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1 Introduction

There are several problems in which fractional derivatives(non-integer order derivatives) play a central role [1,2,3,4,5].
It should be emphasized that fractional derivatives are presented in many ways, in particular, characterizing three distinct
ways, which we will mention in order to develop the work in oneof them.

Each classical fractional derivative is usually defined in terms of a specific integral. Among the most well-known
definitions of fractional derivatives we may mention the Riemann-Liouville, Caputo, Grünwald-Letnikov and Hadamard
derivatives [6,7], whose formulations involve integrals with singular kernels and which are used to study, for example,
problems involving the memory effect [8]. On the other hand, in the years 2010, other formulations offractional derivatives
have appeared in the literature [9]. These new formulations differ from the classical ones in several aspects. For instance,
classical fractional derivatives are defined in such a way that in the limit in which the order of the derivative is an integer,
one recovers the classical derivatives in the sense of Newton and Leibniz. There has also been recently proposed a new
fractional derivative [10,11,12] with a corresponding integral whose kernel can be a non-singular function, for instance,
a Mittag-Leffler function [13]. Also in such cases, integer order derivatives are recovered by considering adequate limits
for the values of its parameters.

On the other hand, there are many ways to obtain a generalization of classical fractional derivatives. Some authors
introduce parameters in classical definitions or in some particular special function [3,14,15,16,17,18,19,20], as we shall
do below. Also, in a recent paper [21], the authors introduce a parameter and discuss a generalization for fractional
derivatives on two particular spaces, which they call generalized fractional derivative, and further propose a Caputo
modification of this generalization.

Furthermore, also recent is the paper [22] in which, due to the proliferation of definitions, the authors propose a
method (algorithm) to characterize a fractional derivative by imposing some requirements for a particular definition to be
considered a good definition of a fractional (non-integer order) derivative.

In this paper we are interested in the so-calledk-fractional and(k,ρ)-fractional derivative types, which generalize
the classical fractional derivatives. Specifically, we propose a new generalization of fractional derivatives and discuss a
general Cauchy problem in order to study the existence and uniqueness of its solutions and their dependence on initial
conditions. As a by product, we recover a wide class of fractional derivatives.

This paper is organized as follows: In Section 2, we present some definitions aiming at our main result; in particular,
the definition ofk-Mittag-Leffler functions, the spaces in which we work and the k-fractional integrals in the senses of
Riemann-Liouville and Hadamard. In Section 3, we present some properties of the so-called(k,ρ)-fractional operator
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and in Section 4, our main result, we introduce the generalized (k,ρ)-fractional derivative and we demonstrate that,
using adequate parameters, we are able to recover a wide listof definitions of fractional derivatives. As an application,
introduced in the previous section by means of theorems, we approach linear fractional differential equations by studying
the Cauchy problem and discuss the existence and uniquenessof its solution and its dependence on initial conditions.
Concluding remarks close the paper.

2 Preliminaries

Let us introduce the concept ofk-∗, where∗ denotes the gamma function, the beta function or the Pochhammer symbol,
in order to introduce thek-Mittag-Leffler function. Dı́az and Pariguan [16] have been the first ones to define thek-gamma
function, thek-beta function and thek-Pochhammer symbol. We start explaining thek-gamma function, defined by

Γk(x) =
∫ ∞

0
tx−1e−

tk
k dt, with x,k> 0, (1)

for which the following relations hold:

Γk(x) = k
x
k−1Γ

(x
k

)

and Γk(k) = 1. (2)

In the limit k→ 1, we haveΓk(x) = Γ (x). Thek-Pochhammer symbol is defined by

(x)n,k =

{
1, for n= 0
x(x+ k) · · ·(x+(n−1)k), for n∈ N, x∈ R, k> 0, (3)

or in terms of a quotient ofk-gamma functions,

(x)n,k =
Γk(x+nk)

Γk(x)
. (4)

Finally, thek-beta function is defined by

Bk(x,y) =
1
k

∫ 1

0
t

x
k−1(1− t)

y
k−1dt, x> 0, y> 0, k> 0. (5)

Notice that, whenk → 1 we haveBk(x,y) = B(x,y). Thek-beta function can be written in terms ofk-gamma functions
and in terms of the common beta function as follows:

Bk(x,y) =
Γk(x)Γk(y)
Γk(x+ y)

and Bk(x,y) =
1
k

B
(x

k
,
y
k

)

.

