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1 Introduction

This paper deals with the existence of solutions to the bagndalue problem (BVP for short) for fractional order
differential equations
°D'y(t) = f(t,y(t)), a.e.ted=[0,T], O<r<1, (1)

.
YT)+y(0)=b [ y(s)ds bT 2 @

where®D' is the Caputo fractional derivative, | - |) is a Banach spacd,: J x E — E is a given function, and is a
constant.

Differential equations of fractional order have recentigyed to be valuable tools in the modeling of many phenomena
in various fields of science and engineering. There are nomseapplications in viscoelasticity, electrochemistonteol
theory, porous media, electromagnetism, etc. There hasadsignificant developmentin fractional differential etijoias
in recent years, and we refer the reader to the monographiffef H], Kilbas et al.[2], Momaniet al.[3], Podlubny #],
and the papers of Agarwat al.[5], and Benchohrat al.[6,7,8] for further discussion.

Applied problems require the definitions of fractional gatives to allow the utilization of physically interpretab
initial data that contairy(0), y'(0), etc., and there is a similar requirement for the boundamditimns. Caputo’s
fractional derivative satisfies these demands. For additidetails concerning the geometric and physical intéagicns
of fractional derivatives of Riemann-Liouville and Captype, see4].

Anti-periodic, integral, and nonlocal boundary value penhs constitute an important class of problems that are
receiving considerable attention in recent years. Antigakc boundary conditions occur in mathematical modgllaf
many physical processes; see, for example, the monogragisreedet al.[9] and Cheret al.[10]. As examples of this
research, the authors iB][used Banach’s fixed point theorem to investigate existamzkuniqueness of solutions for
integro-differential equations of fractional ordere (1, 2] with anti-periodic boundary conditions.

In this paper, we present existence results for the probl&m(3) using a method involving a measure of
noncompactness and a fixed point theorem of Monch type. disoach was mainly initiated in the monograph of
Banas and Goebel]] and subsequently developed and used in many papers; sexainple, Banas and Sadarangani
[12], Guoet al.[13], Lakshmikantham and Leeld4], Monch [15], and Szufla 16].
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Section 2 of this paper contains some preliminary facts egéol prove our main result which appears in Section 3.
The last section in the paper contains an example illusgyatur main theorem.

2 Preliminaries

In this section, we introduce notations, definitions, argiprinary facts that will be used in the remainder of thisgrap
LetC(J,E) be the Banach space of all continuous functions fdomto E with the norm

I¥lle = sUp{ly(t)| : 0 <t <T},
and letL1(J,E) denote the Banach space of functigns) — E that are Bochner integrable with norm

.
o= [ vt

We takeL®(J,E) to be the Banach space of bounded measurable fungtiahs» E equipped with the norm
Ily|[L= =inf{c >0 :|y(t)]| <c a.eteJ}.
Definition 1.[2,17] The fractional integral of order £ R, of the function ke L'([a, b], E) is defined by
t (t _ S)r—l
ITh(t) = / 829 “higd
tr—l
wherel” is the gamma function. If & 0, we write Fh(t) = h(t) = ¢, (t), whereg, (t) = 6] fort >0, ¢r(t) =0fort <O,
¢r — O(t) asr— 0, andd is the delta function.

Definition 2. [2,17] For a function h on the intervdh, b}, the Riemann-Liouville fractional derivative of h of ordeis
defined by

(DLMGF=F£%5<%>LEG—@““%SMS

Here n= [r] and[r] denotes the smallest integer greater than or equal tor.

Definition 3. [18] For a function h on the intervgh, b], the Caputo fractional derivative of order r of h is defined by

G%mmzﬁiﬁ

t
[ t=9m " (sds
a
where n= [r].
For a given se¥ of functionsu : J — E, we set
V(t)={u():veV}tel,

and
V) ={u):veV({),ted}.
Definition 4. A multivalued map FJ x E — Z(E) is said to be Carateodory if:

(1)t — F(t,u) is measurable for each@ E;
(2)u— F(t,u) is upper semicontinuous for almost aktJ.

For convenience, we recall the definitions of the Kuratowskasure of noncompactness and summarize the main
properties of this measure.

Definition 5. [19,11] LetE be a Banach space and 1&g denote the bounded subsetsfofThe Kuratowski measure of
noncompactness is the map Qg — [0, ») defined by

m
a(B) =inf{e >0 :BC ( JBj and dian{B;) < €}.
=1
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Properties: The Kuratowski measure of noncompactness satisfies trmiold) properties (for additional details see
[19,11)).

(1) a(B) = 0 if and only if B is compact B is relatively compact).

(2) a(B) = a(B).

(3)Ac Bimpliesa(A) < a(B).

(4)a(A+B) <a(A)+a(B).

(5)a(cB) =|c|a(B), ceR.

(6) a(conB) = a(B).

HereB andconBdenote the closure and the convex hull of the boundeB seispectively.
Let us now recall Monch'’s fixed point theorem and an impdriamma.

Lemma 1.[15] Let D be a bounded, closed, and convex subset of a Banach Bpsieeh thatO € D, and let N be a
continuous mapping from D into itself. If the implication

{ ToN(V) }
V= or implies a(V) =0
N(V)u {0}

holds for every subsetV of,Ehen N has a fixed point.

