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Abstract: We introduce a new class of univariate continuous distribution called Odd Burr-G Poisson family of distributions (in short
OBGP). Four special sub models are considered odd Burr Weibull Poisson, odd Burr Lomax Poisson, odd Burr Gamma Poisson and
odd Burr beta Poisson. We gave the mixture representation ofthe pdf and cdf of OBGP density, we also discuss the shapes of pdf and
hrf of POBG family. We gave a comprehensive treatment of mathematical properties, such as, therth moment,sth incomplete moment,
moment generating function and mean deviations. We also discussed the Renyi and Shannon entropies and stochastic ordering. The
model parameters are estimated by using maximum likelihoodmethod and the expression forith order statistics are given. A special
model Odd Burr Lomax Poisson is discussed in detail. Simulation is carried out by using monte carlo method, to check the performance
of the maximum likelihood estimates. Two real life data applications are carried out to check the efficiency of the proposed family.

Keywords: Burr XII distribution, G-class of distributions, Poisson distribution, quantile function, maximum Likelihood estimation.

1 Introduction

From last few years, there has been practice to combine two ormore distributions for the purpose of exploring the more
shapes of distribution. An approach was introduced which deals with compounding the discrete distribution truncated at
zero, with a continuous univariate lifetime model. The basic idea of introducing the compounded models or families is
that a lifetime of a system withN (discrete random variable) components and the positive continuous random variable,
sayyi (the lifetime ofith components), can be denoted by the non-negative random variableUN = Min(Y1,Y2, ...,YN) (the
minimum of a fixed number of any continuous random variables)or VN = Max(Y1,Y2, ...,YN) (the maximum of a of fixed
number any continuous random variable), based on whether the components are in series or in parallel structure.
Many compounded classes were proposed by many authors, suchas, Alkarniet al.(2012) proposed a compound class of
Poisson and lifetime distribution, Al-Zahrani (2014) proposed an extended Poisson Lomax distribution, Al-Zahrani
(2015) gave the Poisson Lomax distribution, Asgharzadehet al. (2013) proposed Pareto Poisson Lindley distribution
with application, Barreto-Souzaet al. (2009) introduced a generalization of the exponential Poisson distribution, Bereta
et al. (2011) introduced the Poisson Weibull distribution, Bidram (2013) gave a bivariate compound class of geometric
Poisson and lifetime distribution, Canchoet al.(2011) proposed the Poisson exponential lifetime distribution, Cordeiroet
al.(2014) proposed the Poisson generalized linear failure rate model, da-Silvaet al.(2015) proposed the exponentiated
Burr XII Poisson distribution, Gomeset al.(2015) proposed the exponentiated-G Poisson model, Guiet al. (2014) gave
the Lindley-Poisson distribution in lifetime analysis andits properties, Guptaet al.(2014) gave exponentiated
generalized Poisson distribution with application in survival data analysis, Hashimotoet al. (2014) gave Poisson
Birnbaum-Saunders model with long term survivors, Louzadaet al.(2011) introduced the Poisson-exponential
distribution a bayesian approach, Luet al.(2012) gave the Weibull poisson distribution, Mahmoudiet al. (2013) gave a
exponentiated Weibull Poisson distribution, Nadarajhet al. (2013) introduced geometric exponential Poisson
distribution, Oluyedeet al. (2016) introduced a new compound class of log-logistic Weibull Poisson distribution, Hassan
et al. (2015) proposed complementary Burr III Poisson distribution, Pararaiet al. (2015) introduced an extended Lindley
Poisson distribution, Pararaiet al.(2015) introduced Kumaraswamy Lindley Poisson distribution, Ramoset al. (2013)
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gave the exponetiated Lomax Poisson distribution with application to lifetime data, Ramoset al. (2015) introduced the
Kumaraswamy-G Poisson family of distributions.
In this paper, we propose the Odd Burr-G Poisson (OBGP) family of distribution by compounding the Odd Burr XII
(OB) distribution and the Poisson distribution. This family has a clear physical interpretation (Section 2). We expectthat
it will attract wider applications in biology, medicine andreliability, and other areas of research. Furthemore, the basic
motivations for using the OBGP family in practice are the following:(i) to make the kurtosis more flexible compared to
the baseline model,(ii) to produce a skewness for symmetrical distributions,(iii) to generate distributions with symmetric,
left-skewed, right-skewed, reversed-J and U-shaped,(iv)to define special models with increasing, decreasing, bathtub
and upside-down bathtub hazard rate function,(v) to provide consistently better fits than other generated models under
the same baseline distribution.
This paper is organized as follows. In Section 2, we gave a newfamily of distributions called Odd Burr XII Poisson
family of distributions. In section 3, we considered four special models odd Burr Weibull Poisson, odd Burr Lomax
Poisson (OBLxP), odd Burr Gamma Poisson and odd Burr beta Poisson and also gave the plots of probability density
function (pdf) and hazard rate function (hrf). In section 4,we demonstrate that its cdf and pdf is given as mixture linear
of baseline distribution, shapes of the density function and hazard rate function are given. Besides, the methods to
computerth moment,sth incomplete moment, moment generating function, mean deviation, two entropies Reyni and
Shannon, stochastic ordering and the expression ofith order statistic are discussed. In section 5, estimation of parameters
is carried out using maximum likelihood method. In Section 6, a special sub model OBLxP is discussed in detail. Two
real data sets are used in Section 7 to illustrate the usefulness of the OBLxP distribution. Concluding remarks are given
in Section 8.