Mittag-Leffler functions play a very important role in the solution of linear fractional differential equations and integral
equations, [23,24,25,26,27]. In order to generalize such functions, Dorrego and Cerutti [28] defined the so-calledk-
Mittag-Leffler function as follows:

Eδ
k,β ,γ(z) =

∞

∑
n=0

(δ )n,k

Γk(βn+ γ)
zn

n!
, z∈R, β > 0, γ > 0, (6)

wheren∈N, (δ )n,k is thek-Pochhammer symbol defined in Eq.(3) andΓk(x) is thek-gamma function, Eq.(1). In the case
k = 1 we recover the three-parameters Mittag-Leffler function [29]. Gupta and Parihar [30] defined the so-calledk-new
generalized Mittag-Leffler function using the following series:

Ek,ξ ,σ (z) =
∞

∑
n=0

zn

Γk(ξ n+σ)
, z∈ R, ξ > 0, σ > 0, (7)

wheren ∈ N. Again, in order to recover the two-parameters Mittag-Leffler function introduced by Wiman [31] one just
has to considerk = 1. Before presenting the definition ofk-fractional integrals and their generalizations, we definethe
adequate function spaces for such definitions, as well as theLipschitz condition for a functionf (x,ϕ).
Definition 1.[23]

Let [a,b] be a finite or infinite interval on the real axisR= (−∞,∞). We denote by Lp(a,b) the set of those Lebesgue
complex-valued measurable functionϕ on [a,b] defined by

Lp(a,b) =

{

ϕ : ‖ϕ‖p =

(∫ b

a
|ϕ(x)|pdx

)1/p

<+∞

}

, 1≤ p< ∞. (8)

In the case p= 1, we denote L1(a,b) = L(a,b).
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Definition 2.[32] Assume that f(x,ϕ) is defined on the set(a,b]× G, G⊂ R. A function f(x,ϕ) satisfies Lipschitz
condition with respect toϕ , if for all x ∈ (a,b] and forϕ1,ϕ2 ∈ R,

| f (x,ϕ1)− f (x,ϕ2)| ≤ A|ϕ1−ϕ2|,

where A> 0 does not depend on x.

Once such functions and the adequate space were defined, Mubeen and Habibullah [18] introduced the so-called
k-Riemann-Liouville fractional integral, a generalization of the Riemann-Liouville fractional integral, obtained for k= 1.
Such integral is defined here, for the left-sided only, as

(kI
α
a+ϕ)(x) =

1
kΓk(α)

∫ x

a
(x− t)

α
k −1ϕ(t)dt, α > 0, x> a, (9)

whereϕ ∈ L(a,b). Whenk→ 1, we haveΓk(α) = Γ (α) andkI
α
a+ = I α

a+ , whereI α
a+ is the classical Riemann-Liouville

fractional integral. Similarly, in order to generalize theHadamard fractional integral, thek-Hadamard fractional integral
[33] was introduced. The definition of this operator, for the left-sided only, is given by

(kH
α

a+ϕ)(x) =
1

kΓk(α)

∫ x

a

(

ln
x
t

) α
k −1

ϕ(t)
dt
t
, α > 0, x> a, (10)

wherek> 0 andϕ ∈ L(a,b). Whenk→ 1, we havekH α
a+ → H α

a+ , whereH α
a+ is the Hadamard fractional integral.

Recently, Sarikaya et al. [17] proposed the so-called(k,ρ)-fractional integral which, at adequate limits, recovers the
k-Riemann-Liouville andk-Hadamard fractional integrals. This operator is defined —left-sided only— by

(
ρ
k J α

a+ϕ)(x) =
1

kΓk(α)

∫ x

a

(
xρ − tρ

ρ

) α
k −1

tρ−1ϕ(t)dt, α > 0, x> a, (11)

with n−1<α ≤ n, n∈N, k> 0,ρ > 0 andϕ ∈ L(a,b). Whenk→ 1, we haveΓk(α)→Γ (α) andρ
k J α

a+ → ρJ α
a+ , where

ρJ α
a+ is the generalized fractional integral defined in [34]. Whenρ → 1, we obtain thek−Riemann-Liouville fractional

integral, Eq.(9). On the other hand, consideringρ → 0+, we obtain thek-Hadamard fractional integral, Eq.(10).

