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Abstract: The paper illustrates a simple methodology to predict totalfertility rate of India through an approximate Bayes analysis using
a particular case of general autoregressive integrated moving average model. The corresponding results based on classical paradigm
are also obtained especially using maximum likelihood estimators. The study first examines the data for its stationarity and the same
is achieved by differencing the data twice. Once the stationarity is achieved, some specific cases of general autoregressive integrated
moving average model are examined for the given time series data to find the most appropriate candidate. This is being doneusing
Akaike’s information criterion and Bayes information criterion. The selected specific case of the model is analyzed both in Bayesian
and classical frameworks, the former using vague prior for the parameters. The posterior computation in Bayesian paradigm is done
using Markov chain Monte Carlo simulation. The two paradigms ultimately focus on drawing relevant inferences including the short
term predictions, both retrospectively and prospectively. The results are, in general, found to be satisfactory.

Keywords: Autoregressive integrated moving average model, Total fertility rate, Age-specific fertility rate, Stationarity, Akaike’s
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1 Introduction

Forecasting the demographic characteristics of a human population such as the fertility, mortality and migration is an
important aspect of any socio-economic planning. Normallywhen such forecast is needed, one may go either for a short
term or a long term forecasting based on the requirement of the plan. In fact, short term forecasts are chosen in situations
where one is interested in obtaining an estimate about the number of people requiring services like education, medical
facilities or other basic amenities related to human lives whereas for planning purposes a long term forecast is often
preferred. Many times it is also desired to find the uncertainty attached with the forecast so as to know the likelihood of
events under consideration. Obviously, for all this, a proper modelling of underlying forces is required so as to develop
a precise forecast framework. The objective in this paper, however, confines us to forecast the fertility of a population.
Obviously, for the purpose, we need to use some summary indexfor the fertility. The total fertility rate (TFR), being a
composite measure of fertility, is an important component for fertility projection. TFR represents the average numberof
children a woman would bear if she survived throughout the range of her reproductive span, experiencing at each age
duration the age-specific fertility rate (ASFR) of that period.

Demographers have had a long history of interest in forecasting fertility. Saboia [17] and McDonald [14] used a
time series method to forecast the total number of births that have a significant role in the population growth. Miller
[15] employed a bivariate autoregressive model, which actually acted as a transfer function model, to forecast the total
fertility and the mean age of childbearing. Extending a similar approach, Ortega and Poncela [16] used a dynamic factor
model with common and country-specific factors to forecast TFR for a homogeneous cluster of countries. To overcome
the problem of dimensionality encountered during the forecast of ASFR, Thompsonet al. [20] and Keilman and Pham
[8] employed a parametric model of ASFR and instead of modelling ASFR for each age of a reproductive span directly,
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they used a multivariate time series to model the parametersof these parametric models. Bozik and Bell [5] employed
the principle component approach to forecast the fertilityusing ASFR. They, however, used only first four principal
components of the model, in order to reduce its dimensionality, and then employed the multivariate ARIMA method.
Their work can be considered better than the parametric approach used by Thompsonet al. [20] in the sense that the error
in the fitted curve may be seen to be less than what was previously obtained by the authors. Hyndman and Ullah [7] used
the functional data approach to develop a similar strategy.

Taking a cue from the illustrious paper of Lee and Carter [10] in which the authors developed a probabilistic approach
to project mortality in a long term, Lee [11] modelled fertility over time using a single time-varying fertility index, that is,
TFR. The author, however, observed that the long term fertility forecasts yielded in a large width of its prediction interval.
To overcome this problem, which is observed as a result of structural change in the fertility, a restriction was imposed on
the values of lower and upper bounds and that of the average value of TFR. Lee and Tuljapurkar [12] used the same model
with a different value for the average level of TFR and they imposed no restriction on the limits of its bounds. Booth
[3] is an interesting work that has presented a good review discussion of various major demographic forecasting methods
developed till date and discussed approaches for the forecast of cohort fertility.

The problem inherent with most of the methods discussed so far is that they are developed to study the fertility of
the countries which have already passed through their fertility transition and are currently having low to very low fertility
pattern and, owing to which, one can assume that the fertility will almost remain stationary in a way. Besides, all these
methods rely on classical paradigm to draw the desired inferences. Recently, Alkemaet al. [2] undertook this problem
and they distinctly modelled the TFR with respect to the pre-transition period, transition period and post-transitionperiod
using Bayes paradigm. Working on the same very spirit, we aimto model TFR for India via ARIMA model and obtain its
short-term forecast by harnessing the attributes of Bayesian paradigm.

