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Abstract: The paper illustrates a simple methodology to predict fetdlity rate of India through an approximate Bayes anialysing

a particular case of general autoregressive integratedng@verage model. The corresponding results based oriazlaparadigm
are also obtained especially using maximum likelihoodnesstiors. The study first examines the data for its statignart the same
is achieved by differencing the data twice. Once the statibnis achieved, some specific cases of general autosigedstegrated
moving average model are examined for the given time ser&s td find the most appropriate candidate. This is being disiey

Akaike’s information criterion and Bayes information eribn. The selected specific case of the model is analyzddibd@ayesian
and classical frameworks, the former using vague priorHergarameters. The posterior computation in Bayesian jggmaid done
using Markov chain Monte Carlo simulation. The two paradsgmtimately focus on drawing relevant inferences inclgdine short
term predictions, both retrospectively and prospectivehe results are, in general, found to be satisfactory.

Keywords: Autoregressive integrated moving average model, Totdilifgrrate, Age-specific fertility rate, Stationarity, Alike's
information criterion, Bayes information criterion, Gbbampler, Metropolis algorithm.

1 Introduction

Forecasting the demographic characteristics of a humanlatign such as the fertility, mortality and migration is an
important aspect of any socio-economic planning. Normalten such forecast is needed, one may go either for a short
term or a long term forecasting based on the requiremenegbldm. In fact, short term forecasts are chosen in situgtion
where one is interested in obtaining an estimate about theébauof people requiring services like education, medical
facilities or other basic amenities related to human livéergas for planning purposes a long term forecast is often
preferred. Many times it is also desired to find the uncetyaattached with the forecast so as to know the likelihood of
events under consideration. Obviously, for all this, a prapodelling of underlying forces is required so as to dgvelo
a precise forecast framework. The objective in this pap@rdver, confines us to forecast the fertility of a population
Obviously, for the purpose, we need to use some summary ifdeRe fertility. The total fertility rate (TFR), being a
composite measure of fertility, is an important componenftértility projection. TFR represents the average nundjer
children a woman would bear if she survived throughout tmgeaof her reproductive span, experiencing at each age
duration the age-specific fertility rate (ASFR) of that peki

Demographers have had a long history of interest in forewaéértility. Saboia L7] and McDonald 4] used a
time series method to forecast the total number of births lthae a significant role in the population growth. Miller
[15] employed a bivariate autoregressive model, which agtusdted as a transfer function model, to forecast the total
fertility and the mean age of childbearing. Extending a Emapproach, Ortega and Poncelé][used a dynamic factor
model with common and country-specific factors to forecd&R Tor a homogeneous cluster of countries. To overcome
the problem of dimensionality encountered during the fastof ASFR, Thompsost al. [20] and Keilman and Pham
[8] employed a parametric model of ASFR and instead of modeliSFR for each age of a reproductive span directly,
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they used a multivariate time series to model the paramefdtese parametric models. Bozik and Bé&l] §mployed
the principle component approach to forecast the fertilitgyng ASFR. They, however, used only first four principal
components of the model, in order to reduce its dimensignalnd then employed the multivariate ARIMA method.
Their work can be considered better than the parametrioagprused by Thompsanal. [20] in the sense that the error
in the fitted curve may be seen to be less than what was préyiobisined by the authors. Hyndman and Ullahised
the functional data approach to develop a similar strategy.

Taking a cue from the illustrious paper of Lee and Cart€} in which the authors developed a probabilistic approach
to project mortality in a long term, Led 1] modelled fertility over time using a single time-varyirgyfility index, that is,
TFR. The author, however, observed that the long termitgrtdrecasts yielded in a large width of its prediction irvial.

To overcome this problem, which is observed as a result o€stral change in the fertility, a restriction was imposed o
the values of lower and upper bounds and that of the averdige ¥8TFR. Lee and Tuljapurkat p] used the same model
with a different value for the average level of TFR and thepased no restriction on the limits of its bounds. Booth
[3] is an interesting work that has presented a good reviewdson of various major demographic forecasting methods
developed till date and discussed approaches for the fetretaohort fertility.

