J. Stat. Appl. Pro7, No. 1, 9-28 (2018) %N =S¥\ 9

Journal of Statistics Applications & Probability

An International Journal

http://dx.doi.org/10.18576/jsap/070102

Odd Burr-G Poisson Family of Distributions

M. Arslan Nasit, Farrukh Jama#*, Giovana O. Silvadand M. H. Tahir*

1 Department of Statistics, Government Degree College, tamgtPunjab, Pakistan.

2 Department of Statistics, Government S.A. Post-Graduatiege, Dera Nawab Sahib, Punjab, Pakistan.

3 Universidade Federal da Bahia, 40170-110, Salvador, BAiBra

4 Department of Statistics, Baghdad Campus, The Islamiaddsity Bahawalpur, Bahawalpur-631000, Pakistan.

Received: 10 Sep. 2017, Revised: 2 Nov. 2017, Accepted: 8 2047
Published online: 1 Mar. 2018

Abstract: We introduce a new class of univariate continuous distidiputalled Odd Burr-G Poisson family of distributions (irosh
OBGP). Four special sub models are considered odd Burr \Wéibisson, odd Burr Lomax Poisson, odd Burr Gamma Poissdn an
odd Burr beta Poisson. We gave the mixture representatitreqidf and cdf of OBGP density, we also discuss the shapedf afiyl

hrf of POBG family. We gave a comprehensive treatment of eratitical properties, such as, ttie moment,sthincomplete moment,
moment generating function and mean deviations. We alsmsied the Renyi and Shannon entropies and stochastiénor.déhe
model parameters are estimated by using maximum likelioethod and the expression fioh order statistics are given. A special
model Odd Burr Lomax Poisson is discussed in detail. Sirrarlas carried out by using monte carlo method, to check thtopmance

of the maximum likelihood estimates. Two real life data &ggilons are carried out to check the efficiency of the pregdamily.

Keywords: Burr XII distribution, G-class of distributions, Poissoistlibution, quantile function, maximum Likelihood estition.

1 Introduction

From last few years, there has been practice to combine twwooe distributions for the purpose of exploring the more
shapes of distribution. An approach was introduced whidisdeith compounding the discrete distribution truncated a
zero, with a continuous univariate lifetime model. The badea of introducing the compounded models or families is
that a lifetime of a system witN (discrete random variable) components and the positivéraaous random variable,
sayy; (the lifetime ofith components), can be denoted by the non-negative randoableldy = Min(Y1,Y2,...,Yn) (the
minimum of a fixed number of any continuous random variatdes) = Max(Y1, Yo, ..., Yn) (the maximum of a of fixed
number any continuous random variable), based on whetb@aimponents are in series or in parallel structure.

Many compounded classes were proposed by many authorsaspélikarniet al(2012) proposed a compound class of
Poisson and lifetime distribution, Al-Zahrani (2014) pospd an extended Poisson Lomax distribution, Al-Zahrani
(2015) gave the Poisson Lomax distribution, Asgharzaatehl. (2013) proposed Pareto Poisson Lindley distribution
with application, Barreto-Souzzt al. (2009) introduced a generalization of the exponential fwidistribution, Bereta
et al. (2011) introduced the Poisson Weibull distribution, Bitré2013) gave a bivariate compound class of geometric
Poisson and lifetime distribution, Canchbal (2011) proposed the Poisson exponential lifetime distidgioy Cordeiroet
al.(2014) proposed the Poisson generalized linear failueemaddel, da-Silvaet al(2015) proposed the exponentiated
Burr XII Poisson distribution, Gomest al(2015) proposed the exponentiated-G Poisson modeleGali (2014) gave
the Lindley-Poisson distribution in lifetime analysis aitd properties, Gupteet al(2014) gave exponentiated
generalized Poisson distribution with application in suals data analysis, Hashimotet al. (2014) gave Poisson
Birnbaum-Saunders model with long term survivors, Louzadaal(2011) introduced the Poisson-exponential
distribution a bayesian approach, etial(2012) gave the Weibull poisson distribution, Mahmoetal. (2013) gave a
exponentiated Weibull Poisson distribution, Nadarah al. (2013) introduced geometric exponential Poisson
distribution, Oluyedet al. (2016) introduced a new compound class of log-logistic \M&PBoisson distribution, Hassan
et al. (2015) proposed complementary Burr |1l Poisson distritiitiPararaét al. (2015) introduced an extended Lindley
Poisson distribution, Pararat al(2015) introduced Kumaraswamy Lindley Poisson distrinutiRamoset al. (2013)
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gave the exponetiated Lomax Poisson distribution withiappbn to lifetime data, Ramost al. (2015) introduced the
Kumaraswamy-G Poisson family of distributions.