3 Auxiliary Results

We now present some properties of the fractional integrals defined in the previous section, in order to use them throughout
this work. We start by presenting the semigroup property forthe(k,ρ)-fractional operator and an application to the power
function; both results are theorems found in [17].

Theorem 1.Let α > 0, β > 0, k> 0, ρ > 0 andϕ ∈ Lp(a,b), then

(
ρ
k J α

a+
ρ
k J

β
a+ϕ)(x) = (

ρ
k J

α+β
a+ ϕ)(x) = (

ρ
k J

β
a+

ρ
k J α

a+ϕ)(x).

Theorem 2.Let α,β > 0 and k,ρ > 0. Then, we have

[
ρ
k J α

a+(t
ρ −aρ)

β
k −1](x) =

Γk(β )
ρ

α
k Γk(α +β )

(xρ −aρ)
α+β

k −1.

The following lemma shows that the(k,ρ)-fractional operator is bounded in the spaceL(a,b).

Lemma 1.[17] Let ϕ ∈ L(a,b); then, the(k,ρ)-Riemann-Liouville fractional integral of orderα > 0 is bounded in the
space L(a,b), i.e.

‖
ρ
k J α

a+ϕ‖1 ≤ M‖ϕ‖1, (12)

where

M =
1

α Γk(α)

(
bρ −aρ

ρ

) α
k

.

Most fractional differentiation operators are defined in terms of some corresponding fractional integral. We now present
the definition of Hilfer fractional derivative, which is associated with the Riemann-Liouville fractional integral.
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Definition 3.[35] The Hilfer fractional derivative of order0< α < 1 and type0≤ β ≤ 1 with respect to x is defined by

(Dα ,β
a+ ϕ)(x) =

(

I
β (1−α)
a+

d
dx

I
(1−β )(1−α)
a+ ϕ

)

(x) (13)

for functions for which the expression on the right-hand side exists.

Similarly, we have the Hilfer-Hadamard fractional derivative, which is associated with the Hadamard fractional integral.

Definition 4.[36] The Hilfer-Hadamard fractional derivative of order0< α < 1 and type0≤ β ≤ 1 with respect to x is
defined by

(H Dα ,β
a+ ϕ)(x) =

(

H
β (1−α)

a+

(

x
d
dx

)

H
(1−β )(1−α)

a+ ϕ
)

(x) (14)

for functions for which the expression on the right hand sideexists.

In order to obtain a more general derivative than the one proposed by Hilfer, that is, a fractional derivative of order
α ∈R

+ with n−1<α ≤ n, wheren∈N, Hilfer, Luchko and Tomovski [37] proposed the generalized Riemann-Liouville
fractional derivative, which is associated with the Riemann-Liouville fractional integral.

Definition 5.[37] Let α,β ∈ R such that n− 1 < α ≤ n, n∈ N, 0 ≤ β ≤ 1, whereα is the order andβ is the type of
generalized Riemann-Liouville fractional derivative, then

(nDα ,β
a+ ϕ)(x) =

(

I
β (n−α)
a+

dn

dxn I
(1−β )(n−α)
a+ ϕ

)

(x) (15)

for functions for which the expression on the right-hand side exists.

Recently, Nisar et al. [3] proposed the(k,ρ)-fractional derivative, which is associated with the(k,ρ)-fractional integral,
Eq.(11).

Definition 6.[3] Let µ ,ν,k∈ R such that0< µ < 1, 0≤ ν ≤ 1 and k> 0. The(k,ρ)-fractional derivative is defined by

(
ρ
k D

µ,ν
a+ ϕ)(x) =

(

ρ
k J

ν(k−µ)
a+

(

x1−ρ d
dx

)

(kρ
k J

(1−ν)(k−µ)
a+ ϕ)

)

(x), (16)

for functions for which the expression on the right hand sideexists.

4 Generalized(k,ρ)-Fractional Derivative

In this section we propose, as our main result, a generalization for the fractional derivative proposed in [3]. The definition
in that work considers the order of derivative to be 0< µ < 1, but here we considerα ∈R

+, with n−1<α ≤ n andn∈N.
We call our definition generalized(k,ρ)-fractional derivative. The fractional integral associated with this differentiation
operator is the(k,ρ)-fractional integral,Eq.(11). In this section we also prove some properties of this operator.