The problem inherent with most of the methods discussedrsis that they are developed to study the fertility of
the countries which have already passed through theitifigttansition and are currently having low to very low fiéty
pattern and, owing to which, one can assume that the fgnifit almost remain stationary in a way. Besides, all these
methods rely on classical paradigm to draw the desiredenfags. Recently, Alkemet al. [2] undertook this problem
and they distinctly modelled the TFR with respect to the pagsition period, transition period and post-transipeniod
using Bayes paradigm. Working on the same very spirit, wetaimodel TFR for India via ARIMA model and obtain its
short-term forecast by harnessing the attributes of Bapgsaradigm.

The general form of an ARIMA{,d, g) model is given by

p q
Wt:60'|‘zi§qwt—i+zq—’j8t—j+8t (1)
i= =1

wherew; = A%y, is thedt" differenced time series corresponding to the observedderies data;, t = 1,2,....T. 6y is
the intercept@’s andy;’s represent the AR and MA coefficients, respectively, aiscare the error terms, distributed in
accordance with independent and identically distributeaimal variates with mean zero and a constant variarfcd he
parameterp andq identify the order for the seasonal autoregressive (thebmumf lag observations in the model) and
seasonal moving average (size of moving average windowisteéfrom Eqd, it is quite evident that an ARIMA model
is nothing but thed" differenced stationary autoregressive-moving averad®MA) model in whichd of the roots of
characteristic polynomial of autoregressive (AR) proaagsall unity and the remainder lie outside the unit circke(s
Box et al. [4]).

The plan of the paper is as follows. The next section provaesal data set on TFR of India and ascertains its
stationarity by differencing the data twice. A preliminaigsessment of the subclasses of ARIMA model is providedibase
on Box-Jenkins’ criterion, especially using the values atbaorrelation function (ACF) and the partial autocortiela
function (PACF) for a tentative identification of MA and AR roponents. Sectiof8 provides approximate likelihood
function corresponding to the proposed ARIMA model to abthie corresponding maximum likelihood (ML) estimators.
The section also comments briefly on Akaike informationeeiin (AIC) and Bayes information criterion (BIC) as the
tools for model comparison. A separate subsection protigesorresponding classical results including the regospe
predictions after choosing an appropriate model basedetwihinformation criteria. Sectiohprovides Bayesian model
formulation for the chosen ARIMA model using vague priorstfte parameters. The section advocates the use of Gibbs
sampler algorithm for getting samples from the correspamg@osterior distribution though some of the full conditim
are generated using the Metropolis algorithm. A separdtsesttion provides the numerical illustration where thegrier
corresponding to final selected model is explored completetl both retrospective and future predictions are pravide
for TFR of India. The paper ends with a brief conclusion giirethe last section.

2 The Data and the Approximate M odel Assessment

Let us consider a yearly data set on TFR of India for the yeitd 1o 2011 reported by Sample Registration System,
Registrar General of India. The data set is taken from the welsite
https://nrhm-mis.nic.in/PubFWStatistics%202013/Ctetg?20Book.pdfand is reproduced below in Table for a
ready reference. Since our objective includes future ptidh of TFR, we first try to find out an approximate model for
the prevailing fertility pattern of India. The time seriektpfor the observed data set, given in Talileis shown in
Figure 1. Obviously, the plot shows a regular non-increasing, rtatienary pattern of the considered data set on TFR.
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Table 1: TFR of India from 1971 to 2011
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Figure 1: Time series plot showing the TFR of India from 1971 to 2011.