In this paper, we propose the Odd Burr-G Poisson (OBGP) Yaofildistribution by compounding the Odd Burr Xl
(OB) distribution and the Poisson distribution. This fantibs a clear physical interpretation (Section 2). We exjiextt

it will attract wider applications in biology, medicine aneliability, and other areas of research. Furthemore, #séch
motivations for using the OBGP family in practice are thddwing:(i) to make the kurtosis more flexible compared to
the baseline model, (ii) to produce a skewness for symnagulistributions, (iii) to generate distributions with symatric,
left-skewed, right-skewed, reversed-J and U-shapeddigefine special models with increasing, decreasing, biatht
and upside-down bathtub hazard rate function,(v) to peeionsistently better fits than other generated models under
the same baseline distribution.

This paper is organized as follows. In Section 2, we gave afaenly of distributions called Odd Burr Xll Poisson
family of distributions. In section 3, we considered fouesjal models odd Burr Weibull Poisson, odd Burr Lomax
Poisson (OBLxP), odd Burr Gamma Poisson and odd Burr bess®oiand also gave the plots of probability density
function (pdf) and hazard rate function (hrf). In sectiom#4, demonstrate that its cdf and pdf is given as mixture linear
of baseline distribution, shapes of the density functiod Aazard rate function are given. Besides, the methods to
computerth moment,sth incomplete moment, moment generating function, meatatles, two entropies Reyni and
Shannon, stochastic ordering and the expressidth @frder statistic are discussed. In section 5, estimatiga@ameters

is carried out using maximum likelihood method. In Sectigra&pecial sub model OBLXP is discussed in detail. Two
real data sets are used in Section 7 to illustrate the usfsilof the OBLXP distribution. Concluding remarks are given
in Section 8.

2 The new Model

We introduce Odd Burr Xl (OB) family of distributions withis cumulative distribution function (cdf) defined as
Fx(%,€) ) }k
Bek(X,E)=1—<¢1+ [ ——T— , 2.1
whereFx denotes the cdf of a random variabie; 0, k > 0 and denotes the vector of unknown parameterk,inThe
pdf corresponding is
Fc_l(X E) FX(X E) cy —k-1
bek(x, &) = ck fy(x, &) 2222 {1+ <7> } ,
c,k( f) X( E) FXCH(X,E) 1—FX(X,E)

wherefy (x, &) = dFx(x, &)/dx andFx (x, &) = 1 — Fx(x, & ). For convenience ldt (x, &) = F(x) and f (x, &) = f(x).
Gomeset al.introduced exponentiated-G Poisson family of distribusicthe cdf is defined as

_1- exp[—AGY(x)]

F(GA,a) PSR

whereA > 0, a > 0 andG(x) is the cdf of a random variable. Lat= 1, then the cdf and pdf are given by

FxA,a) = - SXPACK)] e:p_[;ff(x)] 2.2)

and
exp[—AG(X)]
1-e? 7
respectively. Now we introduce the OBGP family of distribuat by takingG(x) in (2.2) to be the cdf 2.1) of the OB
distribution.

We now provide a physical interpretation of the proposed ehdBuppose that a system Hdsubsystems functioning
independently at a given time, whexeds a truncated Poisson random variable with probabilitysiiasction (pmf)

f(A,0) =Ag(x)

)\n
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forn=1,2,.... Let X denotes the time of failure of the first out of tNefunctioning systems defined by the independent
random variablé; ~ OB, ..., Yy ~ OB given by the cdf2.1). ThenX = Min(Y1,...,Yy). So the conditional cdf oX (for
x> 0) givenN is

FXN) =1-P(X>xIN)=1-P(Y1 > X,...,YN > X)
=1-PVVy>x)=1-1-P(Yp <)V

_k1N
(e (20) 1 |

wherec,k > 0. Hence the unconditional cdf &f is

=1—

_ et S R &)\ A7
H”_LeAé{L’%+Q—ama>}]}ﬁ?
F(x) = 1_164 n21{1— [1-Bck(x)]" )‘n—r

The above expression simplify to
N 1—exp{—ABck(X)}

F 2.
() - (23)
The associated density function, survival function, hdzate function and quantile function are given below
A be (X
f0=7 _Cgf A) exp{ —ABck(¥)} . (2.4)
- exp{—ABck(x)} —e
F(x)= . . 2.5
() o (2.5)
A bc,k(x) exp{ —A Bc,k(x)}
h(x) = )
exp{—ABx(x)} —e2
and
AT
. [(1+ 2)k — 1}
Qx(u) =F¢ T (2.6)

1+ [(1+z)*%—1}

wherez=—+In{1— (1—e*)u} andu~ Uniform(0,1).

3 Special models of the family

Here, we will consider four special model of the OBGP familgstributions along with their plots of density and hazard
rate functions. In the following model3,, c, k are the parameters of the proposed family.

