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1 Introduction

There are several problems in which fractional derivativesm-integer order derivatives) play a central rdlg2[3,4,5].
It should be emphasized that fractional derivatives arsgreed in many ways, in particular, characterizing thregrdit
ways, which we will mention in order to develop the work in afeéhem.

Each classical fractional derivative is usually definedents of a specific integral. Among the most well-known
definitions of fractional derivatives we may mention therR&mn-Liouville, Caputo, Griinwald-Letnikov and Hadamard
derivatives 6, 7], whose formulations involve integrals with singular kelsnand which are used to study, for example,
problems involving the memory effe@]f On the other hand, in the years 2010, other formulatiofisacfional derivatives
have appeared in the literatui®).[ These new formulations differ from the classical oneseivesal aspects. For instance,
classical fractional derivatives are defined in such a wayiththe limit in which the order of the derivative is an inéeg
one recovers the classical derivatives in the sense of Neartd Leibniz. There has also been recently proposed a new
fractional derivative 10,11,12] with a corresponding integral whose kernel can be a nogesgar function, for instance,

a Mittag-Leffler function 13]. Also in such cases, integer order derivatives are re@al/by considering adequate limits
for the values of its parameters.

On the other hand, there are many ways to obtain a generatizait classical fractional derivatives. Some authors
introduce parameters in classical definitions or in som#équéar special function3, 14,15,16,17,18,19,20], as we shall
do below. Also, in a recent pape2]], the authors introduce a parameter and discuss a gerati@tiZor fractional
derivatives on two particular spaces, which they call galiesd fractional derivative, and further propose a Caputo
modification of this generalization.

Furthermore, also recent is the pap2g|[in which, due to the proliferation of definitions, the authgropose a
method (algorithm) to characterize a fractional derivaby imposing some requirements for a particular definitiobet
considered a good definition of a fractional (non-integeleoy derivative.

In this paper we are interested in the so-calkefdactional and(k, p)-fractional derivative types, which generalize
the classical fractional derivatives. Specifically, wepwse a new generalization of fractional derivatives andudis a
general Cauchy problem in order to study the existence aigeness of its solutions and their dependence on initial
conditions. As a by product, we recover a wide class of foaeti derivatives.

This paper is organized as follows: In Section 2, we presamiesdefinitions aiming at our main result; in particular,
the definition ofk-Mittag-Leffler functions, the spaces in which we work and kkfractional integrals in the senses of
Riemann-Liouville and Hadamard. In Section 3, we presentesproperties of the so-callgdt, p)-fractional operator
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and in Section 4, our main result, we introduce the genemlik, p)-fractional derivative and we demonstrate that,
using adequate parameters, we are able to recover a widd tsfinitions of fractional derivatives. As an application
introduced in the previous section by means of theorems ppeach linear fractional differential equations by stindy
the Cauchy problem and discuss the existence and uniqueh#sssolution and its dependence on initial conditions.
Concluding remarks close the paper.

2 Preliminaries

Let us introduce the concept kfx, wherex denotes the gamma function, the beta function or the Pocimiearsymbol,
in order to introduce thk-Mittag-Leffler function. Diaz and Pariguah€] have been the first ones to define tigamma
function, thek-beta function and thk-Pochhammer symbol. We start explaining khgamma function, defined by

X) = /0 “ple%dt with xk>0, 1
for which the following relations hold:
A=K () and Rk =1, )
In the limitk — 1, we havd(x) = I" (x). Thek-Pochhammer symbol is defined by

_— 1, for n=0 3)
(XK= X(X+K) - (x+ (n—1)k), for neN,xcR, k>0,
or in terms of a quotient d.-gamma functions,
M«(X+nk)

=——7, 4
(X)nk ) (4)
Finally, thek-beta function is defined by

/ tt1-t)fdt, x>0, y>0, k>O0. )

Notice that, wherk — 1 we haveBy(x,y) = B(x,y). Thek-beta function can be written in terms kfgamma functions
and in terms of the common beta function as follows:

() I(y) Xy
Bi(xy) = 520 and Bely) = 1B (3. 7).
Mittag-Leffler functions play a very important role in thelsion of linear fractional differential equations andegtal
equations, 23,24,25,26,27]. In order to generalize such functions, Dorrego and Cief@8] defined the so-calle#-
Mittag—Lefﬂer function as follows:

z
kﬁy ZFan+y nt’
wheren € N, (8)nx is thek-Pochhammer symbol defined in E8).and/(x) is thek-gamma function, Egl). In the case

k = 1 we recover the three-parameters Mittag-Leffler funct2gj.[Gupta and Parihai30] defined the so-callel-new
generalized Mittag—LeﬁIer function using the followingrsss:

zeR, B>0, y>0, (6)

z
Exso(2) ZFkEnJr) zeR, &>0, o0>0, @)

wheren € N. Again, in order to recover the two-parameters Mittag-legfflinction introduced by Wimar8[] one just
has to considek = 1. Before presenting the definition kffractional integrals and their generalizations, we defire
adequate function spaces for such definitions, as well dsipisehitz condition for a functiorf (x, ¢).
Definition 1.[23]

Let [a,b] be a finite or infinite interval on the real axi® = (—o,). We denote by 4(a,b) the set of those Lebesgue
complex-valued measurable functigron [a, b] defined by

b 1/p
Lp(a,b)={¢ el = (/a |¢(X)|pd><> <+°°}, 1<p<oo. (8)

In the case p= 1, we denote L(a,b) = L(a,b).
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Definition 2.[32] Assume that (k,¢) is defined on the sefa,b] x G, G C R. A function f(x,¢) satisfies Lipschitz
condition with respect t@, if for all x € (a,b] and for ¢4, ¢, € R,

1T(x,01) — £(x d2)| <Aldp1— b2,

where A> 0 does not depend on x.

Once such functions and the adequate space were defined,eMwarel Habibullah 18] introduced the so-called
k-Riemann-Liouville fractional integral, a generalizatiof the Riemann-Liouville fractional integral, obtained k = 1.
Such integral is defined here, for the left-sided only, as

W00 = e [[x-0F o0t a0 x>a (©)

where¢ € L(a,b). Whenk — 1, we havey(a) = I' (a) andyx.7 = .72, where.#{ is the classical Riemann-Liouville
fractional integral. Similarly, in order to generalize tHadamard fractional integral, theHadamard fractional integral
[33] was introduced. The definition of this operator, for the-ktled only, is given by

X a_ d
WO = e [ ()" 0T az0. x>a (10)

wherek > 0 and¢ € L(a,b). Whenk — 1, we have#,{ — 7, where 7,7 is the Hadamard fractional integral.
Recently, Sarikaya et allf] proposed the so-calle(k p)-fractional mtegral which, at adequate limits, recovérs t
k-Riemann-Liouville andk-Hadamard fractional integrals. This operator is defineéft-dided only— by

X P __tP g1
(E/aw)(x):—krkl(a)/a (%) v pndt, a>0, x>a 11

withn—1<a <n,neN,k>0,0>0and¢p €L(a,b). Whenk— 1, we havey(a) — I (a )and’kJ 94 —P 79, where
P 71 is the generalized fractional integral defined 34][ Whenp — 1, we obtain th&—Riemann- LIOUVI||e fractlonal

mtegral Eg.9). On the other hand, consideripg— 0", we obtain the&k-Hadamard fractional integral, EGQ).

3 Auxiliary Results

We now present some properties of the fractional integrefimeld in the previous section, in order to use them throughou
this work. We start by presenting the semigroup propertytferk, p)-fractional operator and an application to the power
function; both results are theorems found 17|

Theorem 1Leta >0,3>0,k>0,p0>0and¢ € Lp(a,b), then
+

( eﬁfkjaJr k/a B¢ aJrk/aJr

Theorem 2Leta,3 > 0and kp > 0. Then, we have

rk(B) P ap)gr(—pfll
pk Mi(a+P)

The following lemma shows that th&, p)-fractional operator is bounded in the spage. b).

P78 P —aP) kY (x) =

Lemma 1[17] Let ¢ € L(a,b); then, the(k, p)-Riemann-Liouville fractional integral of ordex > 0 is bounded in the
space l(a,b), i.e.

