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Abstract: This paper introduces an algorithm for solving fully rougtervalmulti-level multi-objective linear fractional@gramming
problems where all of its coefficients in objective funcBand in constraints are rough intervals. At the first phasekeosolution
approach and to avoid the complexity of the problem, thetislgifmethod proposed by Osman and El-sherbiny [20] will bedus
to split the rough problem into four crisp problems whichlvaé solved simultaneously. At the second phase, for eadblemg a
membership function was constructed to develop a fuzzy gr@gramming model for obtaining the satisfactory solutbithe multi-
level multi-objective fractional programming problem.éTlnearization process introduced by Pal et. al [1] will ppléed to linearize
the membership functions. Finally, an illustrative nuroatiexample is given to demonstrate the algorithm.

Keywords: Multi-level programming; Multi-objective programmingyé&ctional programming; rough intervals programming; fuzz
goal programming.

1 Introduction

The standard mathematical programming problem involvedirfgnan optimal solution for just one decision maker.
Nevertheless, many planning problems contain a hieraatliecision structure, each with independent and often
conflicting objectives. These types of problems can be neable$ing a multi-level mathematical programming (MLMP)
approach. The basic concept of the MLMP technique is thafiteelevel decision maker (FLDM) sets his/her goal
and/or decision, and then asks each subordinate level artfeization for their optima, that calculated in isolatio
The lower level decision maker’s decisions are then subthdnd modified by the FLDM in consideration of the overall
benefit for the organization. The process continues uniitisfactory solution is reached.Most of the developmemts i
MLP problems focus on bi-level linear programming as a ctd$dLP [2,3,4].

In various areas of the real world, the problems are fornedlas multi-objective programming problems. Many
methodologies have been introduced for dealing with problf]. However, the issue of choosing a proper method in a
given context is still a subject of active research.

Fractional programming deals with the optimization of omenmre ratios of functions subject to set constraints.
Recently, fractional programming has become one of thenghantools. It is applied in engineering, business, finance,
economics and other discipline$, $,6,7]. Computer oriented technique was extended by Helmy et8hko[ solve a
special class of ML-MOFP problems.

Emam P] introduced a bi-level integer non-linear programmingkgdeon with linear or non-linearconstraints, and in
which the non-linear objective function at each level wer@xmized. It proposed a two planner integer model and a
solution method for solving this problem. Therefore Emawpmsed an interactive approach for solving bi-level intege
multi-objective fractional programming problerh(. Many fuzzy goal programming approaches have been intedu
to solve multi-level programming problems [L1].
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The rough set expressed by a boundary region of a set whicksisribed by lower and upperapproximation sets
where the set is considered as a crisp set if the boundamyrégiempty. This is exactly the idea of vagueness13)].

The approach for solving rough interval programming proble to convert the objective function from rough interval
to crisp using theorem of crisp evaluation. Roughness isd &f uncertainty, another kind of uncertainty introduced i
[24].

Hamzehee et al.1f] presented a linear programming (LP) problem which is aber@d where some or all of its
coefficients in the objective function and /or constraints eough intervals. In order to solve this problem, two LP
problems with interval coefficients will be constructed.e0uf these problems is a LP where all of its coefficients are
upper approximations of rough intervals and the other mmbis a LP where all of its coefficients are lower
approximations of rough intervals. Using these two LPs, mewly solutions are defined.

Many researches have been done in the area of rough set agtdimervals 16,17,18,19 Osman and El-Sherbiny
[20] proposed a new method for solving rough interval prograngpiroblems called shifting method which will be used
in this paper.

Multi-level programming problems (MLPPs) have recentlgramsingly appeared in decentralized management
situations in the real world and have become highly compditand large-scale, particularly with the development of
economic integration and in the current age of big data; k@n®le, business firms now a day’s usually work in a
decentralized manner in a complex commercial network c@agrof suppliers, manufacturers, sales and logistics
companies, customers and other specialized service fursctSo (MLPPs) have many applications such2ds22,23,

24] and we will have an application in our coming research.

The remaining of the paper is organized as follows: Sectiartrdducesproblem formulation and solution concept.
Section 3, introduces the solution algorithm. In sectioartjllustrative example will be introduced. Finally, in Siea
5, conclusion and some open pointsfor future research warlstated in the field of rough intervalsmulti-level multi-
objective fractional programming problems.