2 The new Model

We introduce Odd Burr XII (OB) family of distributions with its cumulative distribution function (cdf) defined as

Bc,k(x,ξ ) = 1−

{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}−k

, (2.1)

whereFX denotes the cdf of a random variable,c> 0, k> 0 andξ denotes the vector of unknown parameters inFX. The
pdf corresponding is

bc,k(x,ξ ) = ck fX(x,ξ )
Fc−1

X (x,ξ )
F̄X

c+1
(x,ξ )

{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}−k−1

,

where fX(x,ξ ) = ∂FX(x,ξ )/∂x andF̄X(x,ξ ) = 1−FX(x,ξ ). For convenience letF(x,ξ ) = F(x) and f (x,ξ ) = f (x).
Gomeset al. introduced exponentiated-G Poisson family of distributions, the cdf is defined as

F(x;λ ,α) =
1−exp[−λGα(x)]

1−e−λ ,

whereλ > 0, α > 0 andG(x) is the cdf of a random variable. Letα = 1, then the cdf and pdf are given by

F(x;λ ,α) =
1−exp[−λG(x)]

1−e−λ (2.2)

and

f (x;λ ,α) = λg(x)
exp[−λG(x)]

1−e−λ ,

respectively. Now we introduce the OBGP family of distributions by takingG(x) in (2.2) to be the cdf (2.1) of the OB
distribution.
We now provide a physical interpretation of the proposed model. Suppose that a system hasN subsystems functioning
independently at a given time, whereN is a truncated Poisson random variable with probability mass function (pmf)

P(N = n) =
λ n

(
eλ −1

)
n!
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for n= 1,2, .... Let X denotes the time of failure of the first out of theN functioning systems defined by the independent
random variableY1 ∼ OB, ...,YN ∼ OB given by the cdf (2.1). ThenX = Min(Y1, ...,YN). So the conditional cdf ofX (for
x> 0) givenN is

F(x|N) = 1−P(X > x|N) = 1−P(Y1 > x, ...,YN > x)

= 1−PN (Y1 > x) = 1− [1−P(Y1 ≤ x)]N

= 1−

[{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}−k
]N

,

wherec,k> 0. Hence the unconditional cdf ofX is

F(x) =
e−λ

1−e−λ

∞

∑
n=1

{
1−

[{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}−k
]n}

λ n

n!
.

F(x) =
1

1−e−λ

∞

∑
n=1

{
1−
[
1−Bc,k(x)

]n} λ n

n!
.

The above expression simplify to

F(x) =
1−exp

{
−λBc,k(x)

}

1−e−λ . (2.3)

The associated density function, survival function, hazard rate function and quantile function are given below

f (x) =
λ bc,k(x)

1−e−λ exp
{
−λBc,k(x)

}
. (2.4)

F̄(x) =
exp
{
−λBc,k(x)

}
−e−λ

1−e−λ . (2.5)

h(x) =
λ bc,k(x) exp

{
−λBc,k(x)

}

exp
{
−λBc,k(x)

}
−e−λ .

and

QX(u) = F−1
X




[
(1+ z)−

1
k −1

]1
c

1+
[
(1+ z)−

1
k −1

] 1
c


 , (2.6)

wherez=− 1
λ ln

{
1− (1−e−λ)u

}
andu∼Uni f orm(0,1).

3 Special models of the family

Here, we will consider four special model of the OBGP family of distributions along with their plots of density and hazard
rate functions. In the following models,λ ,c,k are the parameters of the proposed family.

3.1 Odd Burr Weibull Poisson distribution (OBWP)

Taking the Weibull distribution as the parent distributionwith cdf FX(x) = 1−exp
[
−α xβ ], with x> 0 andα > 0, β > 0

be the scale and shape parameters, respectively. Then cdf ofOBWP distribution is given as

F(x) =
1−exp

{
−λ
[
1−
(

1+
[
eαxβ

−1
]c)−k

]}

1−e−λ . (3.1)
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The pdf corresponding to (3.1) is

f (x) =
λ ckα β xβ−1e−αxβ

[
1−e−αxβ

]c−1

(1−e−λ)
[
e−αxβ

]c+1 (
1+
[
eαxβ

−1
]c)k+1

×exp

{
−λ
[
1−
(

1+
[
eαxβ

−1
]c)−k

]}
.

If β = 1, then cdf in (3.1) reduces to Odd Burr exponential Poisson distribution and if c= 1 andk= 1, then cdf in (3.1)
reduces to Weibull Poisson distribution. Ifc= k= β = 1, then cdf in (3.1) reduces to exponential Poisson distribution. A
random variable in (3.1) is denoted byX ∼ OBWP(λ , c, k, α, β ).
In Figure 1, the plots of pdf and hrf of OBWP distribution are given. The pdf gives the negatively and positively skewed,
symmetrical and reverse J-shapes. While hrf gives increasing, decreasing and bathtub shapes.
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Fig. 1: Plots of pdf and hrf of OBWP distribution.

3.2 Odd Burr Lomax Poisson distribution (OBLxP)

Let the random variable X follows the Lomax distribution as the parent distribution with cdfFX(x) = 1−
(

1+ x
β

)−α
with

x> 0 andα > 0 andβ > 0 be the shape and scale parameter respectively. Then cdf of BLxP distribution is given as under.