Definition 7.Let α,ν ∈ R such that n−1< α ≤ n, n∈ N, 0≤ ν ≤ 1, ρ > 0 and k> 0. We define the generalized(k,ρ)-
fractional derivative by

(
ρ
k Dα ,ν

a+ ϕ)(x) =
(

ρ
k J

ν(nk−α)
a+

(

x1−ρ d
dx

)n

(kn ρ
k J

(1−ν)(kn−α)
a+ ϕ)

)

(x) (17)

=
(

ρ
k J

ν(nk−α)
a+ δ n

ρ (k
n ρ

k J
(1−ν)(kn−α)
a+ ϕ)

)

(x), (18)

whereδ n
ρ =

(

x1−ρ d
dx

)n

.

With adequate choices of parameters inDefinition 7, we recover well-known operators of fractional differentiation,
namely:

–if n= 1, we obtain the(k,ρ)-fractional derivative [3];
–if k= 1 andn= 1, we have the Hilfer-Katugampola fractional derivative proposed in [1];
–if k= 1 andρ = 1, we obtain the so-called generalized Riemann-Liouville fractional derivative [37];
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–if k= 1, ρ → 0+ andn= 1, we have the Hilfer-Hadamard fractional derivative [36];
–if k= 1, ρ = 1 andn= 1, we obtain the well-known Hilfer derivative [38];
–if k= 1, ρ = 1 andν = 0, we obtain the Riemann-Liouville fractional derivative [23, p. 70];
–if k= 1, ρ = 1 andν = 1, we obtain the Caputo derivative [23, p. 92];
–if k= 1, ρ → 0+ andν = 0, we obtain the Hadamard fractional derivative [23, p. 111];
–if k= 1, ρ → 0+ andν = 1, we have the Caputo-Hadamard fractional derivative [39].

It is also possible to recover, for particular extreme values of integration, the fractional derivative in the Liouville sense
[23, p. 87] and in the Weyl [38] sense.
The generalized(k,ρ)-fractional derivativeρk Dα ,ν

a+ is the inverse operator of the(k,ρ)-fractional integral,ρk J α
a+ . We prove

this result by means of the following lemma.

Lemma 2.Let α ∈R
∗ andρ > 0, k> 0. If 1≤ p≤ ∞, then forϕ ∈ Lp(a,b) we have

(
ρ
k Dα ,ν

a+
ρ
k J α

a+ϕ)(x) = ϕ(x). (19)

Proof.In order to simplify the development and the notation, we define

Ψ =
ν(nk−α)

k
and Φ = n−Ψ . (20)

FromDefinition 7andTheorem 1, we can write

(
ρ
k Dα ,ν

a+
ρ
k J α

a+ϕ)(x) =
(

ρ
k J

ν(nk−α)
a+ δ n

ρ (k
n ρ

k J
(1−ν)(kn−α)+α
a+ ϕ)

)

(x)

=
kn−2 ρ2−Ψ−Φ

Γk[kΨ ]Γk[kΦ ]

∫ x

a
(xρ − tρ )Ψ−1tρ−1δ n

ρ

[∫ t

a
(tρ −uρ )Φ−1uρ−1ϕ(u)du

]

︸ ︷︷ ︸

F(t)

dt. (21)

Solving by parts the integral within brackets, and choosingw= ϕ(u) anddv= (tρ −uρ)Φ−1, we obtain

F(t) =
ρ−1

Φ

{

ϕ(a)(tρ −aρ)Φ +

∫ t

a
(tρ −uρ)Φ ϕ ′(u)du

}

. (22)

Applying the differential operatorδ n
ρ to Eq.(22)we obtain, by mathematical induction, the following expression

δ n
ρ F(t) =

ρn−1Γ (Φ +1)
Φ Γ (Φ −n+1)

{

ϕ(a)(tρ −aρ)Φ−n+
∫ t

a
(tρ −uρ)Φ−nϕ ′(u)du

}

(23)

We substituteEq.(23)into Eq.(21)and use the first expression ofEq.(2)to get

(
ρ
k Dα ,ν

a+
ρ
k J α

a+ϕ)(x) =
ρ

kkΨ−1Γ [Ψ ]k(1−Ψ )−1Γ [1−Ψ ]

{

ϕ(a)
∫ x

a
(xρ − tρ)Ψ−1tρ−1(tρ −aρ)−Ψ dt

+
∫ x

a
ϕ ′(u)du

∫ x

u
(xρ − tρ)Ψ−1tρ−1(tρ −uρ)−Ψ dt

}

.