The general form of an ARIMA(p,d,q) model is given by

wt = θ0+
p

∑
i=1

φiwt−i +
q

∑
j=1

ψ jεt− j + εt (1)

wherewt = ∆ dyt is thedth differenced time series corresponding to the observed timeseries datayt , t = 1,2, ...,T . θ0 is
the intercept,φi’s andψ j’s represent the AR and MA coefficients, respectively, andε ’s are the error terms, distributed in
accordance with independent and identically distributed normal variates with mean zero and a constant varianceσ2. The
parametersp andq identify the order for the seasonal autoregressive (the number of lag observations in the model) and
seasonal moving average (size of moving average window) terms. From Eq.1, it is quite evident that an ARIMA model
is nothing but thedth differenced stationary autoregressive-moving average (ARMA) model in whichd of the roots of
characteristic polynomial of autoregressive (AR) processare all unity and the remainder lie outside the unit circle (see
Box et al. [4]).

The plan of the paper is as follows. The next section providesa real data set on TFR of India and ascertains its
stationarity by differencing the data twice. A preliminaryassessment of the subclasses of ARIMA model is provided based
on Box-Jenkins’ criterion, especially using the values of autocorrelation function (ACF) and the partial autocorrelation
function (PACF) for a tentative identification of MA and AR components. Section3 provides approximate likelihood
function corresponding to the proposed ARIMA model to obtain the corresponding maximum likelihood (ML) estimators.
The section also comments briefly on Akaike information criterion (AIC) and Bayes information criterion (BIC) as the
tools for model comparison. A separate subsection providesthe corresponding classical results including the retrospective
predictions after choosing an appropriate model based on the two information criteria. Section4 provides Bayesian model
formulation for the chosen ARIMA model using vague priors for the parameters. The section advocates the use of Gibbs
sampler algorithm for getting samples from the corresponding posterior distribution though some of the full conditionals
are generated using the Metropolis algorithm. A separate subsection provides the numerical illustration where the posterior
corresponding to final selected model is explored completely and both retrospective and future predictions are provided
for TFR of India. The paper ends with a brief conclusion givenin the last section.

2 The Data and the Approximate Model Assessment

Let us consider a yearly data set on TFR of India for the years 1971 to 2011 reported by Sample Registration System,
Registrar General of India. The data set is taken from the website
https://nrhm-mis.nic.in/PubFWStatistics%202013/Complete%20Book.pdfand is reproduced below in Table1 for a
ready reference. Since our objective includes future prediction of TFR, we first try to find out an approximate model for
the prevailing fertility pattern of India. The time series plot for the observed data set, given in Table1, is shown in
Figure1. Obviously, the plot shows a regular non-increasing, non-stationary pattern of the considered data set on TFR.
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Table 1: TFR of India from 1971 to 2011

5.2 5.2 4.9 4.9 4.9 4.7 4.5 4.5 4.4 4.4 4.5 4.5 4.5 4.5 4.3 4.2
4.1 4.0 3.9 3.8 3.6 3.6 3.5 3.5 3.5 3.4 3.3 3.2 3.2 3.2 3.1 3.0
3.0 2.9 2.9 2.8 2.7 2.6 2.6 2.5 2.4

Figure 1: Time series plot showing the TFR of India from 1971 to 2011.

Since stationarity is an important condition in any time series analysis, the same may be achieved by a number of
approaches, the simplest being the one based on differencing the data. Thus, in order to achieve the required stationary
pattern in the data, we proceeded by differencing the data twice. The time series plot for the differenced so obtained is
shown in Figure2 which evidently shows stationarity behaviour of the differenced data. The model assessment can be
done by identifying the parameters of ARIMA model at least approximately for the considered data set. Since twice
differenced TFR data is showing stationarity behaviour, the parameterd can be considered as 2 although this assessment
is based on graphical tool only. For assessing the parameters p andq, we rely on Box-Jenkins methodology and use, in
particular, the ACF plot and the PACF plot. It is to be noted that the autocorrelation explains the way the observation in
the time series are related to each other and is measured by the simple correlation between the current observation and
some previous observation at specific lag, sayp. Similarly, the partial autocorrelation is used to measurethe degree of
association between the current observation and some previous observation at lagp before the current observation, after
removing the effects of intermediate observations such as those at lags 1,2, ..., p − 1. The model is AR(MA) if the
ACF(PACF) trails off after a lag and has a hard cut-off in the PACF(ACF) after a lag. This lag is taken as the value for
p(q). The model is a mixture of both AR and MA, viz. ARMA, if both ACF and PACF trail off. Truly speaking, the
identification of AR and MA components based on these two plots may often be tentative and involve a kind of
approximate personal judgement. It has been often suggested that identification of AR model can be best done on the
basis of PACF plot. Say, for instance, note down the lag afterwhich the PACF plot shuts off, that is, partial
autocorrelation becomes zero after that point. Similarly,suggestion involves relying on ACF plot to identify MA model.
The ACF plot will show non-zero autocorrelation only at lagsinvolved in the model.