F(x) =

1−exp

{
−λ

[
1−

(
1+
[(

1+ x
β

)α
−1
]c
)−k

]}

1−e−λ . (3.2)

The corresponding pdf to (3.2) is

f (x) =
λ ckα

(
1+ x

β

)α c−1
[
1−
(

1+ x
β

)−α
]c−1

(1−e−λ)

[(
1+ x

β

)−α
]c+1 (

1+
[(

1+ x
β

)α
−1
]c
)k+1

×exp

{
−λ

[
1−

(
1+

[(
1+

x
β

)α
−1

]c)−k
]}

. (3.3)
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If we putc= 1 andk = 1, then cdf in (3.2) reduces to Lomax poisson distribution and ifk = 1, then cdf in (3.2) reduces
to Log-logistic Lomax poisson distribution. A random variable in (3.2) is denoted byX ∼ OBLxP(λ , c, k, α, β ).
In Figure 2, the plots of pdf and hrf of OBLxP distribution aregiven. The pdf gives only positively skewed and reverse
J-shapes. While hrf gives decreasing and upside down bathtub shapes.
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Fig. 2: Plots of pdf and hrf of OBLxP distribution

3.3 Odd Burr gamma Poisson distribution (OBGaP)

Let the random variableX follows the gamma distribution as the parent distribution with cdf FX(x) =
γ
(

α , x
β

)

Γ (α) = P
(

α, x
β

)

with x> 0 andα > 0 andβ > 0 be the shape parameters. Then cdf of BGaP distribution is given as

F(x) =

1−exp



−λ


1−

(
1+

[
P
(

α , x
β

)

1−P
(

α , x
β

)

]c)−k






1−e−λ (3.4)

The pdf corresponding to (3.4) is

f (x) =
λ ckβ α xα−1e−β x

[
P
(

α, x
β

)]c−1

Γ (α)(1−e−λ )
[
1−P

(
α, x

β

)]c+1
(

1+

[
P
(

α , x
β

)

1−P
(

α , x
β

)

]c)k+1

×exp




−λ


1−


1+




P
(

α, x
β

)

1−P
(

α, x
β

)




c


−k






If we put c = 1, then cdf in (3.4) reduces to Odd Lomax gamma Poisson distribution and ifk = 1, then cdf in (3.4)
reduces to Odd Log-logistic gamma Poisson distribution. Ifc= k = 1, then cdf in (3.4) reduces to Exponential Poisson
distribution. A random variable in (3.4) is denoted byX ∼ OBGaP(λ , c, k, α, β ).
In Figure 3, the plots of pdf and hrf of OBGaP distribution aregiven. The pdf gives only positively skewed, symmetrical
and reverse J-shapes. While hrf gives decreasing, bathtub and upside down bathtub shapes.
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Fig. 3: Plots of pdf and hrf of OBGaP distribution.

3.4 Odd Burr beta Poisson distribution (OBBP)

Let the random variableX follows the beta distribution as the parent distribution with cdf FX(x) =
BX(α ,β )
B(α ,β ) = IX (α,β ),

with 0< x< 1 α > 0 andβ > 0 be the shape parameters. Then cdf of OBBP distribution is given as

F(x) =
1−exp

{
−λ
[
1−
(

1+
[

IX(α ,β )
1−IX(α ,β )

]c)−k
]}

1−e−λ (3.5)

The pdf corresponding to (3.5) is

f (x) =
λ ck [IX (α,β )]c−1

B(α,β ) (1−e−λ ) [1− IX (α,β )]c+1
(

1+
[

IX(α ,β )
1−IX(α ,β )

]c)k+1

×exp

{
−λ

[
1−

(
1+

[
IX (α,β )

1− IX (α,β )

]c)−k
]}

If we putc= 1 , then cdf in (3.5) reduces to Odd Lomax beta Poisson distribution and ifk= 1, then cdf in (3.5) reduces to
Odd Log-logistic beta Poisson distribution. Ifc= k= 1, then cdf in (3.5) reduces to beta Poisson distribution. A random
variable in (3.4) is denoted byX ∼ OBBP(λ , c, k, α, β ).
In Figure 4, the plots of pdf and hrf of OBBP distribution are given. The pdf gives left skewed, right skewed, symmetrical
and U-shapes. While hrf gives increasing, decreasing and bathtub.

4 Some mathematical properties

In this section, we will discuss the expansion, shapes, ordinary moments, incomplete moments, moment generating
function and mean deviation of the OBGP family of distribution.

4.1 Useful expansion

In this section, we will give a linear combination cdf and pdfof OBGP in terms of cdf and pdf of base line distribution.

Theorem 1. If X ∼ OBGP(λ , c, k,ξ ), we have the following approximation.
1. For λ , c, k> 0 be the real non-integer, we have following linear combination form.

F(x) =
∞

∑
q=0

aqHq(x), (4.1)
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Fig. 4: Plots of pdf and hrf of OBBP distribution.

where Hq(x) = Fq
X(x;ξ ) represents the exp-G distribution with power parameter q, and the coefficients are given by

aq =
∞

∑
i=1

∞

∑
j ,l ,m=0

(−1)i+ j+1λ i

i!(1−e−λ)

(
i
j

)(
k j+ l −1

l

)(
cl+m−1

m

)
Sq(m+ cl)

Sq(m+ cl) =
∞

∑
r=q

(
m+ cl

r

)(
r
q

)
(−1)r+q (4.2)

Equation(4.1) reveals that the OBGP distribution can be expressed as the infinite mixture combination of the base line
density functions.2. For λ , c, k> 0 be the real non-integer, we have

f (x) =
∞

∑
q=0

aq+1hq+1(x), (4.3)

where aq+1 are given in(4.2)

Proof.First, if b> 0 is real number, we have generalized binomial theorem as

(1− z)−k =
∞

∑
i=0

(
k+ i −1

i

)
zi . (4.4)

And Taylor series expansion as

1−e−x =
∞

∑
i=0

(−1)i+1xi

i!
(4.5)

Using (4.4) and (4.4), OBGP cdf forλ , c, > 0 real non-integer. Finally, we can obtain

F(x) =
∞

∑
q=0

aqHq(x),

whereaq is given in (4.2) andHq(x) = f q
X(x;ξ ) is the exp−G density function withξ parametric space.

