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Abstract: This paper introduces an algorithm for solving fully rough intervalmulti-level multi-objective linear fractional programming
problems where all of its coefficients in objective functionsand in constraints are rough intervals. At the first phases of the solution
approach and to avoid the complexity of the problem, the shifting method proposed by Osman and El-sherbiny [20] will be used
to split the rough problem into four crisp problems which will be solved simultaneously. At the second phase, for each problem, a
membership function was constructed to develop a fuzzy goalprogramming model for obtaining the satisfactory solutionof the multi-
level multi-objective fractional programming problem. The linearization process introduced by Pal et. al [1] will be applied to linearize
the membership functions. Finally, an illustrative numerical example is given to demonstrate the algorithm.

Keywords: Multi-level programming; Multi-objective programming; Fractional programming; rough intervals programming; fuzzy
goal programming.

1 Introduction

The standard mathematical programming problem involves finding an optimal solution for just one decision maker.
Nevertheless, many planning problems contain a hierarchical decision structure, each with independent and often
conflicting objectives. These types of problems can be modeled using a multi-level mathematical programming (MLMP)
approach. The basic concept of the MLMP technique is that thefirst-level decision maker (FLDM) sets his/her goal
and/or decision, and then asks each subordinate level of theorganization for their optima, that calculated in isolation.
The lower level decision maker’s decisions are then submitted and modified by the FLDM in consideration of the overall
benefit for the organization. The process continues until a satisfactory solution is reached.Most of the developments in
MLP problems focus on bi-level linear programming as a classof MLP [2,3,4].

In various areas of the real world, the problems are formulated as multi-objective programming problems. Many
methodologies have been introduced for dealing with problems [1]. However, the issue of choosing a proper method in a
given context is still a subject of active research.

Fractional programming deals with the optimization of one or more ratios of functions subject to set constraints.
Recently, fractional programming has become one of the planning tools. It is applied in engineering, business, finance,
economics and other disciplines [1,5,6,7]. Computer oriented technique was extended by Helmy et al. [8] to solve a
special class of ML-MOFP problems.

Emam [9] introduced a bi-level integer non-linear programming problem with linear or non-linearconstraints, and in
which the non-linear objective function at each level were maximized. It proposed a two planner integer model and a
solution method for solving this problem. Therefore Emam proposed an interactive approach for solving bi-level integer
multi-objective fractional programming problem [10]. Many fuzzy goal programming approaches have been introduced
to solve multi-level programming problems [5,11].
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The rough set expressed by a boundary region of a set which is described by lower and upperapproximation sets
where the set is considered as a crisp set if the boundary region is empty. This is exactly the idea of vagueness [12,13].
The approach for solving rough interval programming problem is to convert the objective function from rough interval
to crisp using theorem of crisp evaluation. Roughness is a kind of uncertainty, another kind of uncertainty introduced in
[14].

Hamzehee et al. [15] presented a linear programming (LP) problem which is considered where some or all of its
coefficients in the objective function and /or constraints are rough intervals. In order to solve this problem, two LP
problems with interval coefficients will be constructed. One of these problems is a LP where all of its coefficients are
upper approximations of rough intervals and the other problem is a LP where all of its coefficients are lower
approximations of rough intervals. Using these two LPs, twonewly solutions are defined.

Many researches have been done in the area of rough set and rough intervals [16,17,18,19] Osman and El-Sherbiny
[20] proposed a new method for solving rough interval programming problems called shifting method which will be used
in this paper.

Multi-level programming problems (MLPPs) have recently increasingly appeared in decentralized management
situations in the real world and have become highly complicated and large-scale, particularly with the development of
economic integration and in the current age of big data; for example, business firms now a day’s usually work in a
decentralized manner in a complex commercial network comprised of suppliers, manufacturers, sales and logistics
companies, customers and other specialized service functions. So (MLPPs) have many applications such as [21,22,23,
24] and we will have an application in our coming research.

The remaining of the paper is organized as follows: Section 2introducesproblem formulation and solution concept.
Section 3, introduces the solution algorithm. In section 4,an illustrative example will be introduced. Finally, in Section
5, conclusion and some open pointsfor future research work are stated in the field of rough intervalsmulti-level multi-
objective fractional programming problems.

2 Problem Formulation and solution concept

Multi-level programming problems have more than one decision maker. A decision maker is located at each decision
level and a vector of fractional objective functions needs to be optimized. Consider the hierarchical system be composed
of a t-level decision makers. Let the decision maker at theith-level denoted byDMi controls over the decision variable
xi = (xi1,xi2, · · · ,xini ) ∈ Rni , i = 1,2, · · · , t. wherex= (x1,x2, · · · ,xt) ∈ Rn andn= ∑t

i=1ni .