2 Problem Formulation and solution concept

Multi-level programming problems have more than one denishaker. A decision maker is located at each decision
level and a vector of fractional objective functions neaxbé optimized. Consider the hierarchical system be congpose
of a t-level decision makers. Let the decision maker atifhievel denoted bypM; controls over the decision variable
X = (Xi1,%2,+ ,Xin) € RM, i =1,2,-- t. wherex = (X1,%, -+ %) € R"andn=S}_; n;.

Mathematically, ML-MOFP problem with rough intervals injebtive functions and constraints of minimization-type
may be formulated as follows:

[1% Level
MinF() = min(f1 (9, f12(0, -, fm, (X)), (1)
X1 X1
wherexyp, X3,---, % Ssolves
[2"d Level
MinF2(x) = min(f21(x), f22(x), -, fam, (X)), (2)
X2 X2
where ¥ solves
[tth Level
mink () = min(fa (9, f2 (), -+ fim (X)) 3)
Xt Xt
subject to
KEG o {Xe R z?zl([gh-,gﬂ , [aﬁ,aﬂ)xj < ([a,t;]é[c,d]i, x=0,ab,cdeR" x =0, } @)
7| = 4,4,
where
o Nit0 37 (oo [oh o]+ ([ahal] [oat]) o
1] - . - —L —=U —L —U 9 — & [AS)
Pil0 sy (1d.di]. [di.a | )+ (585 i Bi])
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F1(x), F2(x) and s (x) are the objective functions of the first level decision mak&DM), second level decision
maker (SLDM) and the third level decision maker respecyivel
G is the multi-level multi-objective convex constraint set.

({g}-j,cu} {Ch,CUD are rough intervals coefficients forx; of the objective functions numerators,

([dh,d“} [d,l,d D are rough intervals coefficients forx; in the objective functions denominators,

. —L U .
({a”,a}” [aij,aij}) are rough intervals constants of the numera(c{rﬁ!‘j,ﬁﬂ , [Bij,ﬁijD are rough intervals

constants of the numeratc(r[gh ,g}” ; [éh ,é}ﬂ )are rough intervals coefficients fey in constraints([a,b], [c,d])—are

rough intervals constants of the right hand side of the caims.

Itis customary to assume thafj (x) >0V xeG,

Conversion of (MLMOFP) problem with rough coefficient in ebjive functions into upper and lower approximation
is usually a hard work for many cases, but transformationgss needs to know the following definitiod$];

Definition 1[ 15 Rough Interval (RI) can be considered as a qualitative ediom vague concept defined on a variable
xin R.

Definition 2[15] The qualitative value A is called a rough interval when ofa@ @ssign two closed intervals Aand A
on R to it where AC A*.

Remark 1[15] According to the rough interval properties we have:

{ch,c,ﬂ C [ch,c,ﬂe ci<d<c <c

{ah,a}ﬂ C [a”,a”]—> aIJ < aL < aU < aJ
([a,b],[c,d))—»c<a<b<d,

Now, the equivalent crisp problems of the (ML-MOFP) probleith fully rough intervals can be reformulated
according to the shifting method in [20] as follows:

FP1: FP2:
[ 15t Level [15t Level
minFy (x) = min(f11(x), fi2(x), -+, fim (X)) (6) m,iﬂ':l(x) = min(f11(x), f12(x), -+, fim, (X)), (11)
X1 X1 X1 X1
where Xp,X3,--+, % solves where xo,X3,-+-, % solves
[2"d Level [2"d Level
minFz (x) = min(f21(x), f22(x), -, fam, (X)), (7) minf (x) = min(f21(x), f22(x), -+, fam, ()), (12)
X2 X2 X2 X2
where % solves where X  solves
[t Level [t Level
minFk (x) = min(fi1(X), fi2(X), -+, fim (x)),  (8) mink (x) = min(f1(x), frz(x), - fim (), (13)
% % % %
subject to subject to
n n
xeG—{xeR” Z‘a-"jxjgc, Xj =0, ceRm} 9) xeG—{xeR” Z‘g,-"jxjg(a—c),szo, a,ceRm} (14)
i= i=
where where
m ol o =l L ak —at
f“(x):Nij (0 _ ZjmaGx¥tag (10) f“(x):Nij (x) ST (ch—ch)xj + (afy —ai) (15)
1] Di: (X) m L =L A 1] Di: (X) L HL”
' Yi21dijx; +Bij " ST (d - di )i +B;; —Bij)
And find X*¢ = (x{¢, x5, - -, x5°) =12t
And find X*(@-¢) — (:(379) (@0 .. yela-e))
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FP3: FP4:
[15t Level [15t Level
min F1(x) :Ln/iﬂ(fll(x)7 fi2(x), -+, fim (X)), (16) @Fl(x) = mjﬂ(fll(x)v fi2(x), - fim (X)), (21)
X1 X1 X1 X1
where %,X3,---, % solves where %,X3,---, % solves
[2"d Level [2"d Level
minFz (x) = min (f21(x), 2202, -, fom, (x)), (17 minFz (x) = min(f21(x), f22(3), -+, fam, (x)),  (22)
X X2 X2 X2
Where X solves Where X solves
[t Level [tth Level
Mink () = min(fu (9, 200, -, fim (), (18) MR = min(fa (9. f2(0). . fim (). (23)
X % % %
subject to subject to
n u_ L _ R _ Z, 1(a1] alj)x <(d b) Xj=
we G xem 57 (& %)"jg(b 3.6 =0 1 19 XEG{XERn’ b.d € R" )
abecRM
where where
L . ol al)x +(ai_aV
N 0o 3 (e —gp) i+ (al —ay) T LA e Rl P
fij (X) - Dij (X) BU ﬁL ’ (20) Dij (X) Z (d”—dH) (B” BH)
£ (o~ ) + =il =12t
=12t And find X(0-5) = (00 g (@0) . G(0-0)
X*(b7a> _ (X;<b7a),xz<b7a)7 . ,X;<b7a)) ( 1 2 Xn )
Using the shifting method proposed by Osman and El-sheihif80] then,
X8 — X*C | X*afc7 (26a)
X*b — X*@ X*bfa’ (26b)
X*d — X*??+ X*dfb (260)

For solving the previous classical four (ML-MOFP) problesitaultaneously, the fuzzy goal programming approach
will be applied. The linearization procedure introducedpay et.al in [l] will be applied to linearize the membership
goals.

2.1 Fuzzy Goal Programming Approach for (ML-MOFP) Problems

The vector of objective functions for each decision makéotimulated as a fuzzy goal characterized by the membership
functionu(fij)‘ (i=12,---,t), (j=1,2,---,m), ateach level.

Characterization of Membership Functions
To define the membership functions of the fuzzy goals eacdbctitag function’s individual maximum is taken as the
corresponding aspiration level, as follows [5, 11]:

uj =max(fij (x)), (=12-.1).,(j=12-,m). (27)

xeG

whereu;j, (i=1,2,---,t), (j=1,2,---,m), give the upper tolerance limit or aspired level of achievetfier the
membership function diff" objective function. Similarly, each objective functiofiralividual minimum is taken as the
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corresponding aspiration level, as follows:

gij:\min,(fij (X))v (|=1,2,,t),(]=1,2,,m) (28)
xeG
where g>_j, (i=12,---,t), (j=212---,m), give the lower tolerance limit or lowest acceptable level of

achievement for the membership function igf" objective function. It can be assumed reasonably the vatfies

(fj(x) =uwj, (i=212,---,t), (j=1,2,---,m), are acceptable and all values less thgn= r\n/ig(fii (x)), are
xeG

absolutely unacceptable. Then, the membership fungtioffi; (X)), as shown in Fig(1.a), for thigt" fuzzy goal can be

formulated as [11]:

L it (1 (0) < 0.
ey (500 =8 S8 i gy <y 00) <, (=120.0 (J=12m). (29)
0, it (fij (%)) = uij,

2.2 Fuzzy Goal Programming Methodology

In the decision-making context, each decision maker ig@sted in maximizing his or her own objective function; the
optimal solution of each DM, when calculated in isolatiomuld be considered as the best solution and the associated
value of the objective function can be considered as therat&m level of the corresponding fuzzy goal. In fuzzy
programming approach, the highest degree of membershipdskor the defined membership functions in equation
(29), the flexible membership goals having the aspired leveywa@n be represented as follows:

“fij(fij (X))+ dJ_dI:l? (i:1727"'7t)7 (j:1727"',m), (30)
or equivalently as:

uij — (fij (X , )