Introducing in the integral froma to x the change of variableu= (tρ −aρ)/(xρ −aρ) and doing the same in the integral
from u to x, we have

(
ρ
k Dα ,ν

a+
ρ
k J α

a+ϕ)(x) =
1

Γk[kΨ ]Γk[k(1−Ψ)]

[

ϕ(a)+
∫ x

a
ϕ ′(u)du

]{
1
k

∫ 1

0
(1−u)Ψ−1u(1−Ψ)−1du

}

.

We then use the two expressions inEq.(2)to obtain

(
ρ
k Dα ,ν

a+
ρ
k J α

a+ϕ)(x) =
1

Γk[kΨ ]Γk[k(1−Ψ)]

[

ϕ(a)+
∫ x

a
ϕ ′(u)du

]
Γk[kΨ ]Γk[k(1−Ψ)]

Γk[k]

= ϕ(a)+
∫ x

a
ϕ ′(u)du.

Finally, we use the fundamental theorem of calculus, whenceit immediately follows that

(
ρ
k Dα ,ν

a+
ρ
k J α

a+ϕ)(x) = ϕ(x).
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The following result yields the composition between the(k,ρ)-fractional integral and the generalized(k,ρ)-fractional
derivative.

Lemma 3.Let α,β ∈ R such thatα > β > 0, k,ρ > 0, n−1< α ≤ n and n∈ N. If 1≤ p≤ ∞, then forϕ ∈ Lp(a,b), we
have

(
ρ
k Dα ,ν

a+
ρ
k J β

a+ϕ)(x) = (
ρ
k J β−α

a+ ϕ)(x). (24)

Proof.The proof is analogous to the previous lemma [40].

Again, in order to simplify the development and notation, weintroduce the parameterΛ :

Λ =
ν(nk−α)+α

k
. (25)

Lemma 4.Let α > 0, n= [α]+1, where n∈ N. If ϕ ∈ Lp(a,b) and(ρ
k J

(1−ν)(kn−α)−k(n− j)
a+ ϕ))(x) ∈ ACn

δ [a,b], then

(
ρ
k J α

a+
ρ
k Dα ,ν

a+ ϕ)(x) = ϕ(x)−
n

∑
j=1

(
ρ
k J

(1−ν)(kn−α)−k(n− j)
a+ ϕ)(a)

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

. (26)

In particular, if 0< α < 1, then

(
ρ
k J α

a+
ρ
k Dα ,ν

a+ ϕ)(x) = ϕ(x)−
(

ρ
k J

(1−ν)(k−α)−k(1− j)
a+ ϕ)(a)

Γk[ν(k−α)+α − k( j −1)]

(
xρ −aρ

ρ

)Λ− j

. (27)

Proof.FromDefinition 7, we can write

(
ρ
k J α

a+
ρ
k Dα ,ν

a+ ϕ)(x) =
(

ρ
k J α

a+
ρ
k J

ν(nk−α)
a+ δ n

ρ (k
n ρ

k J
(1−ν)(kn−α)
a+ ϕ)

)

(x)

=
(

ρ
k J

ν(nk−α)+α
a+ δ n

ρ (k
n ρ

k J
(1−ν)(kn−α)
a+ ϕ)

)

(x)

=
ρ1−Λ

Γk[kΛ ]

∫ x

a
(xρ − tρ)Λ−1 tρ−1

{

δ n
ρ (k

n ρ
k J

(1−ν)(kn−α)
a+ ϕ)(t)

}

dt.

Integrating by parts the last expression, we obtain

(
ρ
k J α

a+
ρ
k Dα ,ν

a+ ϕ)(x) =
−ρ1−Λ (xρ −aρ)Λ−1

kΛ Γ (Λ)
[δ n−1

ρ (kn ρ
k J

(1−ν)(kn−α)
a+ ϕ)(a)]

+
ρ2−Λ

kΛ Γ (Λ −1)

∫ x

a
(xρ − tρ)Λ−1 tρ−1δ n

ρ (k
n ρ

k J
(1−ν)(kn−α)
a+ ϕ)(t)dt.

