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Abstract: The authors study the existence of solutions to a class of fractional differential equations with anti-periodic and integral
boundary conditions involving the Caputo fractional derivative of orderr ∈ (0,1]. The proof is based on Mönch’s fixed point theorem.
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1 Introduction

This paper deals with the existence of solutions to the boundary value problem (BVP for short) for fractional order
differential equations

cDry(t) = f (t,y(t)), a.e. t ∈ J = [0,T], 0< r ≤ 1, (1)

y(T)+ y(0) = b
∫ T

0
y(s)ds, bT 6= 2, (2)

wherecDr is the Caputo fractional derivative,(E, | · |) is a Banach space,f : J×E→ E is a given function, andb is a
constant.

Differential equations of fractional order have recently proved to be valuable tools in the modeling of many phenomena
in various fields of science and engineering. There are numerous applications in viscoelasticity, electrochemistry, control
theory, porous media, electromagnetism, etc. There has been a significant development in fractional differential equations
in recent years, and we refer the reader to the monographs of Hilfer [1], Kilbas et al. [2], Momaniet al. [3], Podlubny [4],
and the papers of Agarwalet al. [5], and Benchohraet al. [6,7,8] for further discussion.

Applied problems require the definitions of fractional derivatives to allow the utilization of physically interpretable
initial data that containy(0), y′(0), etc., and there is a similar requirement for the boundary conditions. Caputo’s
fractional derivative satisfies these demands. For additional details concerning the geometric and physical interpretations
of fractional derivatives of Riemann-Liouville and Caputotype, see [4].

Anti-periodic, integral, and nonlocal boundary value problems constitute an important class of problems that are
receiving considerable attention in recent years. Anti-periodic boundary conditions occur in mathematical modelling of
many physical processes; see, for example, the monographs of Ahmedet al. [9] and Chenet al. [10]. As examples of this
research, the authors in [9] used Banach’s fixed point theorem to investigate existenceand uniqueness of solutions for
integro-differential equations of fractional orderα ∈ (1,2] with anti-periodic boundary conditions.

In this paper, we present existence results for the problem (1)–(2) using a method involving a measure of
noncompactness and a fixed point theorem of Mönch type. Thisapproach was mainly initiated in the monograph of
Banas and Goebel [11] and subsequently developed and used in many papers; see, for example, Banas and Sadarangani
[12], Guoet al. [13], Lakshmikantham and Leela [14], Mönch [15], and Szufla [16].
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Section 2 of this paper contains some preliminary facts needed to prove our main result which appears in Section 3.
The last section in the paper contains an example illustrating our main theorem.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will be used in the remainder of this paper.
Let C(J,E) be the Banach space of all continuous functions fromJ intoE with the norm

‖y‖∞ = sup{|y(t)| : 0≤ t ≤ T},
and letL1(J,E) denote the Banach space of functionsy : J → E that are Bochner integrable with norm

‖y‖L1 =

∫ T

0
|y(t)|dt.

We takeL∞(J,E) to be the Banach space of bounded measurable functionsy : J → E equipped with the norm

‖y‖L∞ = inf{c> 0 : ‖y(t)‖ ≤ c a.e.t ∈ J}.

Definition 1.[2,17] The fractional integral of order r∈R+ of the function h∈ L1([a,b],E) is defined by

I r
ah(t) =

∫ t

a

(t − s)r−1

Γ (r)
h(s)ds,

whereΓ is the gamma function. If a= 0, we write Irh(t) = h(t)∗ϕr(t), whereϕr(t) =
tr−1

Γ (r)
for t > 0, ϕr(t) = 0 for t ≤ 0,

ϕr → δ (t) as r→ 0, andδ is the delta function.

Definition 2. [2,17] For a function h on the interval[a,b], the Riemann-Liouville fractional derivative of h of orderr is
defined by

(Dr
a+h)(t) =

1
Γ (n− r)

(

d
dt

)n∫ t

a
(t − s)n−r−1h(s)ds.

Here n= ⌈r⌉ and⌈r⌉ denotes the smallest integer greater than or equal to r.

Definition 3. [18] For a function h on the interval[a,b], the Caputo fractional derivative of order r of h is defined by

(cDr
a+h)(t) =

1
Γ (n− r)

∫ t

a
(t − s)n−r−1h(n)(s)ds,

where n= ⌈r⌉.
For a given setV of functionsυ : J → E, we set

V(t) = {υ(t) : υ ∈V}, t ∈ J,

and
V(J) = {υ(t) : υ ∈V(t), t ∈ J}.

Definition 4. A multivalued map F: J×E→ P(E) is said to be Carath́eodory if:

(1)t → F(t,u) is measurable for each u∈ E;
(2)u→ F(t,u) is upper semicontinuous for almost all t∈ J.

For convenience, we recall the definitions of the Kuratowskimeasure of noncompactness and summarize the main
properties of this measure.