%ﬁ{%é?+%-“ﬁ=L (=120, (i=12.m), (31)

wheredi},dij >0 withd;df =0, (i=1,2---,t), (j=12---,m) represent the under- and over- deviations,
respectively, from the aspired levely [

In the methodology of goal programming, the under- and aletiational variables are included in the achievement
function for minimizing them depends on the type of the otijecfunctions to be optimized. In the proposed FGP
approach, the sum of under deviational variables is requa®e minimized to achieve the aspired level. It may be noted
that any over-deviation from a fuzzy goal indicates the &dhievement of the membership vall#. [The equivalent

proposed final (ML-MOFP) model fqFP1) can be formulated as follows:

m mp m
min Z:wajdfj+2w§jd2+j+---+2wﬁj +j, (32)
=1 =1 =1
subject to
U: — (Fi (X B . )
erdij—dﬁ:l, (=121, (j=12--,m), (33)
ij — —0ij
Xik = Xk, i=212---,t—1), (k:l,Z,---,ni), (34)
n
XEG={XxecR Zl_!-jxjgc,szo, ceRM (35)
J:
dijfdijr:O, and d, dijfzo, (i=12--1), (j=12--,m), (36)

whereZ represents the achievement function consisting of the heigunder-deviational variables of the fuzzy goals.
The numerical weightwﬁ represent the relative importance of achieving the aspénezls of the respective fuzzy goals.

To assess the relative importance of the fuzzy goals prpfkd values ofv;; are determined as[.

W — 1
Uoui—gij’

(i=1,2---,t), (j=21,2,---,m), (37)
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2.3 Linearization of Membership Goals

It can be easily noted that the membership goals in equafB8)sare nonlinear in nature and this may needs difficult
computational in the solution process. To avoid these prob| a linearization procedure is presented in this seaan
[1]. The linearization process for the membership goal$8) ¢considering the expression &f (x) in equation §) will
be firstly introduced.

Theij™ membership goals can be presented as:

Hs;; (fij (%)) + di} - dier =1 (38)

Lijuij — Lij fij (x) +djj —dfjr =1 where Lj=— , (39)

Dij (X) ern 1d|jXJ+B|]

using the expression dfj (x) , the above goal in equatioB9) can be presented as:

fij (x) = i=12---.t. (40)

(”)x+a”
E@)em
Liyu [ (a5) x+B5 | — Ly [exrab ]+ [ (@) x+ By ] o [ () x+ B3 | = [ (3)x+ By
—Lij [(c) x+afj] +d K .,)X+B.,} [(6h)x+ﬁﬂ (1 Lijgij) [( LJ)X+B”}
Ly () x+ @] +a [(a5) x+ By ] — o [ (d7) %+ B | =18 [ (a5 ) x+ B |

whereL} = (1 Lijgij),
19 (6] )] - g

Cijx+d;; [(Hh)x+§” —dF [(Hh)x+§” =Gij, (42)
Where L
Gij = Lijal+L B;; (43a)
and
C‘ L'JC Lo(d ) (|:1,2,,t),(J:1,2,,m) (43b)

Thus, considering the method of variable change presem{éfithe goal expression in equatiofd) can be linearized
as follows.

By setting,
. —L —L
D = d; [( I,)x+ﬁ,1} and O} = d [(dij)xwij}, (44)
Then the linear form of expression in equatidd)(is obtained as:
Cin—FDH—DiJ'-_:Gij, (45)
with Djj, DY > 0; and D x Dj} =0 sinced;, d >0 and( ”) X+ B|J>O Now, it is noted that, minimization @k}

means minimization diiaf = dﬁ [(Hij) X+ Bij} which is also a non-linear one. It may be noted that when thalpeeship

goalis fully achieved(;iﬁjr =0, and when its achievement s zed;f, =1, are found in the solutior2[19]. So, involvement
of dier < 1, in the solution leads to impose the following constraintte model of the problem:

D;F _ _
I <1 thatis —(d:‘j)x+Dﬁ§Bh (46)

() x+Bi]
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Now, based on the simplest version of goal programming, tta¢ firoposed FGP model of tifeP1) becomes:

min Z= wajd +ZW§JOI{J+ +Zwt+1- (47)
subject to
CIJX"'DJ_D;T:GIM (I=1,2,,t),(j:1,2,,m), (48)
Xik = X i=12---,t—1), (k:l,Z,---,ni), (49)
L L =L : .