The ACF and PACF plots of twice differenced TFR data are givenin Figure3. It is evident from the figure that the
ACF plot trails-off to zero after one lag, which implies thatthe given time series follow a MA(1) process. Similarly, the
PACF plot trails-off to zero after two lags so a AR(2) processcan be a suitable candidate for this double differenced time
series data. Obviously, our overall conclusion suggests ARIMA(2,2,1) model for the considered data set. We, however,
consider some other models such as ARIMA(0,2,1), ARIMA(0,2,2), ARIMA(1,2,0), ARIMA(2,2,0), ARIMA(1,2,1),
ARIMA(1,2,2) and ARIMA(2,2,2) so that all nearby models canalso be looked upon and any misleading conclusion
based on tentative assessment of ACF and PACF plots can be ruled out. It is important to mention that some of these
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Figure 2: Time series plot based on twice differenced TFR data of Indiafrom 1971 to 2011.

models will represent under-fitted and over-fitted scenarios for the considered data set. Once all these models are
entertained, a final conclusion for recommending a model maybe drawn based on their comparison using a few standard
tools. In this paper, we have considered AIC and BIC as the tools for comparing the various entertained models.

3 The Likelihood Function and the Model Selection Criteria

Let w : w1,w2, ...,wT−d be the entertained observations from model (1). The conditional density ofwt , conditioned on
wt−1,wt−2, ...,wt−p, is given by

f (wt |wt−1,wt−2,...,wt−p;θ0,Φ,Ψ ,σ2) ∝
(

1
σ2

)

exp

(

−
1

2σ2 (wt−θ0−
p

∑
i=1

φiwt−i−
q

∑
j=1

ψ jεt− j)
2

)

. (2)

Using (2), the likelihood function corresponding to model (1) can be approximated by its conditional form as

L(w|θ0,Φ,Ψ ,σ2) ∝
T−d

∏
t=p+1

f (wt |wt−1,wt−2,...,wt−p;θ0,Φ,Ψ), (3)

which, on simplification, reduces to

L(w|θ0,Φ,Ψ ,σ2) ∝
(

1
σ2

)(T−d−p)/2

exp

(

−
1

2σ2

T−d

∑
t=p+1

(wt−θ0−
p

∑
i=1

φiwt−i−
q

∑
j=1

ψ jεt− j)
2

)

, (4)

whereΦ = (φ1,...,φp) andΨ = (ψ1,ψ2,...,ψq). It is important to note that if one has a sample of sizeT to estimate an
ARMA(p,q) process by means of conditional maximum likelihood (ML) estimation from equation (4), one will use only
(T−d−p) observations of this sample. This is the approximation thathas been entertained due to dependence structure
and non-availability of data beforew1. Obviously, (4) can be used to obtain approximate ML estimators of the model
parameters. Let us denote these byθ̂0, Φ̂, Ψ̂ andσ̂2, respectively, for the parametersθ0, Φ, Ψ andσ2 and let us denote
the corresponding maximized likelihood function byL̂.

Once the maximized likelihood function is obtained, the AIC(see Akaike [1]) and BIC (see Schwarz [18]) can be
defined as

AIC=−2logL̂+2k, (5)
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Figure 3: ACF and PACF plots for twice differenced TFR data.

BIC=−2logL̂+k log(T−p), (6)

respectively, wherek is the number of parameters in the entertained model. The model selection criterion based on
AIC(BIC) recommends a model for which the corresponding value of AIC(BIC) is least. The good thing about these two
information criteria is that both AIC and BIC penalize the model for its inherent complexities, which is generally
indicated by the number of parameters involved in the model.

3.1 Numerical Illustration: Model Selection and Prediction

Considering all the proposed models given in Section2 and using the corresponding likelihood functions borrowedfrom
Section3, the ML estimates of resulting model parameters based on twice differenced TFR data are given in Table2. The
table also reports the values of corresponding logL̂ for different models. It is to be noted that these values are reported
because of their requirement for obtaining AIC and BIC for each of the considered models.

One can easily interpret the results obtained in Table2. Say, for instance, the effect of intercept terms is not so
significant in all the considered models. Also, all the estimates of AR and MA coefficients possess the conditions of
stationarity/invertibility and nicely lie in the respective regions. These regions are not reported in the present paper because
of their versatile availability in the literature. One can consider, for instance, Boxet al. [4] and Tripathiet al. [21], among
others. The effect of error variance is least in all the models; however, the estimates of AR and MA coefficients show the
significance of preceding observations and disturbances inall the considered models and thus the significance of error
variances especially in MA parts.