Lemma 2.[16] Let D be a bounded, closed and convex subset of a Banach spad&) OG be a continuous function on
JxJ,and let f: Jx E — E satisfy the Caratbodory conditions. Assume there exists p'(J,R ) such that, for each
t € J and each bounded setBE,

lim a(f(JkxB)) < p(t)a(B), where Jy = [t —k,t]NJ.

k—0t

IfV is an equicontinuous subset of D, then

a ({/JG(s,t)f(s,y(s))ds:yev}) g/J||G(t,s)|\p(s)a(V(s))ds

3 Main Results

We begin this section with some lemmas about fractional &ops

Lemma 3.Let r > 0. The differential equation
°D'h(t) =0 3)

has solutions ft) = co+ cyt +Cot? +---+¢p_1t" L, G €R,i=0,....,n—1,n=[r].
Lemma4.Letr> 0. Then

I"®D'h(t) = Co+ Cat + Cat?+ - -+ Gt L h(t), 4)
where¢eR,i=0,....n—1,n=r].

Lemmab.LetO<r <1, bT # 2, and let h: J — E be continuous. A function y is a solution of the fractionaégral
equation

.
) = | etsnsds ©)
where Gt,s) is the Green'’s function defined by
(t—s)? b(T—s)' (T—9?
otg_) T @Toreed @ororm oo tE ©
’ b(T—s) (T—9""
, 0<t<s<T,

2-Thr(r+1) (2-ToOr(r)
if and only if y is a solution of the fractional BVP
°D'y(t) =h(t), a.e.te J=1[0,T], O<r <1, (7)

)
y(T)+y(0)=b /0 y(9)ds bT £2. (8)
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Prooflf y satisfies 7), then Lemmat implies that

t (t . S)rfl

t)= ~——~——h(s)ds 9
)=cot [ Sryh) ©)
By (8), r r—1
T o

b (T—9 h(s)ds— / T-59)

2—TbJo I (r+1) 2—bTJo I(r)
so we obtain equatiorb), whereG defined in 6). Conversely, it is clear that if satisfies %), then ) and @) hold.

Co= h(s)ds (10)

Theorem 1.Assume the following conditions hold:

(H1) The function f J x E — [E is Caratheodory;
(H2) There exists g L'(J,R. ), such that

[If(t,y)]| < p(t)]ly| for a.e.te J and each ¥ E;
(H3) For a.e. te J and each bounded setBE, we have

lim a(f(duxB)) < p)a(B),

wherea is the Kuratowski measure of compactness anpd=J[t — k;t].
Then the BVPX)—(2) has at least one solution in(Q, B) provided that

bl(I™p)(T) |, (I"p)(T)

Proof. To transform the probleml}—(2) into a fixed point problem, consider the operator

o1 r
N = [T tsyedst [ T sy(s)ds

T (T_s)r 1
-/ PR T RCVCILE

Clearly, from Lemméb, the fixed points oN are solutions to the problert)&(2).
Let R> 0 and consider the set
Dr={yeC(JE) : Y]« < R}.
We shall show thalil satisfies the assumptions of Monch'’s fixed point theorerm(inal above). The proof will be given
in several steps.

Step 1:N is continuousLet {y,} be a sequence such that— yin C(J,E). Then, for each € J,

o1
N30~ (90 < [ 2 s9n(s) ~ F(syis)lds
b [ (s~ f(s (s s

o [2=ThIM(r+1)

(T—-9
[ A )~ Tsy(s)ds
Let p > 0 be such that

[Ynlle < p and|ly[[e < p.

Then from (H2), we have
[T(s.yn(s) — f(s.¥(s))] < 2pp(s) := 0 (s),

ando € LY(J,R.). Sincef is Carathéodory,

IN(Yn) = N(Y)|lw — O @asn — oo.
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Step 2:N maps I into itself. For eachy € Dg, by (H2) and (1), we have for eache J,

o1
o)< [

T (T3 T(T-9"!
| mTorG oD T(eYSldst /O o (S Y(©)lds

r+1 r
<RI+ P+ P
<R

[f(s,y(s))|ds

+

Step 3:N(Dg) is bounded and equicontinuoldom Step 2, it is clear thid(Dr) C C(J,EE) is bounded. To show the
equicontinuity ofN(DR), letts, t, € J, with t; < tp, andy € Dg. We have

N9 t2) - (Nt < - [ [ta=9 2 (-5 If(syislds
g [ -9 s y)las

< oy | [ Tt 9 - -9 Hpisas

/ tz(tz—sflp(s)ds} |

6]

-
_|_
Asty — t, the right-hand side of the above inequality tends to zero.

Now letV be a subset obgr such thatv ¢ To(N(V) U {0}). SinceV is bounded and equicontinuous, the function
t — 9(t) = a(V(t)) is continuous ol. By (H2)—-(H3), Lemma, and the properties of the measuarewe have that for
eacht € J,

8(t) < a(N(V)(t)u{o})
< a(N(V)(t))
r+1 r
<a(v() ((lfp><T>+ |b|TI2—'IPE)|(T) i (|sz)gb|)) |

Hence,

r+1 r
91 (1= i@l + PERE + SR <o

From (12), it follows that||3 || = O, that is,d = 0 for eacht € J, and soV (t) is relatively compact ifE. In view of
the Ascoli-Arzela theorenV/ is relatively compact ibgr. Applying Lemmal, we conclude thall has a fixed point that
is a solution of the problenmlj—(2).

4 An Example

As an application of our main results, we consider the foaeti differential equation

Dby = VI

16 y(t), fora.e.(t,y) € ([0,1],R,), (12)
1
Y1) +y(0) = [ ysyds 13)
0
Herer =1,T=1,b=1, and
Ctym-1
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Then,

ty/T—1 ty/Tt

eyl = g o] < e

Choosingp(t) = %T we have that

r+1 r 1 3 1
(@ + PEp D+ SRR — o + aEpw -+ a2 p

1 1 1 1
~(m+mtm)—5<t

12 30 12 5

Then, by Theorer, the problem12)—(13) has a solution of0, 1].
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