_(dlj)x_'—DI]SBIja (|:1,2,---,t), (leaza"'vm)a (50)

n
xeG={xeR" Zlahxjgc, xj=0, ceR" (51)

=
D7 D+>O i=212--.t), (j=12,---,m), (52)

ijo
Similarly, applying the linearization process of the mensb& goals considering the expressiorfipfx)in equations
(15),(20) and @5) and get the final proposed FGP model of (r€2),(FP3) and(FP4).

3 Solution algorithm

Step (1): reformulate problem1)-(5) into (FP1), (FP2), (FP3) and (FP4).
Step (2): For problem (FP1), Computg, gij, Wi} ,i = 1,2,--- ,t,j =1,---,m
Step (3): Construct the membershlpfuncnpqn(f.J ( ),i=1,2,---.t,j=1,---,m.
Step (4): Comput€jjand Gj,i=1,2,---,t,j =1,--- ,m according to equation (42.a), (42.b).
Step (5): Do the linearization process fo; (fij (x )) according to equatiortf).
Step (6): Puti = 1 in FGP model @6)-(52).
Step (7): SolveFGP model @6)-(52) to getxy = Xj, ,k=1,2,---,n;
Step (8): puti =i+ 1in FGP model @6)-(52) and go to step?).
Step (9): Ifi >t —1, go to step10), otherwise go to stes].
Step (10): SolveFGP model 46)-(52) with xj =% ,i=1,2,--- ,t—1k=1,2--- /n;.
Step (11): If the DM solves (FP2), (FP3), and (FP4) go to step 13, otiergo to stepl2.
Step (12): Repeat steps fron2) to (10) for (FP2), (FP3), and (FP4).
Step (13): Determine the solution according to the theorem propogeddman et al in[ .
Step (14): Stop.

4 An lllustrative Example

To demonstrate the proposed FGP approach, consider tbeviiog (ML — MOLF P) problem with fully rough intervals.
[15 Level

f ((6,81,[3,10)x1+([7,9,[4,11)%+([7,8].[5,12 )xa+([8,10],[5,13))
min [ 27 T TATEZDx (BT B 10+ (58 29 ([T g 31a)
-\ f (5.7],[4.8) x4+ ([6,8],[2.11) X+ (3,5 (1.8 ¥a-+ ([5.71,3.10) ’
o 22 = (71,38 + ([BAL L)X+ (2.3],[1.5]) xs-+([6,8],[2,10])
where xsolves 3 Level
f _ ([375]1[278]))(1""([577]1[378]))(2""([273]1[174])X3+([879]7[6112])
min [ 2 EILADxF(BE27)%+([45[26)x+([6.8 [210)’
~—~— f _([476]7[318]>X1+([315]7[219])X2+([317]7[2110])X3+([7712]v[4716) ’
X3 227 "B L8)x1+(2.3[[L5]) %+ ([4.6], 3. 7))+ ([4.6],12.9])
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subject to
([Sv 6] ’ [1v 7])Xl+ ([37 5] ’ [2, 6]))(2 < ([127 14] ) [107 16]),

([37 5] ’ [17 8]))(1 - ([57 7] ) [27 9])X2+ ([67 7] ) [37 9]))(3 < ([97 11] ) [87 14])7
([57 7] ) [279])X1+ ([Sv 5] ) [178]))(2 > ([4a 5] ) [37 6])7

X1,%2,%3 > 0.
For solving the previous example, it will be reformulatedbirthe following four linear fractional programming
problems Q[
FP1: FP2:
[1% Level [1% Level
m|n (X1+3X2+2X3+2 2X1+3X2+3X3+l) m|n ( X1 +2%0+X3+3 X1+X2+2X3+2)
~—~ \ X1 +3X+X3+37 3x1+2%+3x3+2 ) ! —~— \ X+ Mo +X3+27 2% +Xp+X3+3 ) !
X1 X1
where %,x3 solves where %,x3 solves
[2"d Level (2" Level
m|n (3X1+4X2+5X3+5 4X1+2X2+X3+3) m|n (3X1+3X2+2X3+3 X1+4X2+2X3+2)
—~— \ X1 +3+2x3+37 X tXp+X3+2 )7 ~— \ X1 +2+3x3+47 2X1+20+X3+4 |

