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Abstract: Engineering optimization problems are normally formulated as nonlinear programming problems and adopted 

in a lot of research to show the effectiveness of new optimization algorithms. These problems are usually solved through 
deterministic or heuristic methods. Because non-convex functions exist in most engineering optimization problems that 
possess multiple local optima, the heuristic methods cannot guarantee the global optimality of the obtained solution. 
Although many deterministic approaches have been developed for treating non-convex engineering optimization problems, 
these methods use too many extra binary variables and constraints in reformulating the problems. Therefore, this study 
applies an efficient deterministic approach for solving the engineering optimization problem to find a global optimum. The 
deterministic global approach transforms a non-convex program into a convex program by convexification strategies and 
piecewise linearization techniques and is thus guaranteed to reach a global optimum. Some practical engineering design 

problems are presented and solved to demonstrate that this study is able to obtain a better solution than other methods.  
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1  Introduction 

                                                
*
 Corresponding author 

Optimization techniques have been applied in 

various engineering problems such as civil and 

material engineering design, production planning, 
and chemical engineering etc. These applications 

are extensively surveyed by Floudas and Gounaris 

[1] and Floudas et al. [2] The engineering problems 
normally have mixed continuous and discrete 

design variables, nonlinear objective functions, and 

nonlinear constraints. In general, the approaches for 
solving engineering optimization problems can be 

classified into two categories: heuristic and 

deterministic. The heuristic methods include 
genetic algorithm [3-5], simulated annealing [6], 

particle swarm optimization algorithm [7,8], 

harmony search algorithm [9-11],
 
and evolutionary 

algorithm [12,13]. For example, Lee and Geem [14] 

developed a harmony search algorithm-based 

approach for various engineering problems, 
including mathematical function minimization and 

structural engineering optimization problems. Su 

and Hsieh
 

[7] used cooperative particle swarm 
optimization to search the optimal solution of 

engineering design. Although these heuristic 

methods have the advantages of easy 

implementation for complex problems, they cause 
convergence difficulties and cannot guarantee the 

global optimality of the solution. Moreover, the 

probability of finding the global solution decreases 
when the problem size increases.  

The deterministic methods developed to solve 

engineering optimization problems include branch 
and bound method [15,16],

 
extended cutting plane 

method [7], sequential linearization algorithm [18], 

and generalized disjunctive programming [19]. 
These methods were discussed in Rao [20]. The 

branch and bound method can find the global 

solution only when each subproblem can be solved 
to global optimality. The extended cutting plane 

method cannot solve the problems with non-convex 

constraints or non-convex objective functions 
because the subproblems may not have a unique 

optimum in the solution process. Therefore, some 

transformation techniques have been developed for 
convexifying the non-convex functions. Pörn et al. 
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[21] introduced different convexification strategies 

for non-convex programs with posynomial and 

negative binomial terms in the constraints. Maranas 
and Floudas [22] proposed exponential 

transformation methods to treat non-convex terms. 

Björk et al. [23] and Tsai et al. [24] proposed global 
optimization techniques based on convexifying 

signomial terms.  

Most of the engineering optimization problems 
include non-convex functions that cannot be dealt 

with by the standard local optimization techniques 

to guarantee global optimality. Consequently, this 
study applies an efficient optimization approach for 

globally solving engineering optimization 

problems. The deterministic global approach 
transforms a non-convex program into a convex 

program by convexification strategies and 

piecewise linearization techniques and is thus 
guaranteed to reach a global optimum. Compared 

with other deterministic methods, the proposed 

method utilizes less additional binary variables and 
constraints to reformulate the problem, thereby 

decreasing the computational complexity.  

Following this introduction, the convexification 
and piecewise linearization methods adopted in this 

study are described in Section 2. Three practical 

engineering design problems are solved in Section 
3. Finally, conclusion remarks are made in Section 

4.  