Since stationarity is an important condition in any timeiegranalysis, the same may be achieved by a number of
approaches, the simplest being the one based on diffegetit@ndata. Thus, in order to achieve the required stationary
pattern in the data, we proceeded by differencing the ddtetwhe time series plot for the differenced so obtained is
shown in Figure2 which evidently shows stationarity behaviour of the diffieced data. The model assessment can be
done by identifying the parameters of ARIMA model at leaspragimately for the considered data set. Since twice
differenced TFR data is showing stationarity behaviowe,garameted can be considered as 2 although this assessment
is based on graphical tool only. For assessing the parasqeterdg, we rely on Box-Jenkins methodology and use, in
particular, the ACF plot and the PACF plot. It is to be noteat tiihe autocorrelation explains the way the observation in
the time series are related to each other and is measuree lsjntiple correlation between the current observation and
some previous observation at specific lag, pagimilarly, the partial autocorrelation is used to measheedegree of
association between the current observation and someopisegbservation at lag before the current observation, after
removing the effects of intermediate observations suchhaset at lags ,2,...,p — 1. The model is AR(MA) if the
ACF(PACEF) trails off after a lag and has a hard cut-off in tReCP(ACF) after a lag. This lag is taken as the value for
p(g). The model is a mixture of both AR and MA, viz. ARMA, if both Aand PACF trail off. Truly speaking, the
identification of AR and MA components based on these twosploty often be tentative and involve a kind of
approximate personal judgement. It has been often sugh#ste identification of AR model can be best done on the
basis of PACF plot. Say, for instance, note down the lag afthich the PACF plot shuts off, that is, partial
autocorrelation becomes zero after that point. Similatggestion involves relying on ACF plot to identify MA model
The ACF plot will show non-zero autocorrelation only at lagslved in the model.

The ACF and PACF plots of twice differenced TFR data are gineigure3. It is evident from the figure that the
ACF plot trails-off to zero after one lag, which implies thhe given time series follow a MA(1) process. Similarly, the
PACF plot trails-off to zero after two lags so a AR(2) proceas be a suitable candidate for this double differenced time
series data. Obviously, our overall conclusion suggest8vi¥g2,2,1) model for the considered data set. We, however,
consider some other models such as ARIMA(0,2,1), ARIMA®),2ARIMA(1,2,0), ARIMA(2,2,0), ARIMA(1,2,1),
ARIMA(1,2,2) and ARIMA(2,2,2) so that all nearby models calso be looked upon and any misleading conclusion
based on tentative assessment of ACF and PACF plots candx gut. It is important to mention that some of these
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Figure 2: Time series plot based on twice differenced TFR data of Ifrdim 1971 to 2011.

models will represent under-fitted and over-fitted scesafar the considered data set. Once all these models are
entertained, a final conclusion for recommending a model beagrawn based on their comparison using a few standard
tools. In this paper, we have considered AIC and BIC as this foo comparing the various entertained models.

3 TheLikeihood Function and the M odel Selection Criteria

Letw: wy,Wo,...,Wwr_q be the entertained observations from modgl The conditional density ofk, conditioned on
W1, W2, ..., Wt—p, IS given by

1 1 P q
. 2 _ o 2
f(\NI|\Nt—13\Nt—27---7\Nt*p1907®7wvo- ) 0 <?>exp<_ﬁ(vvt_eo_izkmvvtI_leLIJJgtJ) ) (2)
Using @), the likelihood function corresponding to modg&) €an be approximated by its conditional form as
T—d
L(V_V|60,(D,(‘IJ,O—2) 0 I_l f(VV[|VVt,]_,VVt,2,...,VV[_p;60,(D,qJ), (3)
t=p+1
which, on simplification, reduces to
5 1\ (T-d-p)/2 1 Td p q 5
Lwieh 009 0 ( 53 exp(—5ms S (-G0S av i~ 3 Yia )2 ). @
a? 20—2t=%-1 i; I le o

where® = (@,...,@) and¥ = (Y, y»,....4Yig). It is important to note that if one has a sample of Size estimate an
ARMA (p,q) process by means of conditional maximum likelihood (ML)restion from equation4), one will use only
(T—d—p) observations of this sample. This is the approximation tiagtbeen entertained due to dependence structure
and non-availability of data befong,. Obviously, @) can be used to obtain approximate ML estimators of the model
parameters. Let us denote theseé@yé, ¥ and 02, respectively, for the parametefis, @, ¥ and 02 and let us denote
the corresponding maximized likelihood function by

Once the maximized likelihood function is obtained, the ABge Akaike ]]) and BIC (see Schwarzf]) can be
defined as R

AlC=-2logL+2k, (5)
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Figure 3: ACF and PACF plots for twice differenced TFR data.