4.2 Shapes

The shapes of the density and hazard rate functions can be described analytically. The critical points of the OBGP density
function are the roots of the equation: This equation may have more than one root.

f ′X(x)
fX(x)

− (c−1)
fX(x)

1−FX(x)
− (c+1)

fX(x)
FX(x)

− (k+1)
z′i
zi
−λ

[
k(1+ zi)

−k−1z′i
]
= 0 (4.6)
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The critical point of h(x) are obtained as

f ′X(x)
fX(x)

+ (c−1)
fX(x)
FX(x)

+ (c+1)
fX(x)

1−FX(x)
− (k+1)

z′i
1+ zi

−λ
[
k(1+ zi)

−k−1z′i
]

+




exp
[
−λ{1− (1+ zi)

−k}
]

λk(1+ zi)
−k−1z′i

exp
[
−λ{1− (1+ zi)

−k}
]
−e−λ


= 0,

wherezi =
(

FX(xi)
1−FX(xi)

)
andz′i =

d
dx

(
FX(xi)

1−FX(xi)

)

4.3 Moments

The moments of the OBGP family of distributions can be obtained by using the following expression

E(Xr) =
∞

∑
q=0

aq+1

∞∫

0

xr hq+1(x)dx (4.7)

whereaq+1 is given in (4.2) , hq+1(x) = (q+1) fX(x)Fq
X(x) andq+1 is the power parameter.

Similarly, themth incomplete moment of the OBGP family of distributions can beobtained as

µm(x) =
∞

∑
q=0

aq+1T ′
m(x), (4.8)

whereT ′
m(x) =

x∫
0

xr hq+1(x)dx.

The moment generating function of the OBGP family of distributions can be obtained as

M(t) =
∞

∑
q=0

aq+1Mq+1(t), (4.9)

whereMq+1(t) =
∞∫
0

et x hq+1(x)dx.

The mean deviations of the OBGP family of distributions about the mean and median, respectively, can be put as

Dµ = 2µ F(µ)−2µ1(µ). (4.10)

DM = µ −2µ1(M), (4.11)

whereµ = E(X) comes from the equation (4.7), M = Median(X) is the median given in equation (2.6), F(µ) is easily
calculated from equation (2.3) andµ1(.) is obtained by (4.8). Other applications of the equations above are obtaining the
Bonferroni and Lorenz curves defined for a given probabilityπ as

B(π) =
µ1(q)
π µ

L(π) =
µ1(q)

µ
(4.12)

respectively, whereq= F−1(π) is the OBGP quantile function atπ determined from equation (2.6).

4.4 Entropies

Here, we will study two entropies Reyni and Shannon entropy.
By definition of Reyni entropy

IR=
1

1− δ
log




∞∫

0

f δ (x)dx


 (4.13)
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from equation (2.4) we get

IR=
1

1− δ


log(K)+ log





∞

∑
m=0

Vm+c(l+δ )−δ

∞∫

0

f δ
X (x)F

m+c(l+δ )−δ
X (x)dx






 ,

where

Vm+c(l+δ )−δ =
∞

∑
i=0

(−1)i (λ δ )i

i!

i

∑
j=0

(
i
j

)
(−1) j

∞

∑
l=0

(
k(δ + j)+ δ + l −1

l

)
(−1)l

×
∞

∑
m=0

(
c l+ δ (c+1)+m−1

m

)
(4.14)

Detail is given in appendix A.
By definition of Shannon entropy

ηx =−E(log f (x))

From equation (2.4) we get

ηx =− log(λ ck)+ log(1−eλ )−E(log fX(xi))− (c−1)E(logFX(xi))+ (c−1)E(logF̄X(xi))

+ (k+1)E

[
log

{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}]
+λ E

[
1−

{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}−k
]
. (4.15)

By using log power expansion log
{

1+
(

FX(x,ξ )
1−FX(x,ξ )

)c}
and using generalized binomial expansion

{
1+
(

FX(x,ξ )
1−FX(x,ξ )

)c}−k

one can find the shannon entropy of the OBGP distribution. SeeAppendix B.

4.5 Stochastic ordering

The concept of stochastic ordering are frequently used to show the ordering mechanism in life time distributions. For more
detail about stochastic ordering see (Shakedet al.(1994)). A random variable is said to be stochastically greater (X ≤st Y)
than Y if FX(x)≤ FY(x) for all x. In the similar way, X is said to be stochastically greater (X ≤st Y) than Y in the

1. Stochastic order (X ≤st Y) if FX(x)≥ FY(x) for all x.
2. Hazard rate order (X ≤hr Y) if hX(x)≥ hY(x) for all x.
3. Mean residual order (X ≤mrl Y) if mX(x)≥ mY(x) for all x.
4. Likelihood ratio order (X ≤hr Y) if fX(x)≥ fY(x) for all x.

5. Reversed hazard rate order (X ≤rhr Y) if FX(x)
FY(x)

is decreasing for all x.

The stochastic orders defined above are related to each other, as the following implications.

X ≤rhr Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤mrl Y (4.16)

Let X1 ∼ OBGP(c,k,β ,λ1) andX2 ∼ OBGP(c,k,β ,λ2). Then according to the definition of likelihood ratio ordering[
f (x)
g(x)

]
.

f (x)
g(x)

= exp{−(λ1−λ2)(1−wi)} ,

wherewi =

{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}−k

.

Therefore,
d
dx

f (x)
g(x)

= (λ1−λ2) exp{−(λ1−λ2)(1−wi)} w′
i ,

wherew′
i =−ck fX(x)

Fc−1
X (x)

F̄c+1
X (x)

{
1+
(

FX(x,ξ )
1−FX(x,ξ )

)c}−k−1
from the above equation, we observe that, ifλ1 < λ2 ⇒

d
dx

f (x)
g(x) < 0,

henceX ≤lr Y. The remaining statements follow form the equation (4.16).
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4.6 Order statistics

The density functionfi:n(x) of the i-th order statistic, fori = 1, ..,n, from i.i.d random variablesX1, ...,X2 following OBGP
distribution is simply given by.

fi:n(x) =
n!