3.1 Odd Burr Weibull Poisson distribution (OBWP)

Taking the Weibull distribution as the parent distributisith cdf Fx(x) =1 — exp[—axﬁ] , withx>0anda >0,8>0
be the scale and shape parameters, respectively. Then ©#\WP distribution is given as

) 1—exp{—)\ [1— (1+ {e‘“” —1Dk] }

F(x) = =

(3.1)
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The pdf corresponding t@(1) is

c—1
Acka BxB-te o [1— e*aﬂ

(1-e) [eor] o (1+ [ —1] C) -

x exp{—)\ [1 — (1+ [ -1] C) _k] } .

If B =1, then cdfin 8.1) reduces to Odd Burr exponential Poisson distribution &neH 1 andk = 1, then cdf in 8.1)
reduces to Weibull Poisson distributionclf= k = 3 = 1, then cdf in 8.1) reduces to exponential Poisson distribution. A
random variable in3.1) is denoted byX ~ OBWRA, ¢, k, a, 3).

In Figure 1, the plots of pdf and hrf of OBWP distribution aieen. The pdf gives the negatively and positively skewed,
symmetrical and reverse J-shapes. While hrf gives inangadecreasing and bathtub shapes.

f(x) =

(a) (b)
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Fig. 1: Plots of pdf and hrf of OBWP distribution.

3.2 Odd Burr Lomax Poisson distribution (OBLxP)

—a
Let the random variable X follows the Lomax distribution e parent distribution with cdix (x) = 1 — (1+ %) with
x> 0 anda > 0 andp > 0 be the shape and scale parameter respectively. Then ctkéf @stribution is given as under.

1_exp{—)\ [1— (1+ [(1+%)a_1}c>—k] }

1—e2

F(x) =

(3.2)

The corresponding pdf t@(2) is

) Acka (1+§)ac_l [1— (1+§)_a]61
(1—e ) {(1+§)T+1 <1+ [(1: gza —1D
xexp{—/\ [1— <1+ KH%)G—l] ) H (3.3)

k+1
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If we putc =1 andk = 1, then cdf in 8.2) reduces to Lomax poisson distribution and i 1, then cdf in 8.2) reduces

to Log-logistic Lomax poisson distribution. A random véniain (3.2) is denoted byX ~ OBLxRA, ¢, k, a, ).

In Figure 2, the plots of pdf and hrf of OBLxP distribution ayigen. The pdf gives only positively skewed and reverse
J-shapes. While hrf gives decreasing and upside down leshtapes.

Fig. 2: Plots of pdf and hrf of OBLxP distribution

3.3 Odd Burr gamma Poisson distribution (OBGaP)

Let the random variabl¥ follows the gamma distribution as the parent distributiothwedf Fx (x) = % =P (a, %)
with x > 0 anda > 0 andf3 > 0 be the shape parameters. Then cdf of BGaP distributionéngis

ool (e [222]) )

1—e?
AckBaxa—leBx [P (a, %)]C_l

rea-eh [1-p(a.f)]" (1+ %D
P(a7l) ¢ K
o4 ([ o))

If we put c =1, then cdf in 8.4 reduces to Odd Lomax gamma Poisson distribution and=f1, then cdf in 8.4
reduces to Odd Log-logistic gamma Poisson distribution.#k = 1, then cdf in 8.4) reduces to Exponential Poisson
distribution. A random variable ir3(4) is denoted byX ~ OBGaRA, ¢, k, a, ).

In Figure 3, the plots of pdf and hrf of OBGaP distribution gieen. The pdf gives only positively skewed, symmetrical
and reverse J-shapes. While hrf gives decreasing, bathtubgside down bathtub shapes.

Plag)
X
B

1P(a)

F(x)=

The pdf corresponding t@B(4) is

f(x) =
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Fig. 3: Plots of pdf and hrf of OBGaP distribution.

3.4 Odd Burr beta Poisson distribution (OBBP)

Let the random variablX follows the beta distribution as the parent distributiothwadf Fx (x) = B&g"’g’)) =lIx(a,B),

with 0 < x < 1 a > 0 andf > 0 be the shape parameters. Then cdf of OBBP distributiorvengas

1 exp{—)\ {1— (1+ [25%85]) k] }

1—e?

F(x) = (3.5)

The pdf corresponding t&(5) is
Ack(lx (a.B)°*

B(a,B) (1—e?)[1—Ix(a,B)° (1+ [ﬁi‘}'&ﬁffnr) -

IX (avﬁ) C) K
xexp{ A [1 <1+ {1—|X(G,B)
If we putc= 1, then cdf in 8.5) reduces to Odd Lomax beta Poisson distribution aié-fl, then cdf in 8.5 reduces to
Odd Log-logistic beta Poisson distributionclf= k = 1, then cdf in 8.5) reduces to beta Poisson distribution. A random
variable in @8.4) is denoted byX ~ OBBRA, ¢, k, a, 3).
In Figure 4, the plots of pdf and hrf of OBBP distribution afeem. The pdf gives left skewed, right skewed, symmetrical
and U-shapes. While hrf gives increasing, decreasing atfdta

f(x) =

4 Some mathematical properties

In this section, we will discuss the expansion, shapesharglimoments, incomplete moments, moment generating
function and mean deviation of the OBGP family of distriluti

4.1 Useful expansion

In this section, we will give a linear combination cdf and pdfOBGP in terms of cdf and pdf of base line distribution.