Mathematically, ML-MOFP problem with rough intervals in objective functions and constraints of minimization-type
may be formulated as follows:

[1st Level]
min
︸︷︷︸

x1

F1(x) = min
︸︷︷︸

x1

( f11(x) , f12(x) , · · · , f1m1 (x)) , (1)

wherex2,x3, · · · , xt solves
[2nd Level]

min
︸︷︷︸

x2

F2(x) = min
︸︷︷︸

x2

( f21(x) , f22(x) , · · · , f2m2 (x)) , (2)

...

where xt solves
[ tth Level]

min
︸︷︷︸

xt

Ft (x) = min
︸︷︷︸

xt

( ft1 (x) , ft2 (x) , · · · , ftmt (x)) , (3)

subject to

x∈ G=

{

x∈ Rn

∣
∣
∣
∣
∣

∑n
j=1

([

aL
i j ,a

U
i j

]

,

[

aL
i j ,a

U
i j

])

x j ≤ ([a,b] , [c,d]) , x= 0, a,b,c,d ∈ Rm, x j = 0,

, i = 1,2, · · · , t

}

(4)

where

f i j (x) =
Ni j (x)

Di j (x)
=

∑mi
j=1

([

cL
i j ,c

U
i j

]

,

[

cL
i j ,c

U
i j

])

x j +
([

αL
i j ,αU

i j

]

,
[
αL

i j ,αU
i j

])

∑mi
j=1

([
dL

i j ,d
U
i j

]
,

[

d
L
i j ,d

U
i j

])

x j +
([

β L
i j
,βU

i j

]

,

[

β L
i j ,β

U
i j

]) , i = 1,2, · · · , t, (5)
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F1 (x), F2 (x) andF3 (x) are the objective functions of the first level decision maker(FLDM), second level decision
maker (SLDM) and the third level decision maker respectively.

G is the multi-level multi-objective convex constraint set.
([

cL
i j ,c

U
i j

]

,

[

cL
i j ,c

U
i j

])

are rough intervals coefficients forx j of the objective functions numerators,
([

dL
i j ,d

U
i j

]
,

[

d
L
i j ,d

U
i j

])

are rough intervals coefficients forx j in the objective functions denominators,
([

αL
i j ,αU

i j

]

,
[
αL

i j ,αU
i j

])

are rough intervals constants of the numerator,
([

β L
i j
,βU

i j

]

,

[

β
L
i j ,β

U
i j

])

are rough intervals

constants of the numerator,
([

aL
i j ,a

U
i j

]

,

[

aL
i j ,a

U
i j

])

are rough intervals coefficients forx j in constraints,([a,b] , [c,d])→are

rough intervals constants of the right hand side of the constraints.
It is customary to assume thatDi j (x)>0 ∀ x∈G,
Conversion of (MLMOFP) problem with rough coefficient in objective functions into upper and lower approximation

is usually a hard work for many cases, but transformation process needs to know the following definitions [15]:

Definition 1[15] Rough Interval (RI) can be considered as a qualitative value from vague concept defined on a variable
xin R.

Definition 2[15] The qualitative value A is called a rough interval when one can assign two closed intervals A∗ and A∗
on R to it where A∗ ⊆ A∗.

Remark 1[15] According to the rough interval properties we have:
[

cL
i j ,c

U
i j

]

⊆
[

cL
i j ,c

U
i j

]

→ cL
i j≤ cL

i j ≤ cU
i j ≤ c

U

i j
,

[

αL
i j ,αU

i j

]

⊆
[
αL

i j ,α
U
i j

]
→ αL

i j ≤ αL
i j ≤ αU

i j ≤ αU

i j
,

([a,b] , [c,d])→ c≤ a≤ b≤ d,

Now, the equivalent crisp problems of the (ML-MOFP) problemwith fully rough intervals can be reformulated
according to the shifting method in [20] as follows:

FP1:
[ 1st Level]

min
︸︷︷︸

x1

F1(x) = min
︸︷︷︸

x1

( f11(x) , f12(x) , · · · , f1m1 (x)) (6)

where x2,x3, · · · , xt solves
[2nd Level]

min
︸︷︷︸

x2

F2(x) = min
︸︷︷︸

x2

( f21(x) , f22(x) , · · · , f2m2 (x)) , (7)

...
where xt solves
[ tth Level]

min
︸︷︷︸

xt

Ft (x) = min
︸︷︷︸

xt

( ft1(x) , ft2(x) , · · · , ftmt (x)) , (8)

subject to

x∈ G=

{

x∈ Rn

∣
∣
∣
∣
∣

n

∑
j=1

aL
i j x j

≤ c, x j = 0, c∈ Rm

}

(9)

where

fi j (x) =
Ni j (x)

Di j (x)
=

∑mi
j=1 cL

i j x j +αL
i j

∑mi
j=1 d

L
i j x j +β L

i j

, i = 1,2, · · · , t. (10)

And findX∗c = (x∗c
1 ,x∗c

2 , · · · ,x∗c
n )