Thus, integrating by parts(n−1) times, we have

(
ρ
k J α

a+
ρ
k Dα ,ν

a+ ϕ)(x) = −
n−1

∑
j=0

δ n− j−1
ρ (kn ρ

k J
(1−ν)(kn−α)
a+ ϕ)(a)

k j+1Γk[k(Λ − j)]

(
xρ −aρ

ρ

)Λ− j−1

+
1

kΓk[k(Λ −n)]

∫ x

a

(
xρ − tρ

ρ

)Λ−n−1

tρ−1(
ρ
k J

(1−ν)(kn−α)
a+ ϕ)(t)dt

= −
n−1

∑
j=0

δ n− j−1
ρ (kn ρ

k J
(1−ν)(kn−α)
a+ ϕ)(a)

k j+1Γk[k(Λ − j)]

(
xρ −aρ

ρ

)Λ− j−1

+ (
ρ
k J

ν(kn−α)+α−nk
a+

ρ
k J

(1−ν)(kn−α)
a+ ϕ)(x)

= ϕ(x)−
n

∑
j=1

δ n− j
ρ (kn ρ

k J
(1−ν)(kn−α)
a+ ϕ)(a)

k j Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

= ϕ(x)−
n

∑
j=1

(
ρ
k J

(1−ν)(kn−α)−k(n− j)
a+ ϕ)(a)

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

.
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Next, we show that the generalized(k,ρ)-fractional derivative of orderα of the polynomial function(tρ −aρ)Λ− j is null,
i.e.,

[ρ
k Dα ,ν

a+ (tρ −aρ)Λ− j
]
(x) = 0.

Lemma 5.Letα,ν ∈R such that n−1< α ≤ n, n∈N, 0≤ ν ≤ 1, ρ > 0 and k> 0. Then, for all j= 1,2, . . . ,n, we have
[

ρ
k Dα ,ν

a+ (tρ −aρ)Λ− j
]

(x) = 0. (28)

Proof.Again, in order to simplify the development and the notationin what follows, we useEq.(25)and we define

Ω =
(1−ν)(kn−α)

k
. (29)

Thus, fromDefinition 7andEq.(11), we have
(

kn ρ
k J

(1−ν)(kn−α)
a+ (tρ −aρ)Λ− j

)

(x) =
kn ρ1−Ω

kΓk[kΩ ]

∫ x

a
(xρ − tρ)Ω−1(tρ −aρ)Λ− j tρ−1dt.

We introduce the change of variableu= (tρ −aρ)/(xρ −aρ), and use the definition ofk-beta function,Eq.(5), to obtain
(

kn ρ
k J

(1−ν)(kn−α)
a+ (tρ −aρ)Λ− j

)

(x) =
kn ρ−Ω

Γk[kΩ ]
(xρ −aρ)n− j

{
1
k

∫ 1

0
(1−u)Ω−1uΛ− jdu

}

=
kn ρ−Ω Γk[k(Λ − j +1)]

Γk[k(n− j −1)]
(xρ −aρ)n− j .

Next, we calculateδ n
ρ (k

n ρ
k J

(1−ν)(kn−α)
a+ (tρ −aρ)Λ− j)(x), that is,

(

x1−ρ d
dx

)n

(xρ −aρ)n− j =

(

x1−ρ d
dx

)n−1(

x1−ρ d
dx

)

(xρ −aρ)n− j

= ρ(n− j)

(

x1−ρ d
dx

)n−1

(xρ −aρ)n− j−1.

Differentiating more(n−1) times, we obtain
(

x1−ρ d
dx

)n

(xρ −aρ)n− j = ρn (n− j)(n− j −1) · · ·(2− j)(1− j)(xρ −aρ)− j = 0. (30)

As j = 1,2, . . . ,n, then for eachj there is one null term in the product given byEq.(30); this completes the proof.

Finally, we show the equivalence between the Cauchy problemand a Volterra integral equation of the second kind.