Theorem 1.1f X ~ OBGRA, ¢, k, &), we have the following approximation.
1. ForA,c k> 0be the real non-integer, we have following linear combioatiorm.

[ee]

F(x) = Hq(X), (4.1)
quaq q
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L

Fig. 4: Plots of pdf and hrf of OBBP distribution.

where H(x) = Fq(x; &) represents the exp-G distribution with power parametenl toe coefficients are given by

S T .
5
Sy(m+cl) = rzq(”‘jc') (q) (—1) (4.2)

Equation(4.1) reveals that the OBGP distribution can be expressed as fird@tenmixture combination of the base line
density function®2.  For A, ¢, k > 0 be the real non-integer, we have

X) = S hg+1(X), (4.3)
quaqH g+1

where g1 are given in(4.2)

ProofFirst, if b > 0 is real number, we have generalized binomial theorem as

(1_z)—k=ii<"+:‘1) 7 (4.4)

|+l

1-e —Z) (4.5)

Using @.4) and @.4), OBGP cdf forA, c, > 0 real non-integer. Finally, we can obtain

X) =S aqgHq(x)
q;aq q

whereag is given in @.2) andHq(x) = (x &) is the exp-G density function withé parametric space.

And Taylor series expansion as

4.2 Shapes

The shapes of the density and hazard rate functions can belmabsanalytically. The critical points of the OBGP dewsit
function are the roots of the equation: This equation magmasere than one root.

fy (X) fx ()
o CTYVTTR®

e+ DEB - e pE -2 [ka+2) 7] o (4.6)
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The critical point of h(x) are obtained as

;ig; +(c— 1):;):(?3 +(c+ 1)1?(7;;(2)() —(k+ 1)%'Zi ~A [k(1+2i)7kflz{}
eXP[—/\{l— 1+ zi)’k}} )‘k(1+2i)7kflzi’
+ o

exp[—)\ {1-(1+ a)’k}} —eA

wherez; = (%) andz = 4 (%)

4.3 Moments

The moments of the OBGP family of distributions can be oladiny using the following expression

00

E(X) = 3 aqia [ ¥ hasa(ax (4.7)
g=0

0
whereag. 1 is given in @.2) , hg+1(X) = (q+ 1) fx(x) Fy (x) andg + 1 is the power parameter.
Similarly, them™ incomplete moment of the OBGP family of distributions carobéained as

U0 = S agaTh(x). 4.8)
qu ag+1

X
whereTy(x) = [ X hgp1(X)dx
0

The moment generating function of the OBGP family of disttibns can be obtained as

M(t) = S Mg+1(t), (4.9)
quaqH q+1

whereMg,1(t) = [ €*hg 1 (x)dx
0
The mean deviations of the OBGP family of distributions atibe mean and median, respectively, can be put as
Dy = 2uF (1) — 2u* (). (4.10)
Dm = u—2u*(M), (4.11)

whereu = E(X) comes from the equatiod (7), M = MedianX) is the median given in equatio@.¢), F (i) is easily
calculated from equatior2(3) andu(.) is obtained by4.8). Other applications of the equations above are obtaiiag t
Bonferroni and Lorenz curves defined for a given probabitigs

1 1
B(11) = un(;?) L(r0) = “T(q) (4.12)

respectively, wherg = F~(1) is the OBGP quantile function at determined from equatior2 (6).

4.4 Entropies

Here, we will study two entropies Reyni and Shannon entropy.
By definition of Reyni entropy

Ik = rlé log L/ f‘s(x)dx] (4.13)
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from equation 2.4) we get
1 [ee]
IrR=-——= Iog(K)+|Og va+c|+5 5/f F>r(n+C|+5 5(X)dX s
1-9o m=0 0
where

Vit 18)-6 = < w J;(;) (—1)] i (k(6+j)4|-6+l—1> (—1)

=0

i=
o [(cl+d(c+1)+m-1
X Z ( m ) (4.14)
m=0
Detail is given in appendix A.
By definition of Shannon entropy
Nx = —E(logf(x))
From equationZ.4) we get
Nx = —log(A ck) +log(1— ") — E(log fx (xi)) — (c — 1)E(logFx (%)) + (¢ — 1)E(logFx (%))
Fx(x.€) ) }k
+(k+1)E |log< 1+ +AE 1+ | ——— . 4.15
e ool (25 )H - (e 19
—k
By using log power expansion Ie{g+ (;XFE(X(E)E))C} and using generalized binomial expansi{fn—k (1EXF§:((2))C}

one can find the shannon entropy of the OBGP distribution Apgendix B.