X2
where % solves

min (2x1+3x2+X3+6 3% +2%0+2x3+4

) ,Subject to

X2
where % solves

: X1+2X0+X3+2  X1+Xo+X3+3 ;
min (X1+X2+2X3+4’ 2X1+X2+X3+2) ’SUbJECt to

X1+2X0+2X3+2  2X1+X2+3%3+3

X1
where %,x3 solves
(2" Level

m,l_rl (X1+2X2+3X3+4’ X1+2%p+2x3+1

).

min 21 +2X0+X3+2  2X1+2Xp+2X3+2
~— \ X1 +20+X3+27 X +Xp+X3+2 )7

~— \ X1+2+2X3+27 X1+X+3X3+2 ——
X3 X3
X1 + 2% < 10, 2X1+ X% < 2,
X1 — 2Xp+ 3x3 < 8, 2X1 — 3Xo + 3xg < 1,
2X1 + X > 3, 33X+ 2% > 1,
X1,%2,%3 > 0. X1,X2,X3 > 0.
FP3: FPZ4:
[15t Level [15t Level

min X1+Xo+3X3+3  2X3+Xo+X3+2

—~— \ XX +X3+17 2 +X+Xx3+3 )

X1

where %,x3 solves

(2" Level

min 2X1+2%+4%3+3  X1+3X+3X3+3
2X1+3X%2+3x3+37 X1+2%X+2X3+2 ) 7

X2 X2
where % solves where % solves
. 21 +2X0+X3+1  2X1+2X+4X3+5 : : 3X1+Xo+X3+3  2X1+4xp+3x3+4 ;
min ( T D XD ) D TR D2 ) ,Subject to min (X1+2X2+X3+2, B Do Xl 3 ) ,Subject to
X3 X3
X1+ 2% < 2, X1 +X2 < 2,
2X1 — 2Xp + X3 < 2, X1 — 2%+ 23 < 3
2X1+ 2% > 1, 2X1+ 3% > 1,
X1,X2,%3 > 0. X1,%2,%3 > 0.

For solving (FP1), the individual maximum and minimum valaee summarized in Table 1. The decided aspiration

levels, upper tolerance limitsand the weightsare also considered.
Table 1:individual maximum, minimum valuesi; gij and weightsw; .

f11(x) f12(x) f21(x) f22(x) f31(x) f32(x)
max ( fij (X)) 1.22 1.333333 1.967742 | 1.857143 | 2.571429 | 2.8
min (fij (X)) 0.526315 0.6153846 | 1.3888889| 1.288462 | 1.125 1.017544
Uij 1.2 1.3 1.9 1.8 2.5 2.8
0ij 0.5 0.6 1.3 1.2 1.1 1.01
Wij 14 14 1.6 1.6 0.7 0.55

The coefficient of the linearized membership goals are ptegan Table 2.
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Table 2: the coefficient of the linearized membership gaéls)" and G;

fll(X) flg(X) le(X) f22(X) f31(X) f32(X)

—0.04\ ' —0.34\ ' —072\ | /-076\| /—-065 ~111
G ~2.16 ~256 ~0.28 ~1.32 —06 ~0.56

—2.12 —1.74 ~3.92 0.28 0.8 0.52
G 0.76 0.24 1.88 1.04 2.7 1.12

Solving the ! level FGP model:
minZ=1.4D7, +1.4D7,

subject to
—0.04x; — 2.16x; — 2.12x3+ D; — D7, = 0.76,

—0.34x; — 2.56x, — 1.74x3+ Dy, — Df, = —0.24,
—2%1 — 3% — X3+ Dj; < 3,
—3x1 — 2Xp — 3x3+ D}, < 2,
X1+ 2% < 10,
X1 — 2%+ 3%3 < 8,
2X1 + X2 > 3,
X1,X2,%3,D13, Di3, D1y, D15 >0

Using Lingo software package [25], the optimal solution ledé upper level problem is obtained as(x‘l’,xg,xg ) =
(1.5,4.25,0).
Solving the 29 level FGP model:

minZ=1.4D;; + 1.4D}, + 1.6DJ; + 1.6D,

subject to
—0.04x; — 2.16x — 2.12x3+ D7; — D}; = 0.76,

—0.34%, — 2.56xp — 1.74x3+Dy, — D}, = —0.24,
—0.72x; — 0.28¢; — 3.92¢3+ D; — D, = 1.88,
—1.3031 —1.716¢; + 1.36 73+ D5, — D'Z"2 =1.04,
—2%1 — 3% —x3+Dj; <3,

—3x; — 2Xp — 3x3+ D], < 2,

—2x1— 3% — 2x3+ D3, < 3,

—3x — X —X3+ D], <2,
2X1 + X < 10,

Xy — 2% + 33 < 8,

X1+ 2% > 3,

X1 =1.5,

X2,X3,D11, Diy, D1, D13, Dy, D3y, D35, D3, > 0.