BIC=—2logl+k log(T—p), (6)

respectively, wheré is the number of parameters in the entertained model. Theehsmlection criterion based on
AIC(BIC) recommends a model for which the correspondingealf AIC(BIC) is least. The good thing about these two
information criteria is that both AIC and BIC penalize the dmbfor its inherent complexities, which is generally
indicated by the number of parameters involved in the model.

3.1 Numerical Illustration: Model Selection and Prediction

Considering all the proposed models given in SecBi@md using the corresponding likelihood functions borrofeth
Section3, the ML estimates of resulting model parameters based aetidifferenced TFR data are given in TaBl€'he
table also reports the values of correspondingldgr different models. It is to be noted that these values eperted
because of their requirement for obtaining AIC and BIC farteaf the considered models.

One can easily interpret the results obtained in Tébl&ay, for instance, the effect of intercept terms is not so
significant in all the considered models. Also, all the eatims of AR and MA coefficients possess the conditions of
stationarity/invertibility and nicely lie in the respedtiregions. These regions are not reported in the preseet papause
of their versatile availability in the literature. One cameider, for instance, Bost al. [4] and Tripathiet al. [21], among
others. The effect of error variance is least in all the mgdabwever, the estimates of AR and MA coefficients show the
significance of preceding observations and disturbance#i the considered models and thus the significance of error
variances especially in MA parts.

As our objective includes predicting TFR for a better untierding of fertility pattern of India, we begin by choosing
a most appropriate model among the considered models basbe walues of AIC and BIC. The corresponding values
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Table 2: ML estimates and the corresponding maximized log likelthamctions for the considered specific cases of ARIMA models

Model Parameter] ML estimate | log L
6o -0.132
ARIMA(0, 2, 1) m -0.93 40.06
a2 0.7%2
6o -0.1%2
ARIMA(0, 2, 2) m -0.86 40.17
W -0.08
a2 0.7472
6o 0.412
ARIMA(L, 2, 0) o -0.45 37.11
a2 0.8%2
6o 0.042
ARIMA(2, 2, 0) o -0.56 4251
® -0.42
a2 0.58 2
6o 0.31e2
ARIMA(L, 2, 1) o -0.65 41.33
yn -0.58
a2 0.6% 2
6o -0.56e2
[0} -0.19
ARIMA(2, 2, 1) ® -0.02 48.54
m -1.24
a2 0.4%2
6o 0.3%7?
o -0.56
ARIMA(L, 2, 2) m 0.43 41.49
W -1.07
a2 0.4%2
6o -0.522
[} -0.29
ARIMA(2, 2, 2) ® -0.20 50.72
m 0.78
W -0.63
a2 0.3& 2

of AIC and BIC are reported in Tabl It is obvious that the evaluated values of AIC and BIC supp&IMA(0, 2, 1)
model as the corresponding values of AIC and BIC happen thékeast. We, therefore, consider ARIMA(O, 2, 1) model
for the forthcoming analysis and prediction of fertilitytpen of India.

Table 3: Values of AIC and BIC for all the considered models
Model AIC BIC
ARIMA(0, 2, 1) -77.58 -72.59

ARIMA(0, 2,2) -75.64 -68.99
ARIMA(L, 2,0) -63.18 -58.19
ARIMA(2,2,0) -70.94 -64.29
ARIMA(L, 2,1) -75.64 -68.98
ARIMA(2,2,1) -73.83 -65.51
ARIMA(L, 2,2) -73.61 -65.30
ARIMA(2, 2,2) -72.29 -62.31