As our objective includes predicting TFR for a better understanding of fertility pattern of India, we begin by choosing
a most appropriate model among the considered models based on the values of AIC and BIC. The corresponding values
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Table 2: ML estimates and the corresponding maximized log likelihood functions for the considered specific cases of ARIMA models
Model Parameter ML estimate log L̂

θ0 -0.13e−2

ARIMA(0, 2, 1) ψ1 -0.93 40.06

σ2 0.75e−2

θ0 -0.15e−2

ARIMA(0, 2, 2) ψ1 -0.86 40.17

ψ2 -0.08

σ2 0.74e−2

θ0 0.41e−2

ARIMA(1, 2, 0) φ1 -0.45 37.11

σ2 0.83e−2

θ0 0.04e−2

ARIMA(2, 2, 0) φ1 -0.56 42.51

φ2 -0.42

σ2 0.58e−2

θ0 0.31e−2

ARIMA(1, 2, 1) φ1 -0.65 41.33

ψ1 -0.58

σ2 0.67e−2

θ0 -0.56e−2

φ1 -0.19

ARIMA(2, 2, 1) φ2 -0.02 48.54

ψ1 -1.24

σ2 0.43e−2

θ0 0.32e−2

φ1 -0.56

ARIMA(1, 2, 2) ψ1 0.43 41.49

ψ2 -1.07

σ2 0.43e−2

θ0 -0.52e−2

φ1 -0.29

ARIMA(2, 2, 2) φ2 -0.20 50.72

ψ1 0.78

ψ2 -0.63

σ2 0.38e−2

of AIC and BIC are reported in Table3. It is obvious that the evaluated values of AIC and BIC support ARIMA(0, 2, 1)
model as the corresponding values of AIC and BIC happen to be the least. We, therefore, consider ARIMA(0, 2, 1) model
for the forthcoming analysis and prediction of fertility pattern of India.

Table 3: Values of AIC and BIC for all the considered models
Model AIC BIC

ARIMA(0, 2, 1) -77.58 -72.59

ARIMA(0, 2, 2) -75.64 -68.99

ARIMA(1, 2, 0) -63.18 -58.19

ARIMA(2, 2, 0) -70.94 -64.29

ARIMA(1, 2, 1) -75.64 -68.98

ARIMA(2, 2, 1) -73.83 -65.51

ARIMA(1, 2, 2) -73.61 -65.30

ARIMA(2, 2, 2) -72.29 -62.31

We next provide the likelihood based retrospective prediction of TFR based on ARIMA(0, 2, 1) model. To start
with the retrospective prediction, we initially considered the first 36 observations out of the given 41 observations (see
Table1) and obtained the ML estimates for the parameters of ARIMA(0, 2, 1) model as detailed in Section3. Based on
these ML estimates, we predicted the next 37th observation. This predicted observation was then used to form a sample
size 37 and the corresponding ML estimates were obtained using these 37 observations in order to predict the next 38th

observation. This process was continued until all the remaining observations were predicted. It is to be noted that for
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predicting the observation in the original series, one actually works by predicting the observation corresponding to twice
differenced data. Thus if we assume the original data size asT , say, atT th stage, we predictedwth

T−1 observation in the
series corresponding to twice differenced data. And, therefore, the estimated predictive values ˆyT+1 can be obtained from
the relation given below in a recursive manner

ŷT+1=ŵT−1+2yT−yT−1. (7)

whereŵT−1 is the estimated predictive observation corresponding towT−1.
The actual values and the corresponding estimated predictive values are given in Table4. The table also provides the

associated predictive intervals with 0.95 confidence coefficient. It may be noted that for obtaining the predictive intervals,
we once again worked on twice differenced data and obtained the corresponding values for the actual observations. Thus
(1−α)% predictive interval corresponding towth

T−1 observation can be obtained using the relationship

ŵT−1±z1−α/2

√

Var(ε̂T−1). (8)

wherez1−α/2 is the standard normal percentile andε̂T−1 is the estimated error term withVar(ε̂T−1)=σ̂2ψ̂2
1 . If ŵLT−1 and

ŵUT−1 are the lower and upper limits of the estimated predictive intervals ofŵT−1, respectively, the corresponding limits
for ŷT+1 can be obtained by a similar transformation as given in (7) by replacing ˆwT−1 by ŵLT−1 andŵUT−1, respectively.
Obviously, the estimated predictive values obtained in Table 4 are not too far away from the actual values and the values
are nicely covered by the corresponding predictive intervals with confidence coefficient 0.95.

Table 4: Likelihood based retrospective predictions of TFR for the period 2007 to 2011

yt True value Estimated Estimated
predictive value predictive interval

y37 2.7 2.84 2.67 3.01
y38 2.6 2.77 2.59 2.94
y39 2.6 2.67 2.51 2.85
y40 2.5 2.61 2.48 2.81
y41 2.4 2.55 2.37 2.72

4 Bayesian Model Formulation

For the differenced data set, the conditional likelihood function of the chosen model ARIMA(0, 2, 1) can be obtained by
ignoring the AR component of (4) and the same can be written as

f (w|θ0,ψ1,σ2) ∝
(

1
σ2

)(T−2)/2

exp

(

−
1

2σ2

T−2

∑
t=1

(wt−θ0−ψ1εt−1)
2

)

, (9)

wherewt is obviously∆2yt .
In order to perform a Bayes analysis, one is required to beginby specifying prior distributions for the parameters.