FP2:
[1st Level]

min
︸︷︷︸

x1

F1(x) = min
︸︷︷︸

x1

( f11(x) , f12(x) , · · · , f1m1 (x)) , (11)

where x2,x3, · · · , xt solves
[2nd Level]

min
︸︷︷︸

x2

F2(x) = min
︸︷︷︸

x2

( f21(x) , f22(x) , · · · , f2m2 (x)) , (12)

...
where xt solves
[ tth Level]

min
︸︷︷︸

xt

Ft (x) = min
︸︷︷︸

xt

( ft1(x) , ft2(x) , · · · , ftmt (x)) , (13)

subject to

x∈ G=

{

x∈ Rn

∣
∣
∣
∣
∣

n

∑
j=1

aL
i j x j

≤ (a−c), x j = 0, a,c∈ Rm

}

(14)

where

fi j (x) =
Ni j (x)

Di j (x)
=

∑mi
j=1 (c

L
i j −cL

i j )x j +(αL
i j −αL

i j )

∑mi
j=1 (d

L
i j −d

L
i j )x j +β L

i j
−β L

i j )
, (15)

i = 1,2, · · · , t.

And findX∗(a−c) = (x∗(a−c)
1 ,x∗(a−c)

2 , · · · ,x∗(a−c)
n )
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FP3:
[1st Level]

min
︸︷︷︸

x1

F1 (x) = min
︸︷︷︸

x1

( f11(x) , f12(x) , · · · , f1m1 (x)) , (16)

where x2,x3, · · · , xt solves
[2nd Level]

min
︸︷︷︸

x2

F2(x) = min
︸︷︷︸

x2

( f21(x) , f22(x) , · · · , f2m2 (x)) , (17)

...
where xt solves
[ tth Level]

min
︸︷︷︸

xt

Ft (x) = min
︸︷︷︸

xt

( ft1(x) , ft2(x) , · · · , ftmt (x)) , (18)

subject to

x∈ G=

{

x∈ Rn

∣
∣
∣
∣
∣

∑n
j=1

(

aU
i j −a

L

i j

)

x
j
≤ (b−a), x j = 0,

a,b∈ Rm

}

(19)

where

fi j (x) =
Ni j (x)

Di j (x)
=

∑mi
j=1

(

cU
i j −c

L

i j

)

x j +
(

αU
i j −αL

i j

)

∑mi
j=1

(

dU
i j −d

L

i j

)

x j +

(

βU
i j
−β L

i j

) , (20)

i = 1,2, · · · , t.

X∗(b−a) = (x∗(b−a)
1 ,x∗(b−a)

2 , · · · ,x∗(b−a)
n )

FP4:
[1st Level]

min
︸︷︷︸

x1

F1(x) = min
︸︷︷︸

x1

( f11(x) , f12(x) , · · · , f1m1 (x)) , (21)

where x2,x3, · · · , xt solves
[2nd Level]

min
︸︷︷︸

x2

F2(x) = min
︸︷︷︸

x2

( f21(x) , f22(x) , · · · , f2m2 (x)) , (22)

...
where xt solves
[ tth Level]

min
︸︷︷︸

xt

Ft (x) = min
︸︷︷︸

xt

( ft1(x) , ft2(x) , · · · , ftmt (x)) , (23)

subject to

x∈ G=

{

x∈ Rn

∣
∣
∣
∣
∣

∑n
j=1 (a

U
i j−aU

i j )x j
≤ (d−b), x j = 0,

b,d ∈ Rm

}

(24)

where

fi j (x) =
Ni j (x)

Di j (x)
=

∑mi
j=1 (c

U
i j−cU

i j )x j +(αU
i j−αU

i j )

∑mi
j=1 (d

U
i j−dU

i j )x j +(βU
i j−βU

i j
)
, (25)

i = 1,2, · · · , t.

And findX∗(d−b) = (x∗(d−b)
1 ,x∗(d−b)

2 , · · · ,x∗(d−b)
n )

Using the shifting method proposed by Osman and El-sherbinyin [20] then,

X∗a = X∗c+X∗a−c
, (26a)

X∗b = X∗a+X∗b−a
, (26b)

X∗d = X∗??+X∗d−b (26c)

For solving the previous classical four (ML-MOFP) problemssimultaneously, the fuzzy goal programming approach
will be applied. The linearization procedure introduced bypal et.al in [1] will be applied to linearize the membership
goals.

2.1 Fuzzy Goal Programming Approach for (ML-MOFP) Problems

The vector of objective functions for each decision maker isformulated as a fuzzy goal characterized by the membership
functionµ( fi j ), (i = 1,2, · · · , t) , ( j = 1,2, · · · ,mi) , at each level.