Ik 7291l < M@l (12)

where

- aFkl(a) (bf’;ap>%

Most fractional differentiation operators are defined imte of some corresponding fractional integral. We now prese
the definition of Hilfer fractional derivative, which is aggated with the Riemann-Liouville fractional integral.
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Definition 3.[35 The Hilfer fractional derivative of orded < o < 1 and typed < 8 < 1 with respect to x is defined by

R O 13)

dx~a"
for functions for which the expression on the right-hancesssists.
Similarly, we have the Hilfer-Hadamard fractional derivat which is associated with the Hadamard fractional irdkg

Definition 4.[36] The Hilfer-Hadamard fractional derivative of ordér< a < 1 and type0 < 8 < 1 with respect to x is
defined by

Cr 220100 = (A2 (g ) AP0 ) 0 1)

for functions for which the expression on the right hand sixists.

In order to obtain a more general derivative than the oneqmeg by Hilfer, that is, a fractional derivative of order
a € RT withn—1 < a <n, wheren € N, Hilfer, Luchko and Tomovski37] proposed the generalized Riemann-Liouville
fractional derivative, which is associated with the Riemduouville fractional integral.

Definition 5.[37] Leta,B €e R suchthatn-1< a <n,ne N, 0< B <1, wherea is the order and3 is the type of
generalized Riemann-Liouville fractional derivativegth

noyB pin-a) A" (1-p)(n-a)
e - O I (15)

for functions for which the expression on the right-hancesssists.

Recently, Nisar et al.3] proposed thék, p)-fractional derivative, which is associated with ttkep)-fractional integral,
Eq.(11)

Definition 6.[3] Letu, v,k € R suchthal < yu < 1,0<v <1andk> 0. The(k, p)-fractional derivative is defined by

R Al G I [E) 16)

for functions for which the expression on the right hand skxists.

4 Generalized(k, p)-Fractional Derivative

In this section we propose, as our main result, a generializfdr the fractional derivative proposed i8]] The definition
in that work considers the order of derivative to be @t < 1, but here we consider € R, withn—1< a <nandn e N.
We call our definition generalizef, p)-fractional derivative. The fractional integral assoedtvith this differentiation
operator is thek, p)-fractional integralEq.(11) In this section we also prove some properties of this operat

Definition 7.Leta,v €e Rsuchthatn-1<a <n,neN,0<v <1, p>0andk> 0. We define the generalizékl p)-
fractional derivative by

. (E (nk a) on (kn[k)faJr )(kn— G) )) (X), (18)
wheredp = (Xl_p %)n

With adequate choices of parametersDefinition 7, we recover well-known operators of fractional differation,
namely:

—if n= 1, we obtain thék, p)-fractional derivative ];
—if k=1 andn= 1, we have the Hilfer-Katugampola fractional derivativefwsed in 1J;
—if k=1 andp = 1, we obtain the so-called generalized Riemann-Liouvilietional derivative37];
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—-if k=1, p — 0" andn = 1, we have the Hilfer-Hadamard fractional derivatigé]f

—if k=1, p =1 andn = 1, we obtain the well-known Hilfer derivativ@§];

—-if k=1, p =1 andv = 0, we obtain the Riemann-Liouville fractional derivati&3[ p. 70];
—if k=1, p =1 andv = 1, we obtain the Caputo derivatived, p. 92];

—f k=1, p — 0" andv = 0, we obtain the Hadamard fractional derivati28,[p. 111];

-if k=1, p — 0" andv = 1, we have the Caputo-Hadamard fractional deriva® [

It is also possible to recover, for particular extreme valakintegration, the fractional derivative in the Lioueikense
[23, p. 87] and in the Weyl38] sense.

The generalizek, p)-fractional denvatm{@ " is the inverse operator of ttik, p)-fractional mtegral . We prove
this result by means of the following lemma.