These prior distributions portray our beliefs about the parameters before the observed data are made available. In case
where the experimenter does not have enough information to specify appropriate prior distributions, it is advisable going
with non-informative priors and allowing inferences to be data driven. Moreover, since prior distributions play crucial role
in any Bayesian analysis, specifying wrong priors may result in poor inferences. For the situation under consideration,
we consider the same strategy and consider the use of non-informative or vague priors for the parameters. We, therefore,
define the prior distribution for the parametersσ2, ψ1 andθ0 as

π1(σ2) ∝
1

σ2 ; σ2≥0, (10)

π2(θ0) ∝ U [−M, M]; M>0, (11)
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and

π3(ψ1) ∝ U [−N1, N2]; N1>0, N2>0, (12)

respectively, whereM andNi, i=1,2, are the hyperparameters that may be taken large enough so that the priors remain
vague. The prior distribution given in (10) for the scale parameter is obviously Jeffreys’ type and it has been widely used in
the literature (see, for example, Marriotet al. [13] and Kleibergen and Hoek [9]). Thus combining these prior distributions
(10) to (12) with the corresponding likelihood function (9) via Bayes theorem, yields the joint posterior distribution that
can be written up to proportionality as

p(θ0,ψ1,σ2|w) ∝
(

1
σ2

)
T
2

exp

(

−
1

2σ2

T−2

∑
t=1

(wt−θ0−ψ1εt−1)
2

)

I[−M,M](θ0)I[−N1,N2](ψ1), (13)

whereI(.) denotes the indicator function defined as

IA(x)=

{

1 if x∈A
0 otherwise. (14)

In order to obtain the posterior based inferences from (13), one obviously needs to rely on sample based approaches
as the resulting posterior is not analytically tractable. We consider Gibbs sampler algorithm among various available
alternatives as Gibbs sampler offers conceptually easy solution. We do not describe this Markovian algorithm in detail
rather comment simply that it offers a kind of straightforward updating mechanism that proceeds by iterating from various
(often) unidimensional full conditionals in a cyclic order. After a large number of iterations, the iterating chain so obtained
converges in distribution to a random sample from the actualposterior distribution. For details, one may refer to Upadhyay
and Smith [22] (see also Gelfand and Smith [6]), among others.

Once the posterior distribution is simulated to get the samples of desired size, the unobserved future datawT−1, for
each of the posterior samples, can be easily simulated from the parent sampling distributionp(wT−1|θ0,σ2,ψ1,w) where
the distributionp(wT−1|θ0,σ2,ψ1,w) is nothing but a univariate normal with meanµT+1=θ0+ψ1ε̂1 and varianceσ2. Thus
having got the corresponding samples from the posterior (13), one can easily obtain the samples of future datawT−1 and,
as it has been done previously, the predictive observation for the original seriesyT+1 using the transformation in (7).
Obviously, the predictive estimates such as point predictions, predictive intervals, etc. can be easily obtained on the basis
of the predictive samples corresponding toyT+1.

4.1 Gibbs Sampler Implementation

The full conditionals, specified up to proportionality, fordifferent variates can be specified from the joint posterior(13)
(see, for example, Upadhyayet al. [23]). The same can be written as

p(θ0|σ2,ψ1,w) ∝ exp

(

−
1

2σ2

T−2

∑
t=1

(wt−θ0−ψ1εt−1)
2

)

, (15)

p(ψ1|σ2,θ0,w) ∝ exp

(

−
1

2σ2

T−2

∑
t=1

(wt−θ0−ψ1εt−1)
2

)

, (16)

and

p(σ2|θ0,ψ1,w) ∝
(

1
σ2

) T
2

exp

(

−
1

2σ2

T−2

∑
t=1

(wt−θ0−ψ1εt−1)
2

)

. (17)

Once the full conditionals are obtained, the next strategy is to look on these for their availability from the viewpoint
of sample generation. It can be easily verified that (17) can be generated using a gamma generating routine after making
a transformationτ = 1/σ2. It can be seen that the transformed variateτ follows gamma density with shape parameter

(T
2+1) and scale parameter[1

2

T−2
∑

t=1
(wt−θ0−ψ1εt−1)

2]. The full conditionals (15) and (16) cannot be reduced to standard

family of distributions and, therefore, we propose to simulate both of these via the Metropolis algorithm. Since we are
using Metropolis algorithm for generating samples from twofull conditionals, the proposed algorithm is not actually the
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Gibbs sampler rather one can refer it as hybrid Gibbs-Metropolis algorithm. For details on Metropolis algorithm, one can
refer to Smith and Roberts [19], Upadhyayet al. [23], among others.