(i −1)! × (n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)i f (x)[F(x)]i+ j−1.

Using mixture representation in (4.3), (4.1) and power series expansion(see Granshteyn-Ryzhik (2007)pages [17,18])
(

∞

∑
i=0

ai x
i

)n

=
∞

∑
i=0

ci x
i

c0 = ai
0 andcm = (ma0)

−1
m
∑

k=0

(
k(n+1)−m

)
ak cm−k

fi:n(x) =
n−i

∑
j=0

∞

∑
q,t=0

mj ,q,t hq+t(x), (4.17)

where

mj ,q,t =
n!(−1) j aq+1dt: j+i−1

(i −1)!(n− i − j)! j!(q+ t+1
.

and
hm(x) = (m+1) fX(x)Fm

X (x).

hq+t(x) the exp-G is density function with power parameterq+ t.

5 Maximum Likelihood method

In this section, we will use the maximum likelihood method toestimate the unknown parameters of the new model from
complete samples only. letX1,X2, ...,Xn be a random sample of size n from the OBGP family given in equation (2.4)
distribution. The log-likelihood function for the vector of parameterΘ = (c,k,β ,ξ )T can be expressed as.

l(Θ) = n log(λ ck)−n log(1−e−λ )+
n

∑
i=1

log fX(xi)+ (c−1)
n

∑
i=1

logFX(xi)

− (c+1)
n

∑
i=1

logF̄X(xi)− (k+1)
n

∑
i=1

logzi −λ
n

∑
i=1

{1− z−k
i }, (5.1)

wherezi =
{

1+
(

1−FX(x,ξ )
FX(x,ξ )

)c}
.

The components of score vectorΘ = (c,k,β ,ξ )T , are given by

Uλ =
n
λ
+

[
ne−λ

1−e−λ

]
−

n

∑
i=1

{1− z−k
i }

Uk =
n
k
−

n

∑
i=1

logzi −λ k
n

∑
i=1

z−k−1
i z′i

Uc =
n
c
+

n

∑
i=1

logFX(xi)−
n

∑
i=1

logF̄X(xi)− (k+1)
n

∑
i=1

[
z′i:c
zi

]
−λ k

n

∑
i=1

z−k−1
i z′i:c

Uξ =
n

∑
i=1

[
f ξ
X (xi)

fX(xi)

]
+(c−1)

n

∑
i=1

[
Fξ

X (xi)

FX(xi)

]
+(c−1)

n

∑
i=1

[
Fξ

X (xi)

1−FX(xi)

]
− (k+1)

n

∑
i=1

[
z′i:ξ
zi

]

−λ k
n

∑
i=1

z−k−1
i z′i:ξ
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SettingUλ , Uc, Uk andUξ equal to zero and solving these equations simultaneously yields the the maximum likelihood
estimates. These equations cannot be solved analytically,and analytical softwares are required to solve them numerically.
For interval estimation of the parameters, we obtain the 3×3 observed information matrixJ(Θ) =Urs (for r,s= λ ,c,k,ξ ).
Under standard regularity conditions, the multivariate normalN3(0,J(Θ̂)−1) distribution is used to construct approximate
confidence intervals for the parameters. Here,J(Θ̂) is the total observed information matrix evaluated atΘ̂ . Then, the

100(1−α) confidence intervals for c, k andξ are given by ˆc± zγ∗/2×
√

var(ĉ), k̂± zγ∗/2 ×
√

var(k̂) and ξ̂ ± zγ∗/2×√
var(ξ̂ ), respectively, where the var()s denote the diagonal elements ofJ(Θ̂)−1 corresponding to the model parameters,

andzγ∗/2 is the quantile(1− γ∗/2) of the standard normal distribution.

6 Some Properties of OBLxP distribution

In this section, we will discuss a special sub model Odd Burr Lomax Poisson distribution in detail for illustrative purpose.

6.1 Odd Burr Lomax Poisson distribution(OBLxP)

Let X ∼ Lomax(1,α) then the pdf and cdf of Lomax distribution isFX(x) = 1−
(

1+ x
β

)−α
and fX(x) = α

(
1+ x

β

)−α−1
.

Then the PDF and CDF of OBLxP distribution is given in equations (3.2) and (3.3) we have. The mixture representation
of OBLxP from equations (4.1) and (4.3) is

F(x) =
∞

∑
q=0

aq

{
1−

(
1+

x
β

)−α
}q

.

f (x) =
∞

∑
m=0

aq+1(q+1)
α
β

(
1+

x
β

)−α−1
{

1−

(
1+

x
β

)−α
.

}q

The quantile function of OBLxP is given by

Qx(u) = β








{
(1+ z)−

1
k −1

} 1
c

1+
{
(1+ z)−

1
k −1

} 1
c




− 1
α

−1




,

wherez=− 1
λ ln

{
1− (1−e−λ)u

}
.

Therth moment of OBLxP distribution is

µ ′
r =

∞

∑
m=0

aq+1 (q+1)
q

∑
s=0

(
q
s

)
(−1)sα β rB(α(s+1)− r; r +1).

Themth moment of OBLxP distribution is

µm =
∞

∑
m=0

aq+1 (q+1)
q

∑
s=0

(
q
s

)
(−1)sα β mB x

β
(α(s+1)−m;m+1),

where
x∫
0

xa−1(1− x)b−1 = Bx(a,b) is the incomplete beta function.