Lemma2Lleta € R* andp >0, k> 0.1f 1 < p <, then forg € Lp(a,b) we have

(k25" kI 9) () = b (x). (19)
Proofln order to simplify the development and the notation, werdefi
W:M and ®=n—y. (20)

FromDefinition 7andTheorem 1we can write

Q7878000 = (Rl a0 7 9)) (9
- %/ (X —tP)¥ 1P 10 UJ —P)® 1P g (u)du dt. (1)

F(t)

Solving by parts the integral within brackets, and choosing ¢ (u) anddv= (t? — u?)®~1, we obtain

F(t) = pq) {¢( (t° - af) +/ )du} 22)
Applying the differential operatady, to Eq.(22)we obtain, by mathematical induction, the following exsies

n-1
s i Lo a2 [ - g wau) (23)

We substitutd=q.(23)into Eq.(21)and use the first expressionBd.(2)to get

OpF(t) =

(p@;‘/ R IL)(X) = KKZ1F @] k<£w>,1,_[1_ ] {d’(a) /:(Xp —tP)Y P 1(tP —aP) Y dt

o [fowau oo o) e e ) Yar

Introducing in the integral froma to x the change of variable = (t° — aP)/(x? — a”) and doing the same in the integral
fromu to x, we have

a v 1 X / 11 _ Y

Dot RIS D) I'k[kW] kA= 9)] [q&(a)+/a [0} (u)du] {E/o (1—u)¥-1y1-¥ ldu}.
We then use the two expressiondHq.(2)to obtain

a,v a 1 rk qu] rk[k(l W)]
78" L AE0N00 = gy [#@+ [ ¢y A

:¢<a>+/a ¢'(u)du

Finally we use the fundamental theorem of calculus, whérioenediately follows that

aa+v Fk) /a+ (X)
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The following result yields the composition between thep)-fractional integral and the generalizék p)-fractional
derivative.

Lemma3Lleta,B € Rsuchthata > >0kp>0n—-1<a <nandneN.If1<p<o,thenforg €Lp(ab), we
have

K75 E7E 90 =€ 7L 9. (24)

ProofThe proof is analogous to the previous lemmg] [

Again, in order to simplify the development and notation,imteoduce the parametér:

Ao Vink—a)+a (25)
k

Lemma 4Leta > 0, n= [a] + 1, where ne N. If ¢ € Lp(a,b) and (£ 71 ™K1 g))(x) € ACI[a,b], then
. (V) kn-a) K1) ) ) 1o o\ A

CAERTE D0 =000 5 & T @ ( ) - (26)
= A=j+1)] p

In particular, if 0 < a < 1, then
(P (1*V)(k*a)*k(1*j>¢)(a) XP — aP\ "\~

0 A8 0TE )00 = 99— (L2 2o (5T @)
Nv(k—a)+a—k(j—1)] P

Proof From Definition 7, we can write
(nk—ar )(kn—a
R 78R8 = (Fra k™ Ot £ 09)) (9
= (R gl T 9))

P Ko ovA-Lie-1 [ snnp (a-v)kn-a)
_ I_k[k/\]/a(x G R AT #)()}dt
Integrating by parts the last expression, we obtain

1A yp apyA-l
R . R )

2-N

X
e A i T PO

Thus, integrating by partg — 1) times, we have

P ga pgav _ 15njl(knp/a+ ke )(a) X —aP\ It
RAERTO0 = = 5 Ty ( . )

1 e A (1-v)(kn-a)
tem (o) e )t

n— 15n i— 1(knp/¢a+ )(kn—a )(a) X° — aP A—j-1
=T AT ( b )
i (p v(kn—a)+a—nkp (1—v)(kn—a)¢)(x)

ko at k
A IC) (xp—ap>AJ
Zl ki Mk(A —j+1)] p
)

n (P ( v)(kn—a)—k(n— ¢)() xP — aP\ Nl
121 A—j+1)] < P > '
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Next, we show that the generaliz@id p)-fractional derivative of orden of the polynomial functiorft? — aP)Y" 1 is null,
e, [k 2%" (tP —aP)" 1] (x) =0.
Lemma5leta,ve Rsuchthatn-1<a <n,neN,0<v <1 p>0andk>0.Then,forall j=1,2,...,n, we have

P800~ 1] (0 =0, (28)
ProofAgain, in order to simplify the development and the notatiowhat follows, we usé&q.(25)and we define