The necessary implementation of the Metropolis algorithm for generating from (15) and (16) separately, we proceed
by taking a univariate normal proposal in each case whose location is centred at the corresponding ML estimate and the
standard deviation is taken to bec times the Hessian based approximation at the ML estimate wherec is a scaling constant
whose value may be taken between 0.5 and 1.0 (see, for example, Upadhyayet al. [23]). Thus the implementation of
Gibbs sampler algorithm can be easily done on the posterior (13) by simulating variate values from the corresponding
full conditionals. To extract the corresponding posteriorsamples, we propose a single long run of the chain after an initial
transient behaviour and pick up the variate values at an appropriate interval so as to minimize the serial correlation (see
also Upadhyayet al. [23]). Since the choice of initial values plays a crucial role inthe convergence diagnostic of iterating
chain, we consider using ML estimates as the initial values for necessary implemention of the algorithm.

4.2 Numerical Illustration for Bayesian Results

For the full posterior analysis of the ARIMA(0, 2, 1) model, we used the modelling formulation and the corresponding
Gibbs sampler implementation as detailed in Section4. The complete posterior analysis was done using the ML estimates
of the parameters and the subsequent Hessian based approximation as the initial values for iterating the chain. It is to be
noted that Hessian based approximation was needed for getting samples from the full conditionals (15) and (16) using the
Metropolis algorithm. We, however, used a scaling constantc=0.6 that provided a good acceptance probability in the two
cases. In order to have vague consideration of priors, the values of hyperparametersM andNi, i=1,2, were chosen to be
100 in each case. These considerations allowed the inferences to depend on likelihood surface only.

Table 5: Posterior estimates for the parameters of ARIMA(0, 2, 1) model corresponding to twice differenced data

Model Parameter MLE Posterior Mean Posterior Mode 0.95 HPD Interval

θ0 0.35e−2 0.35e−2 0.37e−2 -1.23e−2 2.53e−2

ARIMA(0, 2, 1) ψ1 -0.59 -0.47 -0.57 -0.79 -0.12

σ2 0.84e−2 0.94e−2 0.86e−2 0.59e−2 1.45e−2

The results are based on a simulated posterior sample of size1K obtained through a single long run of the chain after
an initial transient behaviour noted at about 60K iterations. We, however, picked up observations at a gap of 10 after
ensuring that the serial correlation becomes negligibly small. Some important sample based posterior characteristics are
shown in Table5.

Referring to Table5, it can be seen that the estimated marginal posterior density for σ2(ψ1) exhibits a slight
positive(negative) skeweness, whereas the parameterθ0 is more or less symmetrical. A natural finding is the closeness of
estimated posterior modes with the corresponding ML estimates, which was expected as well because of vague choices
of priors. Our Bayesian results based on Gibbs sampler is of course advantageous not only because of its ease of
interpretation and associated advantages of Bayesian paradigm but also because of its enormous scope once the samples
are made available. Truly speaking, any inferential aspectcan be easily drawn once the samples are made available. The
complete posterior density estimates and other bivariate or trivariate posterior characteristics are not shown though
former can be guessed based on the results given in Table5. We are leaving other inferential aspects treating them as
natural extensions.

Table 6: Retrospective predictions of TFR for the period 2007 to 2011based on Bayesian tools

yt True value Estimated Bayes Estimated highest
predictive value predictive density interval

y37 2.7 2.70 2.58 2.82
y38 2.6 2.68 2.55 2.82
y39 2.6 2.67 2.57 2.78
y40 2.5 2.61 2.49 2.76
y41 2.4 2.51 2.39 2.72
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Let us finally work for retrospective prediction in a Bayesian framework as it was done earlier in subsection3.1
using the tools of classical paradigm. We shall focus on the same ARIMA model that was finally recommended and used
for the Bayesian analysis. As attempted earlier, we considered only 36 observations as the informative data out of the
given 41 observations (see Table1) though we worked on twice differenced data to go for actual prediction of the given
observations. It is to be noted that before going for the actual prediction of these (assumed) unknown 05 entities, the
entire Bayes analysis was repeated using the first 36 observations to obtain a posterior sample of size 1K from ARIMA(0,
2, 1) model. For each posterior sample, we next obtained the predictive sample corresponding to the next observation,
that is, 37th as discussed in Section4. We thus have predictive sample of size 1K corresponding to the next unknown
observation. Based on these 1K predictive samples, we obtained the estimated Bayes predictive value as the corresponding
modal value. These predictive samples were also used to estimate the highest predictive density interval with coverage
probability 0.95. The next observation, that is, 38th is predicted only after including the estimated Bayes predictive value
for the 37th observation into the informative data set and repeating thewhole posterior and predictive analyses as it has
been done previously for 37th observation. This entire process was repeated recursivelyuntil all the left out observations
are predicted.

The results for retrospective point prediction in the form of estimated Bayes predictive values and the corresponding
highest predictive density intervals with coverage probability 0.95 are shown in Table6. The table also shows the true
values taken from Table1 for immediate comparison. It can be seen from the results of Table6 that the predictive point
estimates in the form of estimated Bayes predictive values are, in general, close enough to the corresponding true vales.
Also, the estimated highest predictive density intervals with coverage probability 0.95 do cover the corresponding true
values in every case.