Characterization of Membership Functions
To define the membership functions of the fuzzy goals each objective function’s individual maximum is taken as the

corresponding aspiration level, as follows [5, 11]:

ui j = max
︸︷︷︸

x∈G

( fi j (x)) , (i = 1,2, · · · , t) ,( j = 1,2, · · · ,mi) . (27)

whereui j , (i = 1,2, · · · , t) , ( j = 1,2, · · · ,mi) , give the upper tolerance limit or aspired level of achievement for the
membership function ofi j th objective function. Similarly, each objective function’sindividual minimum is taken as the
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corresponding aspiration level, as follows:

gi j = min
︸︷︷︸

x∈G

( fi j (x)) , (i = 1,2, · · · , t) ,( j = 1,2, · · · ,mi) . (28)

where g?− j , (i = 1,2, · · · , t) , ( j = 1,2, · · · ,mi) , give the lower tolerance limit or lowest acceptable level of
achievement for the membership function ofi j th objective function. It can be assumed reasonably the valuesof
( fi j (x)) = ui j , (i = 1,2, · · · , t) , ( j = 1,2, · · · ,mi) , are acceptable and all values less thangi j = min

︸︷︷︸

x∈G

( fi j (x)), are

absolutely unacceptable. Then, the membership functionµi j ( fi j (x)) , as shown in Fig(1.a), for thei j th fuzzy goal can be
formulated as [11]:

µ fi j ( fi j (x)) =







1, i f ( fi j (x))≤ gi j ,

ui j −( fi j (x))
ui j −−gi j

, i f gi j ≤ ( fi j (x))≤ ui j ,

0, i f ( fi j (x))≥ ui j ,

(i = 1,2, · · · , t), ( j = 1,2, · · · ,mi), (29)

2.2 Fuzzy Goal Programming Methodology

In the decision-making context, each decision maker is interested in maximizing his or her own objective function; the
optimal solution of each DM, when calculated in isolation, would be considered as the best solution and the associated
value of the objective function can be considered as the aspiration level of the corresponding fuzzy goal. In fuzzy
programming approach, the highest degree of membership is one. For the defined membership functions in equation
(29), the flexible membership goals having the aspired level unity can be represented as follows:

µ fi j ( fi j (x))+ d−
i j −d+

i j = 1, (i = 1,2, · · · , t), ( j = 1,2, · · · ,mi), (30)

or equivalently as:
ui j − ( fi j (x))

ui j −−gi j
+d−

i j −d+
i j = 1, (i = 1,2, · · · , t), ( j = 1,2, · · · ,mi), (31)

whered−
i j ,d

+
i j ≥ 0 with d−

i j d+
i j = 0, (i = 1,2, · · · , t), ( j = 1,2, · · · ,mi) represent the under- and over- deviations,

respectively, from the aspired levels [5].
In the methodology of goal programming, the under- and over-deviational variables are included in the achievement

function for minimizing them depends on the type of the objective functions to be optimized. In the proposed FGP
approach, the sum of under deviational variables is required to be minimized to achieve the aspired level. It may be noted
that any over-deviation from a fuzzy goal indicates the fullachievement of the membership value [5]. The equivalent
proposed final (ML-MOFP) model for(FP1)can be formulated as follows:

min Z=
m1

∑
j=1

w+
1 jd

+
1 j +

m2

∑
j=1

w+
2 jd

+
2 j + · · ·+

mt

∑
j=1

w+
t j d

+
t j , (32)

subject to
ui j − ( fi j (x))

ui j −−gi j
+d−

i j −d+
i j = 1, (i = 1,2, · · · , t), ( j = 1,2, · · · ,mi), (33)

xik = x∗ik, (i = 1,2, · · · , t −1), (k= 1,2, · · · ,ni ), (34)

x∈ G=

{

x∈ Rn

∣
∣
∣
∣
∣

n

∑
j=1

aL
i j x j

≤ c, x j = 0, c∈ Rm

}

(35)

d−
i j d+

i j = 0, and d−i j , d+
i j ≥ 0, (i = 1,2, · · · , t) , ( j = 1,2, · · · ,mi) , (36)

whereZ represents the achievement function consisting of the weighted under-deviational variables of the fuzzy goals.
The numerical weightsw−

i j represent the relative importance of achieving the aspiredlevels of the respective fuzzy goals.
To assess the relative importance of the fuzzy goals properly, the values ofw−

i j are determined as [5]:

w+
i j =

1
ui j −gi j

, (i = 1,2, · · · , t) , ( j = 1,2, · · · ,mi) , (37)
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2.3 Linearization of Membership Goals

It can be easily noted that the membership goals in equations(33) are nonlinear in nature and this may needs difficult
computational in the solution process. To avoid these problems, a linearization procedure is presented in this sectionas in
[1]. The linearization process for the membership goals in (33) considering the expression offi j (x) in equation (5) will
be firstly introduced.