4.5 Stochastic ordering

The concept of stochastic ordering are frequently useddw she ordering mechanism in life time distributions. Formo
detail about stochastic ordering see (Shadteal. (1994)). A random variable is said to be stochastically e < Y)
than Y if Fx(X) < Ry (x) for all x. In the similar way, X is said to be stochasticallggter K <st Y) than Y in the

1. Stochastic orde{ <s Y) if Fx(x) > Fy(x) for all x.

2. Hazard rate ordeX(<y, Y) if hx(x) > hy(x) for all x.

3. Mean residual ordeX(<my Y) if mx(x) > my(x) for all x.

4. Likelihood ratio orderX <, Y) if fx(x) > fy(x) for all x.

5. Reversed hazard rate ord®r<€, Y) if FX( ) is decreasing for all x.

The stochastic orders defined above are reIated to each ashtbie following implications.

X< Y X< Y=2 X< Y= X< Y =2 X< Y (4.16)
Let X; ~ OBGRc,k,3,A1) and X, ~ OBGR(c,k,3,A2). Then according to the definition of likelihood ratio ordeyi
Eall

;— =exp{—(A1—A2)(1-wj)},
- Ax(x8) \ ™"
wherew; = {1+ <m> } :

Therefore, d f(
X
axgeg ~ a2 exp(= 0= do) (1 - w)) W,

N2 N

wherew = —ck f (x) 2 {1+( Fx(x£) )C}ikilfrom the above equation, we observe thakgit A, = 4 1% < o
! X F”l( X) 1-Fx(x,€) q ! i1 2 dx g(x) )

henceX <, Y. The remaining statements follow form the equatiéri .
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4.6 Order statistics

The density functiorfi.n(x) of the i-th order statistic, far= 1, ..,n, fromi.i.d random variableX;, ..., X, following OBGP
distribution is simply given by.

n! o (n-i i i+j-1
fizn(X) = (—Dix (=D JZ)( j )(—1) f () [F ()] :
Using mixture representation id.@), (4.1) and power series expansion(see Granshteyn-Ryzhik (22@j@s [17,18])
n
ax| =S cx
() -3

Co = ah andcm = (map) * krzno (k(n+1) —m) & Cm -k

n—-i o
) — (4.17)
|n Jzoqtzzo 1,007 g
where j
S nl(—=1)) agr10ji-1
BT DI n—i— )l gt+ 1
and

him(X) = (M 1) fx (x) F'(x).
hg+t(X) the exp-G is density function with power paramegert.

5 Maximum Likelihood method

In this section, we will use the maximum likelihood methocestimate the unknown parameters of the new model from
complete samples only. 1&4, X5, ..., Xy be a random sample of size n from the OBGP family given in eqndR.4)
distribution. The log-likelihood function for the vectof parametee = (c,k,B,&)" can be expressed as.

(©) = nlog(A ck) —nlog(1—e~ +le0ng (%) + (c— 1ZIong
—(C+1)zilog|:_x( —(k+1) Zilogz. A 21{1 zx (5.1)

. 1-Fx(%€)
wherez = {1+( =(x%) ) }
The components of score vector= (c,k, 3,&)7, are given by

1-— e—] Z{l Z'
le092. Akzl:k ‘7
Ue :—+Zlogﬁ le0 —(k+1) Zj%] Akzl%’k 7,

Uy =

ny
P

> Xl:

(9]

IR TN P 10 ) I I 160 0 [Ze
Uf_i; o () +(c 1)|: lFx(Xi) +(c 1)|: [1—Fx(xi) (k+1)|: lZi
—Ak _iziklé:f
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SettingU, , Uc, Uk andU; equal to zero and solving these equations simultaneouslgs/the the maximum likelihood
estimates. These equations cannot be solved analytiaatlyanalytical softwares are required to solve them numigric
For interval estimation of the parameters, we obtainth(SE)bserved information matriX ©) = Uys (forr,s= A, c,k, £).

Under standard regularity conditions, the multivariatenmal N3(0,J(©) 1) distribution is used to construct approximate
confidence intervals for the parameters. Hé(@) is the total observed information matrix evaluatedatThen, the

100(1 - a) confidence intervals for ¢, k anfl are given byc=z,. , x /var(€), k+ Zy 2 X var(k) andé + Zy 12 X

\/var(f), respectively, where the v@s denote the diagonal elementsl(ﬁé)*1 corresponding to the model parameters,
andz , is the quantilg1l — y*/2) of the standard normal distribution.

6 Some Properties of OBLxP distribution
In this section, we will discuss a special sub model Odd Bombax Poisson distribution in detail for illustrative pugeo

6.1 Odd Burr Lomax Poisson distribution(OBLXxP)

—a —a-1
Let X ~ Lomax1,a) then the pdf and cdf of Lomax distributionfg (x) = 1 — (1+ %) andfx(x) = a (1+ %)
Then the PDF and CDF of OBLXP distribution is given in equagi@®.2 and @.3) we have. The mixture representation
of OBLXP from equations4.1) and @.3) is

X) = zoaq{l— (1+%>_a}q.
03 e (105) " {1 ()

The quantile function of OBLXP is given by

wherez=—$In{1-(1-e*)u}.
Thert" moment of OBLxP distribution is

o q
ur’zéoaqﬂ(qjtl ( ) PaB'B(a(s+1)—r;r+1).