We next provide the likelihood based retrospective prémticof TFR based on ARIMA(O, 2, 1) model. To start
with the retrospective prediction, we initially considérhe first 36 observations out of the given 41 observatioes (s
Tablel) and obtained the ML estimates for the parameters of ARIMR(A) model as detailed in Secti@hBased on
these ML estimates, we predicted the neXf'®bservation. This predicted observation was then usedrio éosample
size 37 and the corresponding ML estimates were obtaineg tisese 37 observations in order to predict the ne%t 38
observation. This process was continued until all the raingiobservations were predicted. It is to be noted that for
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predicting the observation in the original series, onealttwvorks by predicting the observation correspondingiicé
differenced data. Thus if we assume the original data siZE, agy, atT'" stage, we predictedh" ; observation in the
series corresponding to twice differenced data. And, thezethe estimated predictive valugs, 1 can be obtained from
the relation given below in a recursive manner

YT 1=Wr_1+2yT—Yy7_1. (7)

wherewt_1 is the estimated predictive observation correspondingto;.

The actual values and the corresponding estimated preglidiues are given in Tabf The table also provides the
associated predictive intervals with 0.95 confidence azefit. It may be noted that for obtaining the predictive ingds,
we once again worked on twice differenced data and obtahleeddrresponding values for the actual observations. Thus
(1—a)% predictive interval corresponding wSPfl observation can be obtained using the relationship

Wr_1£21_gpov/Var(ér-1). (8)

wherez;_, /; is the standard normal percentile agrd 1 is the estimated error term wit}‘ar(éT,l):c“rZ(Df. If WLt_1 and
WUt _1 are the lower and upper limits of the estimated predictiterirals ofwr _1, respectively, the corresponding limits
for yr1 can be obtained by a similar transformation as givejoy replacingar _1 by WLt _; andwUr_1, respectively.
Obviously, the estimated predictive values obtained inddlare not too far away from the actual values and the values
are nicely covered by the corresponding predictive inflerwith confidence coefficient 0.95.

Table 4: Likelihood based retrospective predictions of TFR for teeiqd 2007 to 2011

V¢  True value Estimated Estimated
predictive value  predictive interval
Y37 2.7 2.84 2.67 3.01
Y38 2.6 2.77 2.59 2.94
Y39 2.6 2.67 251 2.85
Y40 2.5 2.61 2.48 281
Y41 2.4 2.55 2.37 2.72

4 Bayesian M odel Formulation

For the differenced data set, the conditional likelihoodlction of the chosen model ARIMA(O, 2, 1) can be obtained by
ignoring the AR component oflf and the same can be written as

5 1\ (T7-2/2 1 T2 )
o’ 0 () e~z 3 h—bo-teir)?). ©

=

wherew; is obviouslyAZ2y;.

In order to perform a Bayes analysis, one is required to blegiapecifying prior distributions for the parameters.
These prior distributions portray our beliefs about theapaaters before the observed data are made available. In case
where the experimenter does not have enough informatiopetaify appropriate prior distributions, it is advisabldrgp
with non-informative priors and allowing inferences to laaldriven. Moreover, since prior distributions play calicole
in any Bayesian analysis, specifying wrong priors may tesuboor inferences. For the situation under consideration
we consider the same strategy and consider the use of nomriafive or vague priors for the parameters. We, therefore,
define the prior distribution for the parametery ; and6 as

1

m(0?) 05 0°20, (10)

T(6o) O U[-M, M]; M>0, (11)
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and
Tlfg((lll) aou [—Nl, Nz]; N1>O, N2>07 (12)

respectively, wher#1 andN;, i=1,2, are the hyperparameters that may be taken large enouglatsthé¢ priors remain
vague. The prior distribution given in Q) for the scale parameter is obviously Jeffreys’ type andéttheen widely used in
the literature (see, for example, Marrabial. [13] and Kleibergen and Hoel®]). Thus combining these prior distributions
(10) to (12) with the corresponding likelihood functioB)(via Bayes theorem, yields the joint posterior distribaottbat
can be written up to proportionality as