Using Lingo software package [25], the optimal solution ledé second level problem is obtained a@,xg,xg) =
(1.5,4.25,0).
Solving the 39 level FGP model:

minZ =1.4D7; + 1.4D7, + 1.6D3; + 1.6D3,+ 0.7D3; + 0.55D3,

subject to
—0.04x; — 2.16x; — 2.12x3+ D; — D7, = 0.76,
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—0.34x; — 2.56x; — 1.74x3+ Dy, — Df, = —0.24,
—0.72 — 0.28, — 3.92x3+ D, — D}, — 1.88,
~1.3034 — 1.716¢+ 1.36 73+ Dy, — Dj, = 1.04,
0,65 — 0.6X,+ 0.8x3+ Dg; — Df; = 2.7,
~1.11% — 0.56x; 4 0.52x3+ D3, — Df, = 1.12,
—2X1 — 3% — X3+ D7; <3,

—3x1 — 2% — 3x3+ D7, < 2,

— 2% — 3% — 2X3+ DJ; < 3,

—3x1— X — X3+ D3, < 2,

—X1— 2% — 23+ D3; < 2,

—X1 — X2 — 3x3+ D3, < 2,
2X1 + X2 < 10,

X1 — 2%+ 3X3 < 8,

X1+ 2% > 3,
x1 = 1.5
Xp = 4.25,
x3:D11, Dy, D1y, D15 Dypy Dyp,Dzp, D3, > 0.

Using Lingo software packag@¥], the optimal solution of the third level problem is obtainas: (x;¢,x;°, x5°) =

3 1o

4-°)
Similarly, applying the proposed algorithm to solve (FRER3) and (FP4), we get the following results:

» +(a— 14

then, (x;2,x53,%32) = (32, 82,0),

then(x;?,x3°, x5%) =

and (X%, %%, x5%) = (3,

(Xz(b—a)7 X3, X;(b—a)) =(0.5,0,0),

(529

x(d—b) _x(d—b) _x(d—b
(Xl( >,x2( >,x3( >) =(0,2,0),

15,0),

Then the problem has a rough optimal solution in the form:

3 17 11 67 7 67 7 91
(Ea?ao)v<€al_270)v<§al_270)7<§51_270)'

and the following rough optimum values:

f11 = {0.71150729340.74853113980.78303425770.86666666F

f12 = {0.95130434780.95444191430.95714285710.9973045822
fo1 = {1.0030627871.22509702461.37475345171.413333333
fop ={1.45714285711.49347258491.50561797751.627906976F
f31 = {1.23014959721.39223300971.56782334381.8125}
32 = {1.50403225811.56658595641.59212198222.193548387}
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5 Conclusion and summary

Multi-level multi-objective fractional programming prtem (ML-MOFP) was considered where allthe coefficients i th
objective functions and in constraints are rough intervalg FP problems with interval coefficients were constrdcte
One of these problems was a FP where all of its coefficienttoeser approximations of the rough intervals and the other
problem was a FP where all of its coefficients are upper appratons of rough intervals. A fuzzy goal programming
model has been formulated to obtain the satisfactory swiwf the multi-level multi-objective fractional progranmg
problem. At the end, there exist many other open points foréuwork and research which should be explored and studied
in the area of multi- level multi-objective rough intervadtonization such as:

1.An algorithm is required for treating multi-level mutibjective integer fractional decision-making problemshwi
rough parameters in the objective functions; in the comgsa@and in both.

2.An algorithm is needed for dealing with multi- level mudtbjective mixed integer fractional decision-making
problems with rough parameters in the objective functiomthe constraints and in both.

3.An algorithm must be investigated for treating multi-demulti-objectiveinteger quadratic decision-makinglgems
with rough parameters in the objective functions; in thest@ints and in both.
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