S=|

Them" moment of OBLxP distribution is

ad g
m_ n;oaqﬂ (a+1) é(g) (—1)SaBmB% (a(s+1)—mm+1),

X

where [ 2 1(1—x)P~1 = By(a,b) is the incomplete beta function.
0

The mgf of OBLXxP distribution is

e

- 3 aeaarD) 3 (8] (2retr-ater ) (4p)e

S=|
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Putm=1in u™we get the first incomplete moment of OBLXP distribution

= mzoaqﬂ (+1) Si(g) (-1)°a BlB% (a(s+1)—2;2).

that can be used to obtain mean deviation about mean and mregjgectively from equationg.(lQ and @.11).
Letxy,...,Xy be a sample of size n from the OBLxP distribution, then thelikglihood function can be expressed as

1) =nlog(A cka) - nlog (1-& ) + (ca ~ 1) iilog (1+ %) +(c-1)
x iilog{l— (1+ %) a} ~(k+1) iilog {1+ { (1+ %)a - 1}C]
a3 fe () T
wherez = { (1+%) - 1}C The components of score vector are

ne)\ n

UA:AE 1— Z{ [1+2] k}
n
k

n

U=~ 3 loa(1+2) A ; [{1+2} log{1+2}]

U:D+bZ|og(1+ > Zlog{ < )"} (k+1)|n [f:z;]
) i; [k(1+ a)"“lé;c}

n (1+ %)70{ log (1+%)

Ua:§+cizllog<1+%)+(c—1)iz 1_(1+%)_a

—(k+1)i{d"}+k)\ {1+z{ “a’}

]

1+z i=
0 o [ (1) [
L s ] R A R v

HHD S C{(1+%)a—1}c_1“(1+%)al
k13 ) 1 5

We have the pdf o order statistic from equatiom(17)

n-§ st o) 3]

6.2 Simulations study

The mean, variance and the mean squared eM$Hjof the maximum likelihood estimative were calculated for
simulated samples. We performed various simulation ssuftie different settings o and combination of parameter
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values, generating 1000 random samples simulated withuhyeost of theSoftware R

The observations denoted B, ..., X, were generated from the OBLxP distribution given 13, where they were
generated from the inverse transformation method.

From the simulation results, the data of which are shown inléRal and 4,it was observed that the estimates of the
parameters were close to the true value of the parametens ifoiigger than 100. Besides, it was obserW8E
decreased whemincreased. In relation to the bias,their values remaineskcin all the scenarios. The greatest impact of
the bias occurred with the parametersexcept wherk assumes big values. Also, higher values of the bias occunred
the situation that the size of was smaller than 100 independent of the combinations. Tadtseare better ak is
decreased. We can verify that the mean squared errors of tHesMf c, k, A, a and 3 decay as the sample size
increases.

Table 1. Mean, bias an#1SE (Mean Square Error) of the estimates of the parameters oxPBlithc = 10,k =0.07,A =4,a =0.6
andf = 6.14.

n Parameters| Mean Bias M.SE
c 21.001 11.001 3472.6
20 k 0.1326 0.06256 50.835
A 7.709 3.709 760.45
a 0.993 0.3934 14.5328
B 12.866 6.726 4648.0
c 13.840 3.840 588.36
50 k 0.0745 0.0045 0.0305
A 5.966 1.9664 195.129
a 0.8459 0.2459 2811.5
B 10.239 4.099 32.854
c 11.875 1.8752 134.391
100 k 0.0794 0.0094 0.0140
A 4.7986 0.7985 78.714
a 0.7051 0.10510 3.7860
B 8.020 1.8799 1170.00
c 11.519 0.7778 1.5187
150 k 0.0807 0.0106 0.0107
A 42711 0.4049 0.2711
a 0.6564 0.0457 0.0564
B 7.1986  -0.04056 1.0586

Table 2: Mean, bias and1SE (Mean Square Error) of the estimates of the parameters otxBBhodel withc = 10,k = 0.07,A =4,
a=7.0andB =0.7.