Definition 5. [19,11] LetE be a Banach space and letΩE denote the bounded subsets ofE. The Kuratowski measure of
noncompactness is the mapα : ΩE → [0,∞) defined by

α(B) = inf{ε > 0 : B⊂
m
⋃

j=1

B j and diam(B j)≤ ε}.
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Properties: The Kuratowski measure of noncompactness satisfies the following properties (for additional details see
[19,11]).

(1) α(B) = 0 if and only ifB is compact (B is relatively compact).
(2) α(B) = α(B).
(3) A⊂ B impliesα(A)≤ α(B).
(4) α(A+B)≤ α(A)+α(B).
(5) α(cB) = |c|α(B), c∈R.
(6) α(conB) = α(B).

HereB andconBdenote the closure and the convex hull of the bounded setB, respectively.
Let us now recall Mönch’s fixed point theorem and an important lemma.

Lemma 1. [15] Let D be a bounded, closed, and convex subset of a Banach spaceE such that0 ∈ D, and let N be a
continuous mapping from D into itself. If the implication

V =







coN(V)
or

N(V)∪{0}







implies α(V) = 0

holds for every subset V of D, then N has a fixed point.

Lemma 2. [16] Let D be a bounded, closed and convex subset of a Banach space C(J,E), G be a continuous function on
J× J, and let f : J×E→ E satisfy the Carath́eodory conditions. Assume there exists p∈ L1(J,R+) such that, for each
t ∈ J and each bounded set B⊂ E,

lim
k→0+

α( f (Jt,k ×B))≤ p(t)α(B), where Jt,k = [t − k, t]∩J.

If V is an equicontinuous subset of D, then

α
({

∫

J
G(s, t) f (s,y(s))ds : y∈V

})

≤
∫

J
‖G(t,s)‖p(s)α(V(s))ds.

3 Main Results

We begin this section with some lemmas about fractional equations.

Lemma 3.Let r≥ 0. The differential equation
cDrh(t) = 0 (3)

has solutions h(t) = c0+ c1t + c2t2+ · · ·+ cn−1tn−1, ci ∈ R, i = 0, . . . ,n−1, n= ⌈r⌉.
Lemma 4.Let r≥ 0. Then

I r cDrh(t) = c0+ c1t + c2t
2+ · · ·+ cn−1t

n−1+h(t), (4)

where ci ∈ R, i = 0, . . . ,n−1, n= ⌈r⌉.
Lemma 5. Let 0 < r ≤ 1, bT 6= 2, and let h: J → E be continuous. A function y is a solution of the fractional integral
equation

y(t) =
∫ T

0
G(t,s)h(s)ds, (5)

where G(t,s) is the Green’s function defined by

G(t,s) =















(t − s)r−1

Γ (r)
+

b(T − s)r

(2−Tb)Γ (r +1)
− (T − s)r−1

(2−Tb)Γ (r)
, 0≤ s≤ t ≤ T,

b(T − s)r

(2−Tb)Γ (r +1)
− (T − s)r−1

(2−Tb)Γ (r)
, 0≤ t ≤ s≤ T,

(6)

if and only if y is a solution of the fractional BVP
cDry(t) = h(t), a.e. t∈ J = [0,T], 0< r ≤ 1, (7)

y(T)+ y(0) = b
∫ T

0
y(s)ds, bT 6= 2. (8)
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Proof.If y satisfies (7), then Lemma4 implies that

y(t) = c0+

∫ t

0

(t − s)r−1

Γ (r)
h(s)ds. (9)

By (8),

c0 =
b

2−Tb

∫ T

0

(T − s)r

Γ (r +1)
h(s)ds− 1

2−bT

∫ T

0

(T − s)r−1

Γ (r)
h(s)ds, (10)

so we obtain equation (5), whereG defined in (6). Conversely, it is clear that ify satisfies (5), then (7) and (8) hold.

Theorem 1.Assume the following conditions hold:

(H1) The function f: J×E−→ E is Carath́eodory;
(H2) There exists p∈ L1(J,R+), such that

‖ f (t,y)‖ ≤ p(t)‖y‖ for a.e. t∈ J and each y∈ E;

(H3) For a.e. t∈ J and each bounded set B⊂ E, we have

lim
k→0+

α( f (Jt,k ×B))≤ p(t)α(B),

whereα is the Kuratowski measure of compactness and Jt,k = [t − k, t].

Then the BVP (1)–(2) has at least one solution in C(J,B) provided that

‖I r(p)‖L1 +
|b|(I r+1p)(T)

|2−Tb| +
(I r p)(T)
|2−Tb| < 1. (11)

Proof.To transform the problem (1)–(2) into a fixed point problem, consider the operator

N(y) =
∫ t

0

(t − s)r−1

Γ (r)
f (s,y(s))ds+

∫ T

0

b(T − s)r

(2−Tb)Γ (r +1)
f (s,y(s))ds

−
∫ T

0

(T − s)r−1

(2−Tb)Γ (r)
f (s,y(s))ds.