.
1\ 2 1 T-2
p(60,Y1,0%|w) O <g> eXp<_TﬂtZ(N_%_Wl£t1)2>|[M,M](60)|[Nl,Nz](wl)a (13)
wherel (.) denotes the indicator function defined as
1if xeA
lA(X):{O otherwise (14)

In order to obtain the posterior based inferences fra8), (one obviously needs to rely on sample based approaches
as the resulting posterior is not analytically tractablee ¥énsider Gibbs sampler algorithm among various available
alternatives as Gibbs sampler offers conceptually easytisnl We do not describe this Markovian algorithm in detail
rather comment simply that it offers a kind of straightfordrapdating mechanism that proceeds by iterating from uario
(often) unidimensional full conditionals in a cyclic ordAfter a large number of iterations, the iterating chain Btamed
converges in distribution to a random sample from the agtosterior distribution. For details, one may refer to Upah
and Smith 2] (see also Gelfand and Smit6]], among others.

Once the posterior distribution is simulated to get the dampf desired size, the unobserved future data;, for
each of the posterior samples, can be easily simulated fierparent sampling distributiqo(wr _1|60,02,1,w) where
the distributionp(wr_1]| Bo,oz,wl,v_v) is nothing but a univariate normal with megq, 1=6p+ 1 & and varianc@?. Thus
having got the corresponding samples from the posteti®r 6ne can easily obtain the samples of future data; and,
as it has been done previously, the predictive observatiothe original seriegt.1 using the transformation invJ.
Obviously, the predictive estimates such as point pretgfistipredictive intervals, etc. can be easily obtained erb#sis
of the predictive samples corresponding4q. ;.

4.1 Gibbs Sampler Implementation

The full conditionals, specified up to proportionality, fifferent variates can be specified from the joint posteil®)
(see, for example, Upadhyayal. [23]). The same can be written as

T2
p(eo|027‘,U17V_V) O exp<_%..2t; (VVt—eo_‘,Ulftl)2>a (15)
2 6o,w) [ L 6o 2 16
p(‘l’ﬂa ) 7V_V) exp _ZT‘.ZI;(\N[_ _wlstfl) ) ( )
and
1\ 2 1 T2
p(0?| 6o, Yr.w) O <g> EXP<—2ﬁ‘2t;(VVt—90—lIJ1£t—1)2>- (17)

Once the full conditionals are obtained, the next stratedg iook on these for their availability from the viewpoint
of sample generation. It can be easily verified tHa) can be generated using a gamma generating routine aftengnak
a transformatiorr = 1/02. It can be seen that the transformed variatiellows gamma density with shape parameter

T-2
(%4‘1) and scale parametélr S (W —6o—yn&_1)?]. The full conditionals {5) and (L6) cannot be reduced to standard
t=1

family of distributions and, therefore, we propose to siatellboth of these via the Metropolis algorithm. Since we are
using Metropolis algorithm for generating samples from fulbconditionals, the proposed algorithm is not actualtig t
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Gibbs sampler rather one can refer it as hybrid Gibbs-Melisplgorithm. For details on Metropolis algorithm, onéaca
refer to Smith and Robertd §], Upadhyayet al. [23], among others.

The necessary implementation of the Metropolis algoritbngenerating fromX(5) and (L6) separately, we proceed
by taking a univariate normal proposal in each case whossitotis centred at the corresponding ML estimate and the
standard deviation is taken to bémes the Hessian based approximation at the ML estimateemhs a scaling constant
whose value may be taken between 0.5 and 1.0 (see, for exaoymelhyayet al. [23]). Thus the implementation of
Gibbs sampler algorithm can be easily done on the postet®rify simulating variate values from the corresponding
full conditionals. To extract the corresponding postes@mples, we propose a single long run of the chain after &alini
transient behaviour and pick up the variate values at anogpiaite interval so as to minimize the serial correlatice(s
also Upadhyayt al. [23]). Since the choice of initial values plays a crucial roléhe convergence diagnostic of iterating
chain, we consider using ML estimates as the initial valeesécessary implemention of the algorithm.