Let us also compare the results of retrospective predictionobtained using the classical tools (see Table4) with those
obtained using the Bayesian tools as given in Table6. It can be seen from the comparison of the two tables that estimated
Bayes predictive values are, in general, closer to the corresponding true values than the likelihood based estimated
predictive values. Besides, we also see that the estimated highest predictive density intervals with coverage probability
0.95 are, in general, narrower than corresponding likelihood based estimated predictive intervals with confidence
co-efficient 0.95. These findings are of course striking and convey indisputably in favour of Bayesian results.

Table 7: Future predictions of TFR for the period 2012 to 2020 based onBayesian tools

yt Year True value Estimated Bayes Estimated highest
predictive value predictive density interval

y42 2012 2.4 2.33 2.15 2.44
y43 2013 2.3 2.29 2.16 2.42
y44 2014 2.3 2.25 2.13 2.38
y45 2015 2.3 2.27 2.15 2.41
y46 2016 2.2 2.29 2.16 2.45
y47 2017 – 2.27 2.16 2.39
y48 2018 – 2.28 2.18 2.43
y49 2019 – 2.27 2.15 2.39
y50 2020 – 2.26 2.19 2.45

Before we end the section, let us obtain the Bayesian resultsof future prediction of TFR beyond 2011. It is to be noted
that our considered data set in Table1 provides the values of TFR only up to 2011 so any value beyond that is being
treated as future prediction. For the purpose, we considered all the 41 observations reported in Table1 and performed
the posterior and the predictive analyses of the consideredARIMA(0, 2, 1) model as detailed in the previous paragraphs.
The results for point prediction in the form of estimated Bayes predictive values and the corresponding highest predictive
density intervals with coverage probability 0.95 are givenin Table7. These results are obtained exactly the way the results
of retrospective predictions are obtained in Table6. The table also provides the actual values of TFR for the years 2012
to 2016. The source of the actual TFR values for the years 2012to 2015 is same as that of the previous data set (Table1)
and the TFR value for the year 2016 is taken from the NFHS-IV report as available on IIPS’s website.

From the results obtained in Table7, it can be asserted that the average level of TFR for India will remain close to
2.28 for the year 2012 to 2020. It can be seen that the figures obtained in Table7 are, in a sense, close to the expected
value of fertility at its level of replacement, that is, 2.1.Moreover, the prediction results obtained in Table7 are based on
the Bayesian analysis of a simple time series model, being insome sense probabilistic, and surely ignore other important
demographic aspects which directly or indirectly affect the dynamics of overall fertility. It appears as if the increasing
awareness among people, availability of different contraceptive methods and various other demographic interventions by
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the government have an important role in governing the future fertility scenario. Overall, our results are somewhat
optimistic in the sense that the average value of TFR is expected to remain stationary and close to the theoretical
replacement level of fertility in the coming future. The estimated highest predictive density intervals with coverage
probability 0.95 further support our conviction.

5 Conclusion

This paper is a successful attempt to predict TFR of India using a simple ARIMA model. Both classical and Bayesian
paradigms are successfully employed for obtaining the intended prediction although the latter paradigm appears to have
slightly better performance as outlined in the paper. We agree that this approach is certainly not an ultimate approach
as it fails to take in to account a number of important demographic considerations that control fertility behaviour of a
population. The simplicity of the approach is, however, an apparent advantage that provides very close predicted values
of TFR of India. It is expected that such an analysis will helpthe practitioners to get at least an approximate idea of future
fertility trend.

Acknowledgement

The authors are grateful to the anonymous referees for a careful checking of the paper and for the helpful comments that
have improved this paper.

References

[1] Akaike, H. (1974). A new look at the statistical model identification.IEEE transactions on automatic control, 19(6), 716-723.
[2] Alkema, L., Raftery, A. E., Gerland, P., Clark, S. J., Pelletier, F., Buettner, T., and Heilig, G. K. (2011). Probabilistic projections of

the total fertility rate for all countries.Demography, 48(3), 815-839.
[3] Booth, H. (2006). Demographic forecasting: 1980 to 2005in review.International Journal of Forecasting, 22(3), 547-581.
[4] Box, G.E., Jenkins, G.M., Reinsel, G.C. and Ljung, G.M. (2015).Time series analysis: forecasting and control. John Wiley & Sons..
[5] Bozik, J. E., and Bell, W. R. (1987). Forecasting age specific fertility using principal components. InProceedings of the American

Statistical Association, Social Statistics Section (Vol. 396, p. 401).
[6] Gelfand, A.E., and Smith, A.F.M. (1991). Gibbs Samplingfor Marginal Posterior Expectations.Communications in Statistics,

Theory and Methods 20(5-6):1747-1766.
[7] Hyndman, R. J., and Ullah, M. S. (2007). Robust forecasting of mortality and fertility rates: a functional data approach.