n Parameters Mean Bias M.SE
[9 23.679 13.696 3689.3
20 k 0.16384 0.1303 1965
A 7.914 3.9406 941.06
a 10.1283 3.1283 8342.0
B 1.0124 0.3142 102.058
[9 14.247 4.2473 361.912
50 k 0.0882 0.0203 0.01812
A 5.608 1.616 147.853
a 9.045 2.045 2865.8
B 0.9035 0.2035 31.2901
[§ 11.416 1.4163 32.1373
100 k 0.0871 0.01711 0.01228
A 5.001 1.0011 88.211
a 8.7085 1.7085 0.413603
B 0.8726 0.1726 2844.7
c 11.154 1.1536 26.908
150 k 0.0887 0.01864 0.0112
A 4.3687 0.3687 37.105
a 9.1183 2.1183 2198.58
B 0.9155 0.2155 24.0969
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Table 3: Mean, bias anSE (Mean Square Error) of the estimates of the parameters of®Blithc = 0.5,k=0.07,A =4, a =7
andB =0.7.

n Parameters Mean Bias M.SE
c 1.1450 0.6450 26.291
20 k 0.22313 0.1531 13.157
A 5.4870 1.4869 788.48
a 11.8426 4.843 1770.6
B 5.1005 4.4005 2030.42
[9 0.5701 0.0701 1.0774
50 k 0.1957 0.1257 0.5795
A 3.467 —0.5327 105.269
a 9.939 2.9396 274.06
B 1.9307 1.2307 262.03
[9 0.5044 0.0044 0.0235
100 k 0.1382 0.0682 0.1410
A 3.324 —0.6760 51.754
a 8.5996 1.5996 101.484
B 1.1155 0.4155 69.951
[§ 0.5000 0.0000457 0.0152
150 k 0.106 0.04039 0.0293
A 3.3787 —0.6203 14.455
a 8.2819 1.2819 66.405
B 0.8880 0.0797 1.4103

Table 4: Mean, bias an#1SE (Mean Square Error) of the estimates of the parameters ofx®Blithc = 10,k=15,A =04,a =7
andB =0.7.

n Parameters| Mean Bias M.SE
c 13.486 3.4857 414.67
20 k 6.2523 4.7523 19942.0
A 15.894 11.8936 9628.47
a 10.076 3.0764 10542.05
B 1.2282 0.5282 216.045
c 10.777 0.7768 21.2080
50 k 4.5357 3.0357 18527
A 8.668 4.668 3307.33
a 8.794 1.7937 4385.32
B 0.9976 0.2976 75.306
c 10.290 0.2900 6.6031
100 k 3.3822 1.8821 3.81e+03
A 5.2151 1.2151 610.91
a 8.595 1.59458 2348.64
B 0.9114 0.2203 34.480
c 10.207 0.2065 3.4840
150 k 2.7502 1.2502 436.42
A 3.992 —-0.0084 112.018
a 8.546 1.5459 1405.19
B 0.880 0.1880 17.948

7 Application

In this section, we provide two applications to real data setllustrate the importance of the OBLXP distributioneTh
model parameters are estimated by the method of maximuiihticsl and well-recognized goodness-of-fit statistics are
calculated.

7.1 Complete/ Uncensored Data set

The data refers the failure times of 20 mechanical compenand taken from the book "Weibull models, series in
probability and statistics” by Murthy DNBt al (2004).

The goodness of fit measure Anderson-Darlingj)(@nd Cramer-von Mises (YWare computed and given in tal8eThe
lower the values of these criteria, the better the fit. We camaphe OBLXxP distribution with Kw-Weibull Poisson (Kw-
WP)(Ramos, 2015), Beta Lomax (B-Lx) , Kumaraswamy Lomax_and Lomax distributions. The computations were
performed using the package Adequacy Mod& olevelopedRemar ks: Ramos (2015) compare Kumaraswamy-Weibull
Poisson (Kw-WP) to Kumaraswamy-Weibull (Kw-W), beta Wdil§BW), exponentiated Weibull (EW) and Weibull (W)
models for the remission times data (Lee and Wang, 2003) ofgated Statistid*=0.14942 andiV*=0.02250 for Kw-
WP while OBLxP gives minimuni\*=0.1188 andV*=0.0175 for same data set (Talfle. We can say OBLP is best fit
then Kw-WP, Kw-W, BW and Weibull models for this data set.
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Table5: MLEs and their standard errors (in parentheses)

Distribution c k A B a
OBLxP 9.8829 0.0658 3.9548 6.1425 0.6561
(5.2939) (0.1119) (5.1296) (32.9497) (3.6866)
Kw-WP 1.3435 25.8359 5.1352 19.6074 0.1512
(0.0151) (0.1612) (2.0805) (6.3839) (0.0667)
B-Lx 67.5047 0.8771 0.1044 6.8834 -
(58.3961) (0.7190) (0.1250)  (7.2679) -
K-Lx 47.5001 1.2606 0.0755 4.6266 -
39.4774 0.9579 0.0783 3.7908 -
Lx 5.4148 45.2542 - - -
(11.2841) (93.2701) - - -

Table 6; StatisticsAx andW.

Distribution W+ A*

OBLxP 0.0430 0.2846

Kw-WP 0.0638 0.4918

B-Lx 0.0769 0.5981

K-Lx 0.0851 0.6562

Lx 0.2818 1.8519

(a) (b)
2 =
o e |

Fig. 5: Plots of estimated pdf and cdf of OBLxP distribution for unsered data sets.