4.2 Numerical Illustration for Bayesian Results

For the full posterior analysis of the ARIMA(O, 2, 1) modelewsed the modelling formulation and the corresponding
Gibbs sampler implementation as detailed in Secfiofhe complete posterior analysis was done using the ML astisn

of the parameters and the subsequent Hessian based apatioxias the initial values for iterating the chain. Itis® b
noted that Hessian based approximation was needed fangettimples from the full conditional$%) and (L6) using the
Metropolis algorithm. We, however, used a scaling constaiX6 that provided a good acceptance probability in the two
cases. In order to have vague consideration of priors, thesaf hyperparametekd andN;, i=1,2, were chosen to be
100 in each case. These considerations allowed the infeseacepend on likelihood surface only.

Table5: Posterior estimates for the parameters of ARIMA(O, 2, 1) ehadrresponding to twice differenced data

Model Paramete MLE Posterior Mean Posterior Mode 0.95 HPD Interval
6 0.3%2 0.3%2 0.3% 2 -1.232 2.5%2
ARIMA(0, 2, 1) U -0.59 -0.47 -0.57 -0.79 -0.12
a? 0.8472 0.94e72 0.86e2 0.5%2 1.45%2

The results are based on a simulated posterior sample ofKibbtained through a single long run of the chain after
an initial transient behaviour noted at about 60K iteratioe, however, picked up observations at a gap of 10 after
ensuring that the serial correlation becomes negligiblglsrBome important sample based posterior characteriatie
shown in Tablés.

Referring to Table5, it can be seen that the estimated marginal posterior gefwito?(y4) exhibits a slight
positive(negative) skeweness, whereas the parar@giemore or less symmetrical. A natural finding is the clossmds
estimated posterior modes with the corresponding ML eséimjavhich was expected as well because of vague choices
of priors. Our Bayesian results based on Gibbs sampler isoofse advantageous not only because of its ease of
interpretation and associated advantages of Bayesiadigardut also because of its enormous scope once the samples
are made available. Truly speaking, any inferential aspactbe easily drawn once the samples are made available. The
complete posterior density estimates and other bivariatgivariate posterior characteristics are not shown tloug
former can be guessed based on the results given in TabMe are leaving other inferential aspects treating them as
natural extensions.

Table 6: Retrospective predictions of TFR for the period 2007 to 2644ed on Bayesian tools

y¢  Truevalue Estimated Bayes Estimated highest
predictive value  predictive density interval
Y37 2.7 2.70 2.58 2.82
Y38 2.6 2.68 2.55 2.82
Y39 2.6 2.67 2.57 2.78
Y40 2.5 2.61 2.49 2.76
Y41 2.4 251 2.39 2.72
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Let us finally work for retrospective prediction in a Bayesi@gamework as it was done earlier in subsectih
using the tools of classical paradigm. We shall focus on dmeesARIMA model that was finally recommended and used
for the Bayesian analysis. As attempted earlier, we consilenly 36 observations as the informative data out of the
given 41 observations (see Talilethough we worked on twice differenced data to go for actuetifction of the given
observations. It is to be noted that before going for theagbuediction of these (assumed) unknown 05 entities, the
entire Bayes analysis was repeated using the first 36 oligaTsdo obtain a posterior sample of size 1K from ARIMA(O,
2, 1) model. For each posterior sample, we next obtained ibaigiive sample corresponding to the next observation,
that is, 37" as discussed in Sectigh We thus have predictive sample of size 1K correspondingg¢onext unknown
observation. Based on these 1K predictive samples, wermntdine estimated Bayes predictive value as the correspgndi
modal value. These predictive samples were also used toatstithe highest predictive density interval with coverage
probability 0.95. The next observation, that ist"38 predicted only after including the estimated Bayes mtadi value
for the 37" observation into the informative data set and repeatingvihele posterior and predictive analyses as it has
been done previously for 7observation. This entire process was repeated recursivgilyall the left out observations
are predicted.