 

2  Convexification and Linearization 

Techniques  
Convexification is one of the important 

techniques for global optimization. Tsai et al. [24] 
and Li and Tsai [25] discussed non-convex 

minimization problems that can be transformed into 

convex ones, and are thus be globally solved by the 
local optimization techniques. To convexify the 

non-convex functions in engineering problems by 

the conventional convex techniques, we consider 
the following propositions [24-26]:   

PROPOSITION 1 A twice-differentiable 

function 


n

i
i

ixcf
1

)(


x , ),,,( 21 nxxx x , iixc ,,

, i , is convex if 0c , 0ix  and 0i for 

ni ,...,2,1 . 

PROPOSITION 2 A twice-differentiable 

function 


n
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i

ixcf
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

x , ),,,( 21 nxxx x , iixc ,,

, i , is convex if 0c , 0ix , 0i  

(for ni ,...,2,1 ), and  


n

i
i

1

01  . 

Remark 1 A function xxf )(  for 0x is 

convex when 0  or 1 . )(xf  is concave when 

10  . For a given product term s , if s  satisfies 

Propositions 1 or 2, then s  is a convex term 

without any transformations. For instance, 
1

3
2

2
1

1
 xxxs  with 0,, 321 xxx  is a convex term 

requiring no transformation by Proposition 1, and 
5.0

2
3.0

1 xxs   with 0, 21 xx  is also a convex term by 

Proposition 2.  

This study utilizes different strategies for 

positive and negative non-convex terms, 
respectively. For the non-convex terms with 

positive coefficient, we apply the exponential 

transformation to convexify a positive monomial by 
the following remark [27-29]: 

Remark 2 If 0j  for some j , Ij , 

},,2,1,0|{ nkkI k   , then we convert 
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),( yx  where )(ln jj xLy   and 

)(ln jxL  is a piecewise linear function of jxln . 

Then ),( yxh  where 0ix , Ii , jy , Ij  is a 

convex function.  
For the non-convex terms with negative 

coefficient, we apply the power transformation to 

convexify a negative monomial by the following 
remark [27-31]: 

Remark 3 If p  210 , 

npp    210 , and  


r

i
i

1
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largest integer r, such that pr  , 

},,2,1|{ rkkI  , then we convert 


n
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)( 

 j

jj xLy   and )( 

 j

jxL  is a piecewise linear 

function of 

 j

jx . Then ),( yxh  where 0ix , Ii , 

jy , Ij  is a convex function.  

Herein we adopt the piecewise linearization 
techniques presented by Vielma and Nemhauser 

[32] to deal with a continuous univariate generated 

in the convexification process. Vielma and 
Nemhauser

 
[32] formulated a piecewise linear 

function with a logarithmic number of binary 
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variables and constraints and presented 

experimental results showing that it significantly 

outperforms other models. Tsai and Lin [33] used 
the techniques developed by Vielma and 

Nemhauser [32] in their algorithm for solving 

posynomial geometric programming problems with 
continuous variables. For linearizing a discrete 

univariate, Vielma and Nemhauser [32] also used a 

logarithmic number of binary variables and 
constraints. Compared with the Li and Lu [34] 

method for expressing a discrete variable or a 
univariate, both methods use the same number of 

binary variables but the Vielma and Nemhauser 

[32] method uses fewer constraints and continuous 
variables. 

After convexifying the non-convex terms and 

linearizing the univariates, the original problem is 
reformulated as a convex program that can be 

solved by conventional mixed-integer nonlinear 

programming methods to find a global solution. 
 

3  Examples 
Example 1 This example is a stepped cantilever 

beam design problem shown in Figure 1. Chen and 

Chen [12] and Erbatur et al. [35] applied heuristic 

techniques to solve this problem. The objective of 
the design is to minimize the volume of the beam. 

The design variables are the widths and the depths 

of the rectangular cross-sections.   
The mathematical model of the problem can be 

expressed as follows: 

Minimize )(100 43211098765 xxxxxxxxxx   

subject to  

0
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7143.10
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2
65 
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21 

xx , 

0
10

1429.2
3

2
43 

xx , 
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xxxxxxxxxx

, 

020 56  xx , 

020 78  xx , 

020 910  xx , 

020 12  xx  , 

020 34  xx , 

 5,13,1 x ,  65,304,2 x , )5,...,2,1(5 x , 

)65,...,31,30(6 x , )1.3,8.2,6.2,4.2(9,7 x , 

)60,55,50,45(10,8 x . 