Q- %kk”—") (29)
Thus, fromDefinition 7andEg.(11) we have

(knp/ ke tp—ap)/\fj)(x)= Kp = /X(xp—tp)gfl(tp—a”)/‘*jt”*ldt.
at klkkQ] Ja

We introduce the change of variahle= (t° — a”)/(x? — a), and use the definition d¢beta functionEq.(5) to obtain
-Q 1
np g A=v)tn-a) 4o _ o \A-1) (x) = KP " o gy }/ )@
(k W (tP —aP) )(x) I'k[kQ](X aP) ko(l u) 2~ Idu

K0P KA — 4 1)
= T hkn-j-y X

Next, we calculata) (k" 7.1~V *" ) 1o _ap)A=i)(x), that s,

d\" - d\"* d -
1-p = 0 gP\—i — [ y1-p 1-0 = ) (xP _ gP)"-1
(X dx) (=) ( dx) (X dx) (¢ -2
ppd\M j—1
— i -p 2 O _ gP\—i-
I O B
Differentiating morg(n — 1) times, we obtain
n
(¥7 ) (€= =g = i)~ 1)(2- L= )6 —2) T =0 (30)

Asj=12,...,n, then for eachj there is one null term in the product given By.(30) this completes the proof.

Finally, we show the equivalence between the Cauchy probledra Volterra integral equation of the second kind.

Theorem 3Leta > 0and n= [a] + 1 where ne N. Let G be an open set iR and f: (a,b] x G— R be a function such
that f(x,¢(x)) € L(a,b) forany¢ € G. If ¢ € L(a,b), then¢ satisfies the relations

(k22" #)(x) = f(x $(x), (31)
gtk Dgy @ty =bj, bj € R, (j=1,2,...,n), (32)
if, and only if,¢ satisfies the Volterra integral equation
xP _ aP\/ i 1 X /xP P\ k1
+ / tP=LE(t, ¢ (1)) dt, 33
Zrk ) @k (55) o) %9

with A defined inEq.(25)
Proof(=) We considetp € L(a,b) satisfyingEq.(31)andEq.(32) As ¢ € L(a,b), thenEq.(31)exists and 75" ¢)(x) €
L(a,b). Applying operatoﬁ/a‘i on both sides oEq.(31)and using_emma 4andEq.(32) we obtain

(k Za k22 )0 = (¢ L2k F(t, 0 (1) ()

0 (P g i-v)kn-a)-Kin-j) o o\ A
¢<x>—;l(k/ark[k(/\_j+l)]"’)(a) (% pa) = 028 1O

. _ A—j
P00=3 rk[k(/\ti i+ 1)] (Xp pap) + (e Sa F(E. (1)) (%)
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FromLemma 1 the integral JL At ¢(1)))(x) € L(ab), thusEq.(33)follows.
(<) Assume that € L(a,b) satisfiesEq.(33) Applying operatoﬁ@f;" on both sides oEq.(33) we obtain

(570100 = 3 ek [P0 e 1) o QA 190

FromLemma 2andLemma 5 Eq.(31)follows. Next, we prove the validity dtq.(32) Therefore, we apply the operator
‘k’/;f’v)(k"’O')’k(”’m), withm=1,2,...,n, on both sides oEq.(33) in order to obtain
bj

p gl ><kn—a>—k<n—m><x"—a">/\_j
k(A —J+1)] P

1/'
S e 116 0)()

1 Fk[k(m I[TJJrl)] <X";a">

P FEMVIEIE (4 (1)) (X).

=}

(’k) éEiL—v)(kn—or)—k(n—j)(I))(X)

—_—

3 X0 |

+

—_— =

+

Lettingx — a*, we finally have

gVt KD g) @) = by, with m=1,2,...,n

5 Linear Fractional Differential Equations

In this section we analyze some particular cases of fundtfgnp (x)) appearing inrheorem 3We propose, as our result,
apply the method of successive approximations in order taiolan analytical solution of the resulting linear fractd
differential equations. Let us first considigx, ¢ (x)) = A ¢ (x) in Theorem 3

