 

 

 
 

 

 
 

 

 
 

 

 
(a) 
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Figure 2: The position estimation results under three 
algorithms, (a) MDS-MAP, (b) MDS-MAP(P), and (c) MDS-
MAP(P, O). The true position is denoted by dot. 

 

Table 1 shows the average success rates and 
sums of position estimation errors for those 

algorithms. MDS-MAP obtains better success rate, 

that is, the more localized nodes. The un-localized 
nodes with MDS-MAP(P) or MDS-MAP(P, O) 

represent that the conditions of localizing a node is 

not satisfied in the local map. The sum of 
estimation errors is 23743, 380107, and 73080, 

respectively. MDS-MAP obtains better 

performance. It means that more localized node 
produce better position estimation results. 

Moreover, MDS-MAP(P, O) is also better. It 

implies that the inaccurate estimation of local nodes 

can be improved considerably with a refinement 

algorithm. 

 
Table 1: The average success rates and position estimation 
errors of three algorithms, MDS-MAP, MDS-MAP(P), and 

MDS-MAP(P, O) under 5 trials. 
 

 MDS-MAP MDS-MAP(P) MDS-MAP(P,O) 

Success 
Rate 

99.2 % 97.0 % 97.0 % 

Estimation 
Error 

23743 cm2 180107 cm2 73080 cm2 

 

4  Conclusions and future work 
In this paper, we proposed a distributed network 

localization method based on multidimensional 

scaling and constrained optimization technique to 
solve the network localization problem. This 

method based on multidimensional scaling builds a 

local map for each node. The relative maps are of 
high quality when connectivity is sufficiently high.  

Then the method uses the least squares 
minimization algorithm and two hop distance 

constraints in order to refine the local maps. Our 

simulation results show the effectiveness of the 
proposed method for regular topology. 

The further studies include extensive evaluation 

for more cases with regard to irregular node 
topology and various noise effects. 
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