The i j th membership goals can be presented as:

µ fi j ( fi j (x))+d−
i j −d+

i j = 1, (38)

Li j ui j −Li j fi j (x)+d−
i j −d+

i j = 1, where Li j =
1

ui j −gi j
, (39)

fi j (x) =
Ni j (x)
Di j (x)

=
∑mi

j=1cL
i j x j +αL

i j

∑mi
j=1d

L
i j x j +β

L
i j

, i = 1,2, · · · , t. (40)

using the expression offi j (x) , the above goal in equation (39) can be presented as:

Li j ui j −Li j

(

cL
i j

)

x+αL
i j

(

d
L
i j

)

x+β
L
i j

+d−
i j −d+

i j = 1, (41)

Li j ui j

[(

d
L
i j

)

x+β
L
i j

]

−Li j
[
cL

i j x+αL
i j

]
+d−

i j

[(

d
L
i j

)

x+β
L
i j

]

−d+
i j

[(

d
L
i j

)

x+β
L
i j

]

=
[(

d
L
i j

)

x+β
L
i j

]

,

−Li j
[(

cL
i j

)
x+αL

i j

]
+d−

i j

[(

d
L
i j

)

x+β
L
i j

]

−d+
i j

[(

d
L
i j

)

x+β
L
i j

]

= (1−Li j gi j )
[(

d
L
i j

)

x+β
L
i j

]

,

−Li j
[(

cL
i j

)
x+αL

i j

]
+d−

i j

[(

d
L
i j

)

x+β
L
i j

]

−d+
i j

[(

d
L
i j

)

x+β
L
i j

]

= L0
i j

[(

d
L
i j

)

x+β
L
i j

]

,

whereL0
i j = (1−Li j gi j ) ,

[

−Li j c
L
i j−L0

i j (d
L
i j )
]

x+d−
i j

[(

d
L
i j

)

x+β
L
i j

]

−d+
i j

[(

d
L
i j

)

x+β
L
i j

]

=
[

Li j αL
i j+L0

i j β
L
i j

]

,

Ci j x+d−
i j

[(

d
L
i j

)

x+β
L
i j

]

−d+
i j

[(

d
L
i j

)

x+β
L
i j

]

=Gi j , (42)

Where
Gi j = Li j αL

i j+L0
i j β

L
i j (43a)

and
Ci j =−Li j c

L
i j−L0

i j (d
L
i j ), (i = 1,2, · · · , t) , ( j = 1,2, · · · ,mi) (43b)

Thus, considering the method of variable change presented in [1] the goal expression in equation (40) can be linearized
as follows.

By setting,

D−
i j = d−

i j

[(

d
L
i j

)

x+βL
i j

]

and D+
i j = d+

i j

[(

d
L
i j

)

x+βL
i j

]

, (44)

Then the linear form of expression in equation (41) is obtained as:

Ci j x+D−
i j −D+

i j = Gi j , (45)

with D−
i j , D+

i j ≥ 0; and D−
i j × D+

i j = 0 sinced−
i j , d+

i j ≥ 0 and
(

d
L
i j

)

x+β L
i j>0. Now, it is noted that, minimization ofd+

i j

means minimization ofD+
i j = d+

i j

[(

d
L
i j

)

x+β
L
i j

]

which is also a non-linear one. It may be noted that when the membership

goal is fully achieved,d+
i j = 0, and when its achievement is zero,d+

i j = 1, are found in the solution [2,19]. So, involvement
of d+

i j ≤ 1, in the solution leads to impose the following constraint to the model of the problem:

D+
i j

[(

d
L
i j

)

x+βL
i j

] ≤ 1, that is −
(

d
L
i j

)

x+D+
i j ≤ β

L
i j (46)
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Now, based on the simplest version of goal programming, the final proposed FGP model of the(FP1)becomes:

min Z=
m1

∑
j=1

w+
1 jd

+
1 j +

m2

∑
j=1

w+
2 jd

+
2 j + · · ·+

mt

∑
j=1

w+
t j d

+
t j , (47)

subject to
Ci j x+D−

i j −D+
i j = Gi j , (i = 1,2, · · · , t) , ( j = 1,2, · · · ,mi) , (48)

xik = x∗ik, (i = 1,2, · · · , t −1), (k= 1,2, · · · ,ni ), (49)

−
(

d
L
i j

)

x+D+
i j ≤ βL

i j , (i = 1,2, · · · , t) , ( j = 1,2, · · · ,mi) , (50)

x∈ G=

{

x∈ Rn

∣
∣
∣
∣
∣

n

∑
j=1

aL
i j x j

≤ c, x j = 0, c∈ Rm

}

(51)

D−
i j ,D

+
i j ≥ 0, (i = 1,2, · · · , t) , ( j = 1,2, · · · ,mi) , (52)

Similarly, applying the linearization process of the membership goals considering the expression offi j (x)in equations
(15),(20) and (25) and get the final proposed FGP model of the(FP2),(FP3) and(FP4).

3 Solution algorithm

Step (1): reformulate problem (1)-(5) into (FP1), (FP2), (FP3) and (FP4).
Step (2): For problem (FP1), Computeui j ,gi j ,w

−
i j , i = 1,2, · · · , t, j = 1, · · · ,mi .