Theorem 4Leta,A € R* suchthatn-1< a <n, where ne N. If ¢ € L(a,b), then the Cauchy problem
(k75" 9)(x) = A (x) (34)
(/kJ aEi.—v)(kn—or)—k(n—i)(p)(a_+) =bj,bjeR, (j=1,2,....n), (35)

admits a unique solution in the spacgalb), given by

n xP — P\l XP —aP\ &
Z ( ) ExakA—j+1) [/\( 5 ) ], (36)

where E ¢ () is defined irEq.(7)

ProofAccording toTheorem 3we just need to solve the Volterra integral equatieq.(33) with f(t,¢(t)) =A¢(t). As
the Volterra integral equation of the second kind admitsigumsolution #1], the uniqueness dtq.(33)is guaranteed.
In order to find the exact solution, we use the method of ssdeeapproximations, that is, we consider

xP —aP\ "\~
o= ) @)

A x(xp—tp\ KL
¢i(x):¢0(x)+krk(a)/a‘< 5 ) P14 (t)dt. (38)

We define a parametéi,, by

Am:w with m=1,2,...,i+1 (39)
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In casem= 1, we have\; = A given byEq.(25) Thus, fromEq.(37)andEq.(38) we can write

X _ g1
00 = 909+ e [ (F50) e ol

n Ab; o (tP—aP\"
=004 S ERA- T kfa*(T) ](X)'

Using Theorem 2we obtain

¢1(X):§ —.J+1>](Xp;ap)A Z /\2—J+1)]<xp;ap>/\2J

Am-1 xP _ aP /\m j
=95 b . 40
ZL : /\m—J+1)< p ) (40)
Similarly, usngq.(37) Eq.(40)andTheorem 2we obtain the expression fgp(x), that is,
)\ X XP _tp %_1
= p_l
020 = 909+ e [ (F50) e

0 s (#)AJ] )

)\mfl

n 2
VFAD Y RkAn— T 1)

n 3 m— P _ ap\ Am—]
_ Zb Z A . <x a > .
& EdkAm—i+)\ p

Repeating this process, we obtain the expressiogfog), with i € N:

n i+1 Am-1 xP _ g\ Mmi
9305w i (o)

Takingi — o, we obtain the explicit solution fap (x)

o Am-1 P _gP Am—]
Z bj Z k(Am—j+1 ( ) :
£ m—j+D\ p
Changing the summation index,— m-+ 1, we have

AM xP _ gP\ i1l
Z bj Z k(Ami1—j+1 < > :
= mi1— ] +1)] P

Moreover, we can rewrite this last expression in termis-néw generalized Mittag-Leffler function, that is,

XP — aP A=j XP — aP i
Z bj ( ) Exaka—j+1) [)\ ( P ) ] - (41)

As another application, we considefx, ¢ (x)) = A (£ 2", $)(x) in Theorem 3

Theorem5Lleta,BeR, a0 >B>0,n—1<a <n,neNandA €R. Then, the Cauchy problem
(€787 $)00 = A (75" $) )
@ glkna gy @ty — by, by € R, (j=1,2,...,n),

admits a unique solution in the spacgalb), given by

. i
xP —gP\ 9l N
lebj ( p ) Eca—pKko-j+1) [)\ ( 5 ) } ’

a+v(nk—a+B)
v :

where®@ =
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ProofSuppose the solutiof = (p/‘ig) (x) € L(a,b), then
(€728 F2ON) =228 R 7LD

By Lemma 2 we can write

(€758 7E 90 =Agx),

and byLemma 3 we have

€ rE 9 =29 or (75 P )0 =Ag(x).

(a—B)m+a+p+v(nk—a+p)
k

We shall use the second expression. Thusyjet ; in the casen = 1 we denote

Ym =Y. Takinga — a — 3 in Theorem 4we can write

a-B
n XP — aP XP—aP\ "k
Z < > Ek,mp,k(ﬂjﬂ) [)\ ( 5 ) ] : (42)

As ¢ (x) = (’kJ ﬁg)(x), we apply the operatc(ﬁ/ﬁ) on both sides 0Eq.(42) in order to obtain

n Ym—1]
o §0 3 2 ()" o

Using Theorem 2and rewriting the expression, we obtain

N /xp—aP\o X —ap\
:Z ( ) Exa—pkO—j+1) A( 5 ) :

In the next theorem we consider a sequence of linear fraaltéhfierential equations of ordem. This theorem generalizes
the results presented i@4].