The mgf of OBLxP distribution is

M0(t) =
∞

∑
m=0

aq+1 (q+1)
q

∑
s=0

(
q
s

)
(−1)se−t Γ (−α(s+1))(−tβ )α(s+1).
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Putm= 1 in µm we get the first incomplete moment of OBLxP distribution

µ1 =
∞

∑
m=0

aq+1 (q+1)
q

∑
s=0

(
q
s

)
(−1)sα β 1B x

β
(α(s+1)−2;2).

that can be used to obtain mean deviation about mean and median respectively from equations (4.10) and (4.11).
Let x1, ...,xn be a sample of size n from the OBLxP distribution, then the log-likelihood function can be expressed as

l(Θ) = n log(λ ckα)−n log
(

1−e−λ
)
+(cα −1)

n

∑
i=1

log

(
1+

xi

β

)
+(c−1)

×
n

∑
i=1

log

{
1−

(
1+

xi

β

)−α
}
− (k+1)

n

∑
i=1

log

[
1+

{(
1+

xi

β

)α
−1

}c]

−λ
n

∑
i=1

{
1−

[
1+

{(
1+

xi

β

)α
−1

}c]−k
}
,

wherezi =
{
(1+ xi

β )
α −1

}c
The components of score vector are

Uλ =
n
λ
+

ne−λ

1−e−λ −
n

∑
i=1

{
1− [1+ zi]

−k
}

Uk =
n
k
−

n

∑
i=1

log(1+ zi)−λ
n

∑
i=1

[
{1+ zi}

−k log{1+ zi}
]

Uc =
n
c
+b

n

∑
i=1

log

(
1+

xi

β

)
+

n

∑
i=1

log

{
1−

(
1+

xi

β

)−α
}
− (k+1)

n

∑
i=1

[
z′i;c

1+ zi

]

−λ
n

∑
i=1

[
k(1+ zi)

−k−1z′i;c
]

Uα =
n
α
+ c

n

∑
i=1

log

(
1+

xi

β

)
+(c−1)

n

∑
i=1




(
1+ xi

β

)−α
log
(

1+ xi
β

)

1−
(

1+ xi
β

)−α




− (k+1)
n

∑
i=1

[
z′i;α

1+ zi

]
+ kλ

n

∑
i=1

[
(1+ zi)

−k−1z′i;α
]

Uβ =−
n
β
− (cα −1)

n

∑
i=1

[ xi
β 2

1+ xi
β

]
− (c−1)

n

∑
i=1




α
(

1+ xi
β

)α−1[
xi
β 2

]

(
1+ xi

β

)α




+(k+1)
n

∑
i=1




c
{(

1+ xi
β

)α
−1
}c−1

α
(

1+ xi
β

)α−1 [
xi
β 2

]

1+
{(

1+ xi
β

)α
−1
}c


−λ

n

∑
i=1

[
z−k−1z′i:β

]

We have the pdf ofith order statistic from equation (4.17)

fi:n(x) =
n−i

∑
j=0

∞

∑
q,δ=0

mj ,q,δ (q+ δ +1)
α
β

(
1+

xi

β

)−α−1
[

1−

(
1+

xi

β

)−α
]q+δ

.

6.2 Simulations study

The mean, variance and the mean squared error (MSE)of the maximum likelihood estimative were calculated for
simulated samples. We performed various simulation studies for different settings ofn and combination of parameter
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values, generating 1000 random samples simulated with the support of theSoftware R.
The observations denoted byX1, ...,Xn were generated from the OBLxP distribution given in (3.3), where they were
generated from the inverse transformation method.
From the simulation results, the data of which are shown in Tables1 and 4,it was observed that the estimates of the
parameters were close to the true value of the parameters forn is bigger than 100. Besides, it was observedMSE
decreased whenn increased. In relation to the bias,their values remained close in all the scenarios. The greatest impact of
the bias occurred with the parametersα, except whenk assumes big values. Also, higher values of the bias occurredin
the situation that the size ofn was smaller than 100 independent of the combinations. The results are better ask is
decreased. We can verify that the mean squared errors of the MLEs of c, k, λ , α and β decay as the sample size
increases.

Table 1: Mean, bias andMSE(Mean Square Error) of the estimates of the parameters of OBLxP withc= 10,k= 0.07,λ = 4, α = 0.6
andβ = 6.14.

n Parameters Mean Bias M.S.E
c 21.001 11.001 3472.6

20 k 0.1326 0.06256 50.835
λ 7.709 3.709 760.45
α 0.993 0.3934 14.5328
β 12.866 6.726 4648.0
c 13.840 3.840 588.36

50 k 0.0745 0.0045 0.0305
λ 5.966 1.9664 195.129
α 0.8459 0.2459 2811.5
β 10.239 4.099 32.854
c 11.875 1.8752 134.391

100 k 0.0794 0.0094 0.0140
λ 4.7986 0.7985 78.714
α 0.7051 0.10510 3.7860
β 8.020 1.8799 1170.00
c 11.519 0.7778 1.5187

150 k 0.0807 0.0106 0.0107
λ 4.2711 0.4049 0.2711
α 0.6564 0.0457 0.0564
β 7.1986 -0.04056 1.0586

Table 2: Mean, bias andMSE (Mean Square Error) of the estimates of the parameters of OBLxP model withc= 10,k= 0.07,λ = 4,
α = 7.0 andβ = 0.7.

n Parameters Mean Bias M.S.E
c 23.679 13.696 3689.3

20 k 0.16384 0.1303 1965
λ 7.914 3.9406 941.06
α 10.1283 3.1283 8342.0
β 1.0124 0.3142 102.058
c 14.247 4.2473 361.912

50 k 0.0882 0.0203 0.01812
λ 5.608 1.616 147.853
α 9.045 2.045 2865.8
β 0.9035 0.2035 31.2901
c 11.416 1.4163 32.1373