Computational Statistics & Data Analysis, 51(10), 4942-4956.
[8] Keilman, N., and Pham, D. Q. (2000). Predictive intervals for age-specific fertility.European Journal of Population/Revue

europenne de Dmographie, 16(1), 41-65.
[9] Kleibergen, F., and Hoek, H. (2000). Bayesian Analysis of ARMA Models. Tinbergen Institute Discussion Paper Amsterdam, the

Netherlands.
[10] Lee, R. D., and Carter, L. R. (1992). Modeling and forecasting US mortality.Journal of the American statistical association,

87(419), 659-671.
[11] Lee, R. D. (1993). Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level.International

Journal if Forecasting 9, 187-202.
[12] Lee, R. D., and Tuljapurkar, S. (1994). Stochastic population forecasts for the United States: Beyond high, medium, and low.

Journal of the American Statistical Association, 89(428), 1175-1189.
[13] Marriott, J., Ravishanker, N., Gelfand, A. and Pai, J. (1996). Bayesian analysis of ARMA processes: Complete sampling-based

inference under exact likelihoods.Bayesian analysis in statistics and econometrics, pp.243-256..
[14] McDonald, J. B. (1979). A time series approach to forecasting Australian total live-births.Demography, 16(4), 575-601.
[15] Miller, R. B. (1986). A bivariate model for total fertility rate and mean age of childbearing.Insurance, Mathematics and Economics

5, 133-140.
[16] Ortega, J. A., and Poncela, P. (2005). Joint forecasts of Southern European fertility rates with non-stationary dynamic factor

models. International Journal of Forecasting, 21(3), 539-550.
[17] Saboia, J. L. M. (1977). Autoregressive integrated moving average (ARIMA) models for birth forecasting.Journal of the American

Statistical Association, 72 (358), 264-270.
[18] Schwarz, G., (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461-464.
[19] Smith, A.F.M., and G.O. Roberts. (1993). Bayesian Computation Via the Gibbs Sampler and Related Markov Chain MonteCarlo

Methods.Journal of the Royal Statistical Society, Series B 55:3-25.

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


244 P. K. Tripathi et al.: Bayes and classical prediction of total fertility...

[20] Thompson, P. A., Bell, W. R., Long, J. F., and Miller, R. B. (1989). Multivariate time series projections of parameterized age-
specific fertility rates.Journal of the American Statistical Association, 84(407), 689-699.

[21] Tipathi, P. K., Ranjan, R., Pant, R., and Upadhyay, S. K.(2017). An approximate Bayes analysis of ARMA model for Indian GDP
growth rate data.Journal of Statistics & Management Systems 20(3):399-419.

[22] Upadhyay, S.K., and A.F.M. Smith. (1994). Modelling Complexities in Reliability and the Role of Simulation in Bayesian
Computation.International Journal of Continuing Engineering Education 4:93-104.

[23] Upadhyay, S.K., N. Vasishta, and A.F.M. Smith. (2001).Bayes Inference in Life Testing and Reliability Via Markov Chain Monte
Carlo Simulation.Sankhya, Series A 63:15-40.

Praveen Kumar Tripathi is a Ph.D. scholar in the Department of Statistics, Banaras
Hindu University. He has submitted his thesis for the partial fulfilment of the Ph.D. degree.
His research interests are in the area of applied statistics, time series analysis, econometrics,
statistical modelling and computing, classical and Bayesian analysis. His Ph.D. research work
was supported by the University Grants Commission in the form of Basic Scientific Research
fellowship.

Rahul Kumar Mishra is a Ph.D. scholar in the Department of Statistics, Banaras Hindu
University. He has received B.Sc. (Hons.) and M.Sc. degreesin Statistics from Banaras Hindu
University, Varanasi, India, in 2011 and 2013, respectively. His research interests include
Bayesian statistics, demographic modelling, hierarchical modelling and computation. He is
awarded with Junior Research Fellowship by the University Grants Commission.

Satyanshu K. Upadhyay received the M.Sc. and Ph.D. degrees from
Banaras Hindu University, Varanasi, India, in 1980 and 1984, respectively.
He started his teaching career as a Lecturer in statistics inthe year 1981.
He is currently a Professor in the Department of Statistics,Banaras Hindu
University. He is also the Co-ordinator of DST Centre for Interdisciplinary
Mathematical Sciences, Banaras Hindu University. He received a number of distinctions
in his career, and worked as an EEC Research Bursary at Imperial College, London,
during the year 1992−1993. His research interests include preliminary test procedures,
life testing and reliability, biostatistics, and Bayes inferences. He has published
several research papers, books, etc. Dr. Upadhyay is associated with a number of
academic and administrative bodies and also the Fellow of the Royal Statistical Society.

c© 2018 NSP
Natural Sciences Publishing Cor.


	Introduction
	The Data and the Approximate Model Assessment
	The Likelihood Function and the Model Selection Criteria
	Bayesian Model Formulation
	Conclusion