Clearly, from Lemma5, the fixed points ofN are solutions to the problem (1)–(2).
Let R> 0 and consider the set

DR = {y∈C(J,E) : ‖y‖∞ ≤ R}.
We shall show thatN satisfies the assumptions of Mönch’s fixed point theorem (Lemma1 above). The proof will be given
in several steps.

Step 1:N is continuous.Let {yn} be a sequence such thatyn → y in C(J,E). Then, for eacht ∈ J,

|(Nyn)(t)− (Ny)(t)| ≤
∫ t

0

(t − s)r−1

Γ (r)
| f (s,yn(s))− f (s,y(s))|ds

+

∫ T

0

|b|(T − s)r

|2−Tb|Γ (r +1)
| f (s,yn(s))− f (s,y(s))|ds

+

∫ T

0

(T − s)r−1

|2−Tb|Γ (r)
| f (s,yn(s))− f (s,y(s))|ds.

Let ρ > 0 be such that
‖yn‖∞ ≤ ρ and‖y‖∞ ≤ ρ .

Then from (H2), we have
| f (s,yn(s))− f (s,y(s))| ≤ 2ρ p(s) := σ(s),

andσ ∈ L1(J,R+). Sincef is Carathéodory,

‖N(yn)−N(y)‖∞ → 0 asn→ ∞.
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Step 2:N maps DR into itself.For eachy∈ DR, by (H2) and (11), we have for eacht ∈ J,

|N(y)(t)| ≤
∫ t

0

(t − s)r−1

Γ (r)
| f (s,y(s))|ds

+
∫ T

0

|b|(T − s)r

|2−Tb|Γ (r +1)
| f (s,y(s))|ds+

∫ T

0

(T − s)r−1

|2−Tb|Γ (r)
| f (s,y(s))|ds

≤ R

(

‖I r(p)‖L1 +
|b|(I r+1p)(T)

|2−Tb| +
(I r p)(T)
|2−Tb|

)

≤ R.

Step 3:N(DR) is bounded and equicontinuous.From Step 2, it is clear thatN(DR)⊂C(J,E) is bounded. To show the
equicontinuity ofN(DR), let t1, t2 ∈ J, with t1 < t2, andy∈ DR. We have

|(Ny)(t2)− (Ny)(t1)| ≤
1

Γ (r)

∫ t1

0

[

(t2− s)r−1− (t1− s)r−1
]

| f (s,y(s))|ds

+
1

Γ (r)

∫ t2

t1
(t2− s)r−1 | f (s,y(s))|ds

≤ R
Γ (r)

[

∫ t1

0
[(t2− s)r−1− (t1− s)r−1]p(s)ds

+

∫ t2

t1
(t2− s)r−1p(s)ds

]

.

As t1 → t2, the right-hand side of the above inequality tends to zero.
Now let V be a subset ofDR such thatV ⊂ co(N(V)∪{0}). SinceV is bounded and equicontinuous, the function

t → ϑ(t) = α(V(t)) is continuous onJ. By (H2)–(H3), Lemma2, and the properties of the measureα, we have that for
eacht ∈ J,

ϑ(t)≤ α(N(V)(t)∪{0})
≤ α(N(V)(t))

≤ α(V(t))

(

(I r p)(T)+
|b|(I r+1p)(T)

|2−Tb| +
(I r p)(T)
|2−Tb|

)

.

Hence,

‖ϑ‖∞

(

1−
[

‖I r(p)‖L1 +
|b|(I r+1p)(T)

|2−Tb| +
(I r p)(T)
|2−Tb|

])

≤ 0.

From (11), it follows that‖ϑ‖∞ = 0, that is,ϑ = 0 for eacht ∈ J, and soV(t) is relatively compact inE. In view of
the Ascoli-Arzelà theorem,V is relatively compact inDR. Applying Lemma1, we conclude thatN has a fixed point that
is a solution of the problem (1)–(2).

4 An Example

As an application of our main results, we consider the fractional differential equation

CD
1
2 y(t) =

t
√

π −1
16

y(t), for a.e.(t,y) ∈ ([0,1],R+), (12)

y(1)+ y(0) =
∫ 1

0
y(s)ds. (13)

Herer = 1
2, T = 1, b= 1, and

f (t,y) =
t
√

π −1
16

y(t).
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Then,

| f (t,y)| =
∣

∣

∣

∣

t
√

π −1
16

y(t)

∣

∣

∣

∣

≤ t
√

π
16

|y|.

Choosingp(t) =
t
√

π
16

, we have that

(

‖I r(p)‖L1 +
|b|(I r+1p)(T)

|2−Tb| +
(I r p)(T)
|2−Tb|

)

= (I
1
2 p)(1)+ (I

3
2 p)(1)+ (I

1
2 p)(1)

=

(

1
12

+
1
30

+
1
12

)

=
1
5
< 1.

Then, by Theorem1, the problem (12)–(13) has a solution on[0,1].
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