100 k 0.0871 0.01711 0.01228
λ 5.001 1.0011 88.211
α 8.7085 1.7085 0.413603
β 0.8726 0.1726 2844.7
c 11.154 1.1536 26.908

150 k 0.0887 0.01864 0.0112
λ 4.3687 0.3687 37.105
α 9.1183 2.1183 2198.58
β 0.9155 0.2155 24.0969
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Table 3: Mean, bias andMSE (Mean Square Error) of the estimates of the parameters of OBLxP withc= 0.5, k= 0.07,λ = 4, α = 7
andβ = 0.7.

n Parameters Mean Bias M.S.E
c 1.1450 0.6450 26.291

20 k 0.22313 0.1531 13.157
λ 5.4870 1.4869 788.48
α 11.8426 4.843 1770.6
β 5.1005 4.4005 2030.42
c 0.5701 0.0701 1.0774

50 k 0.1957 0.1257 0.5795
λ 3.467 −0.5327 105.269
α 9.939 2.9396 274.06
β 1.9307 1.2307 262.03
c 0.5044 0.0044 0.0235

100 k 0.1382 0.0682 0.1410
λ 3.324 −0.6760 51.754
α 8.5996 1.5996 101.484
β 1.1155 0.4155 69.951
c 0.5000 0.0000457 0.0152

150 k 0.106 0.04039 0.0293
λ 3.3787 −0.6203 14.455
α 8.2819 1.2819 66.405
β 0.8880 0.0797 1.4103

Table 4: Mean, bias andMSE (Mean Square Error) of the estimates of the parameters of OBLxP withc= 10,k= 1.5, λ = 0.4, α = 7
andβ = 0.7.

n Parameters Mean Bias M.S.E
c 13.486 3.4857 414.67

20 k 6.2523 4.7523 19942.0
λ 15.894 11.8936 9628.47
α 10.076 3.0764 10542.05
β 1.2282 0.5282 216.045
c 10.777 0.7768 21.2080

50 k 4.5357 3.0357 18527
λ 8.668 4.668 3307.33
α 8.794 1.7937 4385.32
β 0.9976 0.2976 75.306
c 10.290 0.2900 6.6031

100 k 3.3822 1.8821 3.81e+03
λ 5.2151 1.2151 610.91
α 8.595 1.59458 2348.64
β 0.9114 0.2203 34.480
c 10.207 0.2065 3.4840

150 k 2.7502 1.2502 436.42
λ 3.992 −0.0084 112.018
α 8.546 1.5459 1405.19
β 0.880 0.1880 17.948

7 Application

In this section, we provide two applications to real data sets to illustrate the importance of the OBLxP distribution. The
model parameters are estimated by the method of maximum likelihood and well-recognized goodness-of-fit statistics are
calculated.

7.1 Complete/ Uncensored Data set

The data refers the failure times of 20 mechanical components and taken from the book ”Weibull models, series in
probability and statistics” by Murthy DNPet al.(2004).
The goodness of fit measure Anderson-Darling (A∗) and Cramer-von Mises (W∗) are computed and given in table6. The
lower the values of these criteria, the better the fit. We compare the OBLxP distribution with Kw-Weibull Poisson (Kw-
WP)(Ramos, 2015), Beta Lomax (B-Lx) , Kumaraswamy Lomax (K-Lx) and Lomax distributions. The computations were
performed using the package Adequacy Model inRdeveloped.Remarks: Ramos (2015) compare Kumaraswamy-Weibull
Poisson (Kw-WP) to Kumaraswamy-Weibull (Kw-W), beta Weibull (BW), exponentiated Weibull (EW) and Weibull (W)
models for the remission times data (Lee and Wang, 2003). He computed StatisticA∗=0.14942 andW∗=0.02250 for Kw-
WP while OBLxP gives minimumA∗=0.1188 andW∗=0.0175 for same data set (Table6) . We can say OBLP is best fit
then Kw-WP, Kw-W, BW and Weibull models for this data set.
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Table 5: MLEs and their standard errors (in parentheses)

Distribution c k λ β α
OBLxP 9.8829 0.0658 3.9548 6.1425 0.6561

(5.2939) (0.1119) (5.1296) (32.9497) (3.6866)
Kw-WP 1.3435 25.8359 5.1352 19.6074 0.1512

(0.0151) (0.1612) (2.0805) (6.3839) (0.0667)
B-Lx 67.5047 0.8771 0.1044 6.8834 -

(58.3961) (0.7190) (0.1250) (7.2679) -
K-Lx 47.5001 1.2606 0.0755 4.6266 -

39.4774 0.9579 0.0783 3.7908 -
Lx 5.4148 45.2542 - - -

(11.2841) (93.2701) - - -

Table 6: StatisticsA∗ andW∗.

Distribution W* A*
OBLxP 0.0430 0.2846
Kw-WP 0.0638 0.4918

B-Lx 0.0769 0.5981
K-Lx 0.0851 0.6562
Lx 0.2818 1.8519
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Fig. 5: Plots of estimated pdf and cdf of OBLxP distribution for uncensored data sets.