According to Proposition 1, 3
2

1
1

 xx , 3
4

1
3

 xx , 

3
6

1
5

 xx , 3
8

1
7

 xx and  3
10

1
9

 xx  are convex and do not 

require any transformations. By Remark 2, the 

objective function can be convexified as 

)(100 43211098765 yyyyyyyyyy
eeeee


 , where 

)(ln ii xLy  , 8..,2,1i . By Remark 3, the negative 

monomials 2
21xx , 2

43xx , 2
65xx , 2

87xx  and 

2
109xx  can be convexified as 5.0

2
5.0

1 zz , 5.0
4

5.0
3 zz , 

5.0
6

5.0
5 zz , 5.0

8
5.0

7 zz  and 5.0
10

5.0
9 zz , respectively, 

where )( 2
ii xLz  , 9,7,5,3,1i , and )( 4

ii xLz  , 

10,8,6,4,2i . The piecewise linearization 

techniques presented by Vielma and Nemhauser 

[32] is utilized to generate the piecewise linear 

functions. The program therefore can be completely 
transformed to a convex mixed-integer program 

solvable to obtain a globally optimal solution. 

Solving this reformulated program by LINGO [36], 
the obtained global optimum is 

),,,,,,,,,( 10987654321 xxxxxxxxxx = (2.204, 44.091, 

1.749, 34.994, 3, 60, 3.1, 55, 2.6, 50) and the 
objective is 63893.24. The CPU time required for 

solving the transformed program is about 22 

minutes.  

 
Figure 1: A stepped cantilever beam [35] 

 

Table 1 lists the solutions obtained by the 

proposed method and the previous studies [12,35]. 
Chen and Chen [12] found the optimal value 64322 

by using the genetic algorithm. Erbatur et al. [35] 

obtained the optimal value 64447 by using the 
evolutionary algorithm. The solution obtained by 

this study is better than the other two solutions. 
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Table 1 Comparison of results for stepped 

cantilever beam design 
decision 

variables 

Chen and 

Chen [12] 

Erbatur et. 

al. [35] 

proposed 

method 

1x 2.491 2.27 2.204 

2x 45.553 45.25 44.091 

3x 1.75 1.75 1.749 

4x 35.004 35 34.994 

5x 3 3 3 

6x 60 60 60 

7x 3.1 3.1 3.1 

8x 55 55 55 

9x 2.6 2.6 2.6 

10x 50 50 50 

objective 

value 
64322 64447 63893.24 

 
Example 2 The second example is a heat 

exchanger design. This example has been solved 

previously by Jaberipour and Khorram [9] and Lee 
and Geem [14] using the harmony search 

algorithms. The mathematical model of the 

problem is given below: 

Minimize 321 xxx   

subject to  

01)(0025.0 64  xx , 

01)(0025.0 475  xxx , 

01)(01.0 58  xx , 

0333.8333310033252.833 1461  xxxx , 

012501250 442572  xxxxxx , 

012500002500 55383  xxxxx , 

,10000100 1  x  

,10000,1000 32  xx  

.8,...,5,4,100010  ixi  

In this example, the objective function is a linear 
function without any transformations. The product 

terms 42xx  and 53xx  can be converted to convex 

functions as 42 yy
e

 and 53 yy
e

  , respectively, where 

)(ln ii xLy  , 5,4,3,2i , by Remark 2. Furthermore, 

the product terms 61xx , 72xx , and 83xx  can be 

converted to convex terms 5.0
6

5.0
1 zz , 5.0

7
5.0

2 zz , and 
5.0

8
5.0

3 zz  , respectively, where )( 2
ii xLz  , 

8,7,6,3,2,1i . The technique developed by Vielma 

and Nemhauser [32] is used to  piecewisely 

linearizing each continuous univariate generated in 

the transformation process. The program therefore 
can be completely transformed to a convex mixed-

integer program solvable to obtain a globally 

optimal solution within four hours. Table 2 lists the 

solutions obtained by the proposed method and the 

previous studies [9,14]. This study obtains a better 
solution than the other two solutions.  