Theorem6Leta,BeR, a0 >B>0,n—1<a <n,neNandA €R. Then, the Cauchy problem
k25" $) () =A9(x) (43)
([k)/a(ifv)(knfan)*k(nfj)qb)(a+) _ bj, bj €R, (j=1,2,....n), (44)

admits a unique solution in the spacgalb), given by

n xP — gP\ /i xP —aP\ ¥
Z ( ) Exank(An—j+1) [)\n( 5 ) ], (45)

v(nk—an)+an
—

whereA, =

ProofWe considerr — anin Theorem 4we thus obtain the solutiofgq.(45)

6 Dependence on Initial Conditions

In this section, we present the changes in a solution edthilfesmall changes in initial conditions. Considsr.(31)with
the following changes in the initial conditions showrEqg.(32)

(© gk K gy @) =bj+nj, bjeR, (j=12,...,n), (46)

wheren; (j =1,...,n) are arbitrary constants.
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Theorem 7 Suppose that the hypothesesToiorem 3are satisfied. Le$(x) and ¢ (x) be solutions of the initial value
problemsEq.(31}Eq.(32)andEq.(31}Eq.(46) respectively. Then,

v(nk—a)+a a

n ¥ —aP\~ x  J xP —aP\ k
19() =)< > Injl ( ) Bk a,a-+v(nk-—a)—k(j-1) [A( ) ] :

]=1 p p
with x € (a,b], where E ¢ ;(2) is the k-Mittag-Leffler functiorkq.(7)
Proof According toTheorem 4we have
¢(x) = lim ¢;(x)

|—00
wherego(X) is given byEq.(37)and
1 x(xp—ap) k1
) — p-1 .

00 =000+ o [ (57 ) T et @7)

We also have

P(x) = iILr’g) $i(x), (48)

_ ¢ (byrn) (x-ap\M
X _ -1
5100 = 6009+ e | (Xp pap)? LG a)dt =12, (50)
FromEq.(37)andEq.(49) we can write
. C Iyl X —ab\ "
9000~ 06091 3 a5 ) )

We finally consideEq.(47)andEq.(50)with i = 1, the Lipschitz condition for functiof(t, ¢ ), Definition 2 the inequality
Eq.(51)andTheorem 2in order to obtain

— . njl X —aP\"!
[¢1(%) — P1(0)| < le KA 7T ( . )
+ k,—lf[\a] /ax (XP;tP - tp*1|f(t,¢0(t)) — f(tvéo(t)”dt

o
A (o)

)

< 2 RKA-+1)] (%
)
(

F-1

-1

a_q A—j
it e [(5) e (52)
kfila] & k(A —j+D)]Ja \ p p

B n | 2 AM-1 (Xp_ap)/\m—i
=212 iAo\ p ’

whereAn is given byEq.(39) Thus, continuing this procedure, we obtain

h i+1 AM-1 xP —aP\/\m)
"I"(X)_‘ﬁ'(x)'<J-Zl|'7‘|w;rk“‘(/‘m‘j“)]( P ) '
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Takingi — o andm— m+ 1, it follows that

n P gp\ Nl P—aP)k
90008091 = 3 il (*55) " Beann-ion l’*(x > ]

7 Conclusion

We presented a generalization for a fractional derivateently discussed ir8], obtained by inserting a new parameter
in its definition. This generalization, for adequate valagis parameters, recovers a wide list of definitions of silzal
fractional derivatives. We presented some properties isf gbneralizedk, p)-fractional derivative. Furthermore, we
discussed the equivalence between a Cauchy problem, ugggperator of fractional differentiation, and a Volterra
integral equation of the second kind. Finally, we consideseme particular cases for this Cauchy problem, and proved
that small changes on initial conditions entail small chemig the solution of the problem.

A natural continuation of this paper consists in verifyihg Leibniz’s rule, or product rule, for the generalizédp)-
fractional derivative and to investigate the validity oktfundamental theorem of fractional calculus. Studies is th
direction have already begu4d].
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