7.2 Censored data set.

In this sub section, we provide application of the OBLxP model to censored data set. We provide application of the OBLxP
model to censored data set to compare with Lomax distributions. Noting that goodness-of-fit statistics computations have
not been developed for censored data but the quality of fit canbe checked by Akaike and Bayesian information criteria
(AIC and BIC), see (Delignette-Muller and Dutang, 2015). The data considered data on the times to failure of 20 aluminum
reduction cells. Failure times, in units of 1000, quoted in Lawless(2003).
Consider a data setD = (x, r), wherex = (x1,x2, ...,xn)

T are the observed failure times andr i = (r1, r2, ..., rn)
T are the

censored failure times. Ther i is equal to 1 if a failure is observed and 0 otherwise. Supposethat the data are independently
and identically distributed and come from a distribution with pdf given in Eq. (11). LetT = (c,k,λ ,β ,α)T denote the
vector of parameters. Then the likelihood ofΘ can be expressed as

ℓ(D;Θ) =
n

∏
i=1

[ f (xi ;Θ)]r i [1−F(xi ;Θ)]1−r i .
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The log-likelihood reduces to

ℓ(Θ) = r i

n

∑
i=1

log f (xi ;Θ)+ (1− r i)
n

∑
i=1

log[1−F(xi ;Θ)],

where

log[1−F(xi ;Θ)] =− log
(

1−e−λ
)
−λ

[
1−

(
1+

[(
1+

x
β

)α
−1

]c)−k
]

and

log f (xi ;Θ) = log(λ ckα)+ (α c −1) log

(
1+

x
β

)
+(c−1) log

[
1−

(
1+

x
β

)−α
]

− log
(

1−e−λ
)
+α(c+1) log

(
1+

x
β

)
− (k+1) log

(
1+

[(
1+

x
β

)α
−1

]c)

−λ

[
1−

(
1+

[(
1+

x
β

)α
−1

]c)−k
]
.

The log likelihood function can be maximized numerically toobtained the MLEs. There are various routines available for
numerical maximization ofl . We use the routine optimum in the R software.

Table 7: Censored data set

Model Parameters MLE Standard error Log-Likelihood AIC BIC
OBLxP c 3.3414 2.4257 -19.0912 48.1825 53.1612

k 9.9500 41.4452
λ 2.2978 24.8598
β 0.4805 1.4625
α 1.6996 4.8124

Lx c 33.7550 48.5211 -26.8868 57.7737 59.7651
k 19.5786 27.8037

8 Conclusions and Results

In this article, we propose a new family of Burr XII distribution called OBGP family of distribution, we study most
of its mathematical properties including moments, incomplete moments,moment generating function, mean deviation,
stochastic ordering, Reyni and Shannon entropies, order statistics and estimation of parameters by ML method are carried
out. We also compare a sub-model as an example and discuss itsproperties, also fit on two real life data sets to show
the usefulness of proposed family, the model provides consistently better fit than other lifetime models. The proposed
family may attract great application in the areas such as Economics, Actuarial sciences, Finance, Engineering, survival
and lifetime data.

9 Appendix

9.1 Appendix A

Consider

f δ (x) =

[
λ bc,k(x)

exp
[
−λ Bc,k(x)

]

1−e−λ

]
(9.1)
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Fig. 6: Plots of estimated cdf of OBLxP for censored data set.

Using (4.5) we get

exp
[
−λ δ Bc,k(x)

]
=

∞

∑
i=0

(−1)i (λ δ )i

i!
Bi

c,k(x) (9.2)

bδ
c,k(x) = (ck)δ f δ

X (x)
Fδ (c−1)

X (x)

F̄X
δ (c+1)

(x)

{
1+

(
FX(x)

1−FX(x)

)c}−δ (k+1)

(9.3)

Bi
c,k(x) =

[
1−

{
1+

(
FX(x)

1−FX(x)

)c}−k
]i

=
i

∑
j=0

(
i
j

)
(−1) j

{
1+

(
FX(x)

1−FX(x)

)c}−k j

(9.4)

{
1+

(
FX(x)

1−FX(x)

)c}−k(δ+ j)−δ
=

i

∑
l=0

(
k(δ + j)+ δ + l −1

l

)
(−1)l

(
FX(x)

1−FX(x)

)c l

(9.5)

(
FX(x)

1−FX(x)

)c l Fδ (c−1)
X (x)

F̄X
δ (c+1)

(x)
= Fcl+δ (c−1)

X (x) F̄X
−cl−δ (c+1)

(x) (9.6)

F̄X
−cl−δ (c+1)

(x) =
∞

∑
m=0

(
cl+ δ (c+1)+m−1

m

)
Fm

X (x) (9.7)

substituting equations (9.7) to (9.2) in (9.1), we can get the final result

9.2 Appendix B

we know that log(1+ z) =
∞
∑
j=1

(−1) j+1

j zj .

Consider

log

{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}
=

∞

∑
j=1

(−1) j+1

j

(
FX(x,ξ )

1−FX(x,ξ )

)c j

(9.8)

we know that(1− z)−n =
∞
∑
j=0

(
n+ j −1

j

)
zj .

(
FX(x,ξ )

1−FX(x,ξ )

)c j

=
∞

∑
i=1

(
n+ i −1

i

)
Fc j+i

X (x) (9.9)
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submitting (9.9) in (9.8) we get following result

log

{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}
=

∞

∑
j=1

(−1) j+1

j

∞

∑
i=1

(
n+ i −1

i

)
Fc j+i

X (x) (9.10)

we know that 1− (1+ z)−n = 1−
∞
∑
j=0

(
n+ j −1

j

)
(−1) j zj .

opening the sum forj = 0 we get 1− (1+ z)−n =−
∞
∑
j=1

(
n+ j −1

j

)
(−1) j zj Now Consider

1−

{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}−k

=−
∞

∑
j=1

(
n+ j −1

j

)
(−1) j

(
FX(x,ξ )

1−FX(x,ξ )

)c j

(9.11)

(
FX(x,ξ )

1−FX(x,ξ )

)c j

=
∞

∑
i=1

(
c j+ i −1

i

)
Fc j+i

X (x) (9.12)

submitting (9.12) in (9.11) we get the final result

1−

{
1+

(
FX(x,ξ )

1−FX(x,ξ )

)c}−k

=−
∞

∑
j=1

(
n+ j −1

j

)
(−1) j

∞

∑
i=1

(
c j+ i −1

i

)
Fc j+i

X (x) (9.13)
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