Step (3): Construct the membership functionµi j ( fi j (x)) , i = 1,2, · · · , t, j = 1, · · · ,mi .
Step (4): ComputeCi j and Gi j , i = 1,2, · · · , t, j = 1, · · · ,mi according to equation (42.a), (42.b).
Step (5): Do the linearization process forµi j ( fi j (x)) according to equation (45).
Step (6): Put i = 1 in FGP model (46)-(52).
Step (7): SolveFGP model (46)-(52) to getx1k = x∗1k ,k= 1,2, · · · ,ni .
Step (8): put i = i +1 in FGP model (46)-(52) and go to step (7).
Step (9): If i > t −1, go to step (10), otherwise go to step (8).
Step (10): SolveFGP model (46)-(52) with xik = x∗ik , i = 1,2, · · · , t −1,k= 1,2, · · · ,ni .
Step (11): If the DM solves (FP2), (FP3), and (FP4) go to step 13, otherwise go to step12.
Step (12): Repeat steps from (2) to (10) for (FP2), (FP3), and (FP4).
Step (13): Determine the solution according to the theorem proposed by Osman et al in[ ].
Step (14): Stop.

4 An Illustrative Example

To demonstrate the proposed FGP approach, consider the following (ML−MOLFP) problem with fully rough intervals.
[1st Level]

min
︸︷︷︸

x1




f11 =

([2,3],[1,4])x1+([5,7],[3,8])x2+([3,5],[2,8])x3+([5,7],[2,10])
([4,5],[2,7])x1+([7,9],[3,10])x2+([2,5],[1,6])x3+([5,9],[3,10]) ,

f12 =
([3,5],[2,7])x1+([4,5],[3,6])x2+([5,8],[3,9])x3+([3,6],[1,8])
([5,6],[3,8])x1+([3,5],[2,6])x2+([4,6],[3,7])x3+([5,6],[2,9])



 ,

where x2,x3solve[2nd Level]

min
︸︷︷︸

x2

(

f21 =
([6,8],[3,10])x1+([7,9],[4,11])x2+([7,8],[5,12])x3+([8,10],[5,13])
([4,7],[2,9])x1+([5,7],[3,10])x2+([5,6],[2,9])x3+([7,9],[3,12]) ,

f22 =
([5,7],[4,8])x1+([6,8],[2,11])x2+([3,5],[1,8])x3+([5,7],[3,10])
([5,7],[3,8])x1+([3,4],[1,6])x2+([2,3],[1,5])x3+([6,8],[2,10])

)

,

where x3solves[3rd Level]

min
︸︷︷︸

x3

(

f21 =
([3,5],[2,8])x1+([5,7],[3,8])x2+([2,3],[1,4])x3+([8,9],[6,12])
([2,3],[1,4])x1+([3,5],[2,7])x2+([4,5],[2,6])x3+([6,8],[2,10]) ,

f22 =
([4,6],[3,8])x1+([3,5],[2,9])x2+([3,7],[2,10])x3+([7,12],[4,16])
([3,5],[1,8])x1+([2,3],[1,5])x2+([4,6],[3,7])x3+([4,6],[2,9])

)

,
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sub ject to
([3,6] , [1,7])x1+([3,5] , [2,6])x2 ≤ ([12,14] , [10,16]),

([3,5] , [1,8])x1− ([5,7] , [2,9])x2+([6,7] , [3,9])x3 ≤ ([9,11] , [8,14]),

([5,7] , [2,9])x1+([3,5] , [1,8])x2 ≥ ([4,5] , [3,6]),

x1,x2,x3 ≥ 0.

For solving the previous example, it will be reformulated into the following four linear fractional programming
problems [20]:

FP1:
[1st Level]

min
︸︷︷︸

x1

(
x1+3x2+2x3+2
2x1+3x2+x3+3,

2x1+3x2+3x3+1
3x1+2x2+3x3+2

)

,

where x2,x3 solves
[2nd Level]

min
︸︷︷︸

x2

(
3x1+4x2+5x3+5
2x1+3x2+2x3+3,

4x1+2x2+x3+3
3x1+x2+x3+2

)

,

where x3 solves

min
︸︷︷︸

x3

(
2x1+3x2+x3+6
x1+2x2+2x3+2,

3x1+2x2+2x3+4
x1+x2+3x3+2

)

,sub ject to

x1+2x2 ≤ 10,
x1−2x2+3x3 ≤ 8,
2x1+ x2 ≥ 3,
x1,x2,x3 ≥ 0.