The results for retrospective point prediction in the forhestimated Bayes predictive values and the corresponding
highest predictive density intervals with coverage prdlist9.95 are shown in Tablé. The table also shows the true
values taken from Tabl& for immediate comparison. It can be seen from the resultabfeb that the predictive point
estimates in the form of estimated Bayes predictive valuesia general, close enough to the corresponding true .vales
Also, the estimated highest predictive density intervath woverage probability 0.95 do cover the corresponding tr
values in every case.

Let us also compare the results of retrospective predictiiained using the classical tools (see Tah)leith those
obtained using the Bayesian tools as given in Téblecan be seen from the comparison of the two tables thahasdid
Bayes predictive values are, in general, closer to the spording true values than the likelihood based estimated
predictive values. Besides, we also see that the estimégbedt predictive density intervals with coverage proligbi
0.95 are, in general, narrower than corresponding likelihbased estimated predictive intervals with confidence
co-efficient 0.95. These findings are of course striking amey indisputably in favour of Bayesian results.

Table 7: Future predictions of TFR for the period 2012 to 2020 baseBayesian tools

y¢ Year Truevalue Estimated Bayes Estimated highest
predictive value  predictive density interval
Va2 2012 2.4 2.33 2.15 2.44
yaz 2013 2.3 2.29 2.16 2.42
yaa 2014 23 2.25 2.13 2.38
Vas 2015 2.3 2.27 2.15 241
yae 2016 2.2 2.29 2.16 2.45
ya7 2017 - 2.27 2.16 2.39
yag 2018 - 2.28 2.18 2.43
ya9 2019 - 2.27 2.15 2.39
ys0 2020 - 2.26 2.19 2.45

Before we end the section, let us obtain the Bayesian resiufitsure prediction of TFR beyond 2011. Itis to be noted
that our considered data set in Talil@rovides the values of TFR only up to 2011 so any value beybatlis being
treated as future prediction. For the purpose, we congidalighe 41 observations reported in Talllend performed
the posterior and the predictive analyses of the consideRIMA(0O, 2, 1) model as detailed in the previous paragraphs.
The results for point prediction in the form of estimated Baypredictive values and the corresponding highest preglict
density intervals with coverage probability 0.95 are giwemable7. These results are obtained exactly the way the results
of retrospective predictions are obtained in Tahl&he table also provides the actual values of TFR for thes/2@i 2
to 2016. The source of the actual TFR values for the years #02Q15 is same as that of the previous data set (THBble
and the TFR value for the year 2016 is taken from the NFHS-Poreas available on IIPS’s website.

From the results obtained in Tableit can be asserted that the average level of TFR for Indibreshain close to
2.28 for the year 2012 to 2020. It can be seen that the figurénglal in Tabler are, in a sense, close to the expected
value of fertility at its level of replacement, that is, 2Moreover, the prediction results obtained in Tablare based on
the Bayesian analysis of a simple time series model, beisgnme sense probabilistic, and surely ignore other impbrtan
demographic aspects which directly or indirectly affea ttynamics of overall fertility. It appears as if the incriegs
awareness among people, availability of different compsize methods and various other demographic intervesitign
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the government have an important role in governing the &fertility scenario. Overall, our results are somewhat
optimistic in the sense that the average value of TFR is @gdeip remain stationary and close to the theoretical
replacement level of fertility in the coming future. Theissited highest predictive density intervals with coverage
probability 0.95 further support our conviction.

5 Conclusion

This paper is a successful attempt to predict TFR of Indiagusi simple ARIMA model. Both classical and Bayesian
paradigms are successfully employed for obtaining thenated prediction although the latter paradigm appears te hav
slightly better performance as outlined in the paper. Weaghnat this approach is certainly not an ultimate approach
as it fails to take in to account a number of important demplgiaconsiderations that control fertility behaviour of a
population. The simplicity of the approach is, however, ppaaent advantage that provides very close predicted s¥alue
of TFR of India. It is expected that such an analysis will @k practitioners to get at least an approximate idea ofdéutu
fertility trend.
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