 

Table 2 Comparison of results for heat exchanger 
design 

decision 

variables 

Jaberipour 
and 

Khorram [9] 

Lee and 

Geem [14] 

proposed 

method 

1x 500.003 579.316 573.106 

2x 1359.311 1359.943 1355.386 

3x 5197.959 5110.071 5106.968 

4x 174.726 182.017 182.017 

5x 292.081 295.598 295.601 

6x 224.705 217.979 217.982 

7x 282.644 286.416 286.416 

8x 392.081 395.597 395.601 

objective 
value 

7057.274 7049.331 7035.461 

 

Example 3 The third example is a more 

complicated example of a speed reducer design 
problem indicated in Figure 2. The design of the 

speed reducer is considered with the face width (b), 

module of teeth (m), number of teeth on pinion (z), 

length of shaft 1 between bearings ( 1l ), length of 

shaft 2 between bearings ( 2l ), diameter of shaft 1 

( 1d ), and diameter of shaft 2 ( 2d ) as design 

variables 721 ,...,, xxx , respectively [9,20]. The 

objective is to minimize the total weight of the 
speed reducer. A detailed description of this 

problem with eleven behavioral constraints is 

outlined in Rao [20]. The mathematical model of 
the problem is given below:  

 
Figure 2: Speed reducer design [9] 

Minimize 

 )0934.439334.143333.3(7854.0 3
2
3

2
21 xxxx  

)(7854.0)(4777.7)(508.1 2
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2
64

3
7

3
6

2
7

2
61 xxxxxxxxx   

subject to  

1
27

3
2
21


xxx

, 

1
5.397
2
3

2
21


xxx
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1
93.1

4
632

3
4 

xxx

x
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1
93.1

4
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3
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x
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4032 xx , 

5
2

1 
x

x
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12
2
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x

x
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1
9.15.1

4

6 
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x

x
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1
9.11.1

5
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x

x
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1
110

)10(9.16
745

3
6

6

2

32

4








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




x

xx

x
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1
85

)10(5.157
745

3
7

6

2

32

5














x

xx

x

, 

6.36.2 1  x , 8.07.0 2  x , 2817 3  x , 

3.83.7 4  x , 3.83.7 5  x , 9.39.2 6  x , 

5.55 7  x .  

Many heuristic algorithms have been proposed 

to solve this example. Such as particle swam 

optimization [7,8], genetic algorithm [5] and 
harmony search algorithm [9]. This example has 

been solved previously by Rao and Xiong [5] using 

a hybrid genetic algorithm. Li and Papalambros 
[37] solved the same problem using the global 

optimization knowledge. 

Applying the linearization and convexification 
techniques described in Section 2, all non-convex 

terms can be transformed into convex terms. Then 

the original problem can be transformed into a 
convex program which is solvable to find a global 

optimum. The CPU time required for solving the 

transformed model by LINGO [36] is about two 
minutes. The smallest weight obtained by Li and 

Papalambros [37] is 2994.4, while the result 

obtained by this study is 2994.341. Compared with 
past literature as shown in Table 3, the solution 

obtained by this study is superior to those in past 

literature.  
 

 

 

 

Table 3 Comparison of Results for speed reducer 

design 

decision 
variables 

Rao and 
Xiong [5] 

Li and 
Papalambros 

[37] 

proposed 
method 

1x 3.5 3.5 3.5 

2x 0.7 0.7 0.7 

3x 17 17 17 

4x 7.3 7.3 7.3 

5x 7.8 7.71 7.715 

6x 3.36 3.35 3.349 

7x 5.29 5.29 5.286 

objective 

value 

3000.83 2994.4 2994.341 

 

4  Conclusions  

This study utilizes an efficient deterministic 

approach for solving engineering optimization 
problems. The deterministic approach is capable of 

transforming a non-convex engineering 

optimization problem into a convex program by the 
linearization and convexification techniques and is 

thus guaranteed to reach a global optimum. Three 

illustrative examples in real applications are 
presented to demonstrate that the proposed method 

can effectively solve the engineering optimization 

problems for finding a global solution. 
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