FP2:
[1st Level]

min
︸︷︷︸

x1

(
x1+2x2+x3+3
2x1+4x2+x3+2,

x1+x2+2x3+2
2x1+x2+x3+3

)

,

where x2,x3 solves
[2nd Level]

min
︸︷︷︸

x2

(
3x1+3x2+2x3+3
2x1+2x2+3x3+4,

x1+4x2+2x3+2
2x1+2x2+x3+4

)

,

where x3 solves

min
︸︷︷︸

x3

(
x1+2x2+x3+2
x1+x2+2x3+4,

x1+x2+x3+3
2x1+x2+x3+2

)

,sub ject to

2x1+ x2 ≤ 2,
2x1−3x2+3x3 ≤ 1,
3x1+2x2 ≥ 1,
x1,x2,x3 ≥ 0.

FP3:
[1st Level]

min
︸︷︷︸

x1

(
x1+2x2+2x3+2
x1+2x2+3x3+4,

2x1+x2+3x3+3
x1+2x2+2x3+1

)

,

where x2,x3 solves
[2nd Level]

min
︸︷︷︸

x2

(
2x1+2x2+x3+2
3x1+2x2+x3+2,

2x1+2x2+2x3+2
2x1+x2+x3+2

)

,

where x3 solves

min
︸︷︷︸

x3

(
2x1+2x2+x3+1
x1+2x2+x3+2 ,

2x1+2x2+4x3+5
2x1+x2+2x3+2

)

,sub ject to

3x1+2x2 ≤ 2,
2x1−2x2+ x3 ≤ 2,
2x1+2x2 ≥ 1,
x1,x2,x3 ≥ 0.

FP4:
[1st Level]

min
︸︷︷︸

x1

(
x1+x2+3x3+3
2x1+x2+x3+1,

2x1+x2+x3+2
2x1+x2+x3+3

)

,

where x2,x3 solves
[2nd Level]

min
︸︷︷︸

x2

(
2x1+2x2+4x3+3
2x1+3x2+3x3+3,

x1+3x2+3x3+3
x1+2x2+2x3+2

)

,

where x3 solves

min
︸︷︷︸

x3

(
3x1+x2+x3+3
x1+2x2+x3+2,

2x1+4x2+3x3+4
3x1+2x2+x3+3

)

,sub ject to

x1+ x2 ≤ 2,
3x1−2x2+2x3 ≤ 3
2x1+3x2 ≥ 1,
x1,x2,x3 ≥ 0.

For solving (FP1), the individual maximum and minimum values are summarized in Table 1. The decided aspiration
levels, upper tolerance limitsand the weightswi j are also considered.

Table 1: individual maximum, minimum values,ui j gi j and weightswi j .
f11(x) f12(x) f21(x) f22(x) f31(x) f32(x)

max ( fi j (x)) 1.22 1.333333 1.967742 1.857143 2.571429 2.8
min ( fi j (x)) 0.526315 0.6153846 1.3888889 1.288462 1.125 1.017544
ui j 1.2 1.3 1.9 1.8 2.5 2.8
gi j 0.5 0.6 1.3 1.2 1.1 1.01
wi j 1.4 1.4 1.6 1.6 0.7 0.55

The coefficient of the linearized membership goals are presented in Table 2.
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Table 2: the coefficient of the linearized membership goals(Ci j )
T and Gi j

f11(x) f12(x) f21(x) f22(x) f31(x) f32(x)

(Ci j )
T





−0.04
−2.16
−2.12





T 



−0.34
−2.56
−1.74





T 



−0.72
−0.28
−3.92





T 



−0.76
−1.32
0.28





T 



−0.65
−0.6
0.8





T 



−1.11
−0.56
0.52





T

Gi j 0.76 -0.24 1.88 1.04 2.7 1.12
Solving the 1st level FGP model:

minZ=1.4D+
11+1.4D+

12

subject to
−0.04x1−2.16x2−2.12x3+D−

11−D+
11= 0.76,

−0.34x1−2.56x2−1.74x3+D−
12−D+

12=−0.24,

−2x1−3x2− x3+D+
11≤ 3,

−3x1−2x2−3x3+D+
12≤ 2,

x1+2x2 ≤ 10,

x1−2x2+3x3 ≤ 8,

2x1+ x2 ≥ 3,

x1,x2,x3,D
−
11, D+

11, D−
12, D+

12 ≥ 0

Using Lingo software package [25], the optimal solution of the upper level problem is obtained as;(x0
1,x

0
2,x

0
3 ) =

(1.5,4.25,0).
Solving the 2nd level FGP model:

minZ=1.4D+
11+1.4D+

12 +1.6D+
21+1.6D+

22

subject to
−0.04x1−2.16x2−2.12x3+D−

11−D+
11= 0.76,

−0.34x1−2.56x2−1.74x3+D−
12−D+

12=−0.24,

−0.72x1−0.28x2−3.92x3+D−
21−D+

21= 1.88,

−1.303x1−1.716x2+1.367x3+D−
22−D+

22= 1.04,

−2x1−3x2− x3+D+
11≤ 3,

−3x1−2x2−3x3+D+
12≤ 2,

−2x1−3x2−2x3+D+
21≤ 3,

−3x1− x2− x3+D+
12≤ 2,

2x1+ x2 ≤ 10,

x1−2x2+3x3 ≤ 8,

x1+2x2 ≥ 3,

x1 = 1.5,

x2,x3,D
−
11, D+

11, D−
12, D+

12,D
−
21, D+

21,D
−
22, D+

22 ≥ 0.