7.2 Censored data set.

In this sub section, we provide application of the OBLxP madeensored data set. We provide application of the OBLxP
model to censored data set to compare with Lomax distribatiNoting that goodness-of-fit statistics computationgha
not been developed for censored data but the quality of fitbeachecked by Akaike and Bayesian information criteria
(AlIC and BIC), see (Delignette-Muller and Dutang, 2015)e Tlata considered data on the times to failure of 20 aluminum
reduction cells. Failure times, in units of 1000, quoted awmess(2003).

Consider a data s& = (x,r), wherex = (Xg, Xz, ...,xn)T are the observed failure times and= (ry,ro, ...,rn)T are the
censored failure times. Thieis equal to 1 if a failure is observed and 0 otherwise. Suptiadehe data are independently
and identically distributed and come from a distributiorthapdf given in Eq. (11). LeT = (c,k,A,B,a)T denote the
vector of parameters. Then the likelihood®@fcan be expressed as

=}

(D;0) = [[f(x;@)]"[1- Fx; )"
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The log-likelihood reduces to
n n
(@) =1 Y logf(x:©)+ (1)  loglL—F (:0)],
: i; ! I i; [ i ]

where k
log[1— F(x;0)] = —|og(1—e*)\) B [1— (1+ [(1+%>°’_1}c)— ]

and

B
“log (1_84) +a(c+1)log <1+%> — (k+1)log (1+ Kl+%>" _1D

X a c. —k
Y (1+ [(1+_) _1] ) |
B
The log likelihood function can be maximized numericallytatained the MLEs. There are various routines available for
numerical maximization df. We use the routine optimum in the R software.

logf(x;@) =log(A cka) + (ac —1)log <1+§) +(c—1)log [1_ <1+%)—a‘|

Table 7: Censored data set

Model Parameters MLE Standard error  Log-Likelihood AlIC BIC
OBLxP c 3.3414 2.4257 -19.0912 48.1825 53.1612
k 9.9500 41.4452
A 2.2978 24.8598
B 0.4805 1.4625
a 1.6996 4.8124
Lx c 33.7550 48.5211 -26.8868 57.7737 59.7651
k 19.5786 27.8037

8 Conclusions and Results

In this article, we propose a new family of Burr XII distritbonn called OBGP family of distribution, we study most
of its mathematical properties including moments, inca@t®mimoments,moment generating function, mean deviation,
stochastic ordering, Reyni and Shannon entropies, ordtstats and estimation of parameters by ML method areerri
out. We also compare a sub-model as an example and discyssjisrties, also fit on two real life data sets to show
the usefulness of proposed family, the model provides stersly better fit than other lifetime models. The proposed
family may attract great application in the areas such an&uwics, Actuarial sciences, Finance, Engineering, satviv
and lifetime data.

9 Appendix
9.1 Appendix A

Consider
expl—A Bex()] CEY
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Empirical and theoretical CDFs

CDF

Fig. 6: Plots of estimated cdf of OBLxP for censored data set.

Using @.5 we get
< (-1)'(A9)

exp[—A 8Bck(x)] = 20'7' BLk(X) (9.2)
E3e-D) ) B \©) oKD
000 = 00" (00 gy {1 (22901 0.3)
i Cla F(X) 7k|_i i) Fx (X) K]
B‘*k(x)‘[l 1 (Zhm) ) ]—,;(W v {1+ () | 64
() \\ O L k@) +a+1-1) [ Fx(x) \®
w0 v () 09
)\ FCVX _dise1),o = ol a(cr)
(1—Fx(x)) F;6(0+1)(X)_FX 09 P 9 (9-6)
F;d5(c+1>(x):nZO(CI+5(C+ml)+m—1> X 9.7)
substituting equations (9.7) to (9.2) in (9.1), we can geffihal result
9.2 Appendix B
we know that logl+z) = § (_11.)”121.
=1
Consid .
o oo {1+ ({24 )}: : (—1>J+l< F(x,€) )C‘ 9.8)
1—Fx(x &) J; j 1-Fx(x€) '
we know that(1—2)™" = § (n+}'—1> z.
=0
Px(x&) \*_ & (n+i-1Y Copsi
(Trng) -5 ()R ©9)
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submitting 0.9 in (9.8) we get following result

we know that - (14+2) "= 1— E <n+}—1) (-1)i2.
iZo

opening the sum fof = 0we get 1- (1+2) "= — § (n+l! B 1) (—1)1Z) Now Consider
i£1

1_{1+ (%)C}k:_;(nwﬂ) (~1)) (%)m (9.11)
<%>d :.i<cj+ii —1) FSI (%) 0.12)
submitting .12 in (9.11) we get the final result -
1—{1+ (%)C}_k: _Jml<n+} _1) (-1)! i°° (CH—I ) FS (%) (9.13)
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