Using Lingo software package [25], the optimal solution of the second level problem is obtained as:(x0
1,x

0
2,x

0
3) =

(1.5,4.25,0).
Solving the 3rd level FGP model:

minZ=1.4D+
11+1.4D+

12 +1.6D+
21+1.6D+

22+0.7D+
31+0.55D+

32

subject to
−0.04x1−2.16x2−2.12x3+D−

11−D+
11= 0.76,
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−0.34x1−2.56x2−1.74x3+D−
12−D+

12=−0.24,

−0.72x1−0.28x2−3.92x3+D−
21−D+

21= 1.88,

−1.303x1−1.716x2+1.367x3+D−
22−D+

22= 1.04,

−0.65x1−0.6x2+0.8x3+D−
31−D+

31= 2.7,

−1.11x1−0.56x2+0.52x3+D−
32−D+

32= 1.12,

−2x1−3x2− x3+D+
11≤ 3,

−3x1−2x2−3x3+D+
12≤ 2,

−2x1−3x2−2x3+D+
21≤ 3,

−3x1− x2− x3+D+
22≤ 2,

−x1−2x2−2x3+D+
31≤ 2,

−x1− x2−3x3+D−
32≤ 2,

2x1+ x2 ≤ 10,

x1−2x2+3x3 ≤ 8,

x1+2x2 ≥ 3,

x1 = 1.5,

x2 = 4.25,

x3,D
−
11, D+

11, D−
12, D+

12,D
−
21, D+

21,D
−
22, D+

22 ≥ 0.

Using Lingo software package [25], the optimal solution of the third level problem is obtained as:(x∗c
1 ,x∗c

2 ,x∗c
3 ) =

(
3
2,

17
4 ,0
)
.

Similarly, applying the proposed algorithm to solve (FP2),(FP3) and (FP4), we get the following results:

(

x∗(a−c)
1 ,x∗(a−c)

2 ,x∗(a−c)
3

)

=

(
1
3
,
4
3
,0

)

,

then,
(
x∗a

1 ,x∗a
2 ,x∗a

3

)
=
(

11
6 ,

67
12,0

)
,

(

x∗(b−a)
1 ,x∗(b−a)

2 ,x∗(b−a)
3

)

= (0.5,0,0) ,

then,
(
x∗b

1 ,x∗b
2 ,x∗b

3

)
=
(

7
3,

67
12,0

)
,

(

x∗(d−b)
1 ,x∗(d−b)

2 ,x∗(d−b)
3

)

= (0,2,0) ,

and
(
x∗d

1 ,x∗d
2 ,x∗d

3

)
=
(

7
3,

91
12,0

)
,

Then the problem has a rough optimal solution in the form:
(

3
2
,
17
4
,0

)

,

(
11
6
,
67
12

,0

)

,

(
7
3
,
67
12

,0

)

,

(
7
3
,
91
12

,0

)

.

and the following rough optimum values:

f11 = {0.7115072934, 0.7485311398, 0.7830342577,0.866666667}

f12 = {0.9513043478, 0.9544419143, 0.9571428571,0.9973045822}

f21 = {1.003062787, 1.2250970246, 1.3747534517, 1.413333333}

f22 = {1.4571428571, 1.4934725849, 1.5056179775, 1.6279069767}

f31 = {1.2301495972, 1.3922330097, 1.5678233438, 1.8125}

f32 = {1.5040322581, 1.5665859564, 1.5921219822, 2.1935483871}
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5 Conclusion and summary

Multi-level multi-objective fractional programming problem (ML-MOFP) was considered where allthe coefficients in the
objective functions and in constraints are rough intervals. Two FP problems with interval coefficients were constructed.
One of these problems was a FP where all of its coefficients arelower approximations of the rough intervals and the other
problem was a FP where all of its coefficients are upper approximations of rough intervals. A fuzzy goal programming
model has been formulated to obtain the satisfactory solution of the multi-level multi-objective fractional programming
problem. At the end, there exist many other open points for future work and research which should be explored and studied
in the area of multi- level multi-objective rough interval optimization such as:

1.An algorithm is required for treating multi-level multi-objective integer fractional decision-making problems with
rough parameters in the objective functions; in the constraints and in both.

2.An algorithm is needed for dealing with multi- level multi-objective mixed integer fractional decision-making
problems with rough parameters in the objective functions;in the constraints and in both.

3.An algorithm must be investigated for treating multi- level multi-objectiveinteger quadratic decision-making problems
with rough parameters in the objective functions; in the constraints and in both.
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