Theorem 3.Let α > 0 and n= [α]+1 where n∈ N. Let G be an open set inR and f : (a,b]×G→ R be a function such
that f(x,ϕ(x)) ∈ L(a,b) for anyϕ ∈ G. If ϕ ∈ L(a,b), thenϕ satisfies the relations

(
ρ
k Dα ,ν

a+ ϕ)(x) = f (x,ϕ(x)), (31)

(
ρ
k J

(1−ν)(kn−α)−k(n− j)
a+ ϕ)(a+) = b j , b j ∈ R, ( j = 1,2, . . . ,n), (32)

if, and only if,ϕ satisfies the Volterra integral equation

ϕ(x) =
n

∑
j=1

b j

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

+
1

kΓk(α)

∫ x

a

(
xρ − tρ

ρ

) α
k −1

tρ−1 f (t,ϕ(t))dt, (33)

with Λ defined inEq.(25).

Proof.(⇒) We considerϕ ∈ L(a,b) satisfyingEq.(31)andEq.(32). Asϕ ∈ L(a,b), thenEq.(31)exists and(ρ
k Dα ,ν

a+ ϕ)(x)∈
L(a,b). Applying operatorρk J α

a+ on both sides ofEq.(31)and usingLemma 4andEq.(32), we obtain

(
ρ
k J α

a+
ρ
k Dα ,ν

a+ ϕ)(x) = (
ρ
k J α

a+ f (t,ϕ(t)))(x)

ϕ(x)−
n

∑
j=1

(
ρ
k J

(1−ν)(kn−α)−k(n− j)
a+ ϕ)(a)

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

= (
ρ
k J α

a+ f (t,ϕ(t)))(x)

ϕ(x) =
n

∑
j=1

b j

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

+(
ρ
k J α

a+ f (t,ϕ(t)))(x).
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FromLemma 1, the integral(ρ
k J α

a+ f (t,ϕ(t)))(x) ∈ L(a,b), thusEq.(33)follows.

(⇐) Assume thatϕ ∈ L(a,b) satisfiesEq.(33). Applying operatorρk Dα ,ν
a+ on both sides ofEq.(33), we obtain

(
ρ
k Dα ,ν

a+ ϕ)(x) =
n

∑
j=1

b j ρ j−Λ

Γk[k(Λ − j +1)]

[
ρ
k Dα ,ν

a+ (tρ −aρ)Λ− j
]

(x)+ (
ρ
k Dα ,ν

a+
ρ
k J α

a+ f (t,ϕ(t)))(x).

FromLemma 2andLemma 5, Eq.(31)follows. Next, we prove the validity ofEq.(32). Therefore, we apply the operator
ρ
k J

(1−ν)(kn−α)−k(n−m)
a+ , with m= 1,2, . . . ,n, on both sides ofEq.(33), in order to obtain

(
ρ
k J

(1−ν)(kn−α)−k(n− j)
a+ ϕ)(x) =

n

∑
j=1

b j

Γk[k(Λ − j +1)]

[

ρ
k J

(1−ν)(kn−α)−k(n−m)
a+

(
xρ −aρ

ρ

)Λ− j
]

+ (
ρ
k J

(1−ν)(kn−α)−k(n−m)
a+

ρ
k J α

a+ f (t,ϕ(t)))(x)

=
m

∑
j=1

b j

Γk[k(m− j +1)]

(
xρ −aρ

ρ

)m− j

+ (
ρ
k J

k(m−νn)+αν
a+ f (t,ϕ(t)))(x).

Lettingx→ a+, we finally have

(
ρ
k J

(1−ν)(kn−α)−k(n− j)
a+ ϕ)(a+) = bm, with m= 1,2, . . . ,n.

5 Linear Fractional Differential Equations

In this section we analyze some particular cases of functionf (x,ϕ(x)) appearing inTheorem 3. We propose, as our result,
apply the method of successive approximations in order to obtain an analytical solution of the resulting linear fractional
differential equations. Let us first considerf (x,ϕ(x)) = λ ϕ(x) in Theorem 3.

Theorem 4.Let α,λ ∈ R
∗ such that n−1< α ≤ n, where n∈ N. If ϕ ∈ L(a,b), then the Cauchy problem

(
ρ
k Dα ,ν

a+ ϕ)(x) = λ ϕ(x) (34)

(
ρ
k J

(1−ν)(kn−α)−k(n− j)
a+ ϕ)(a+) = b j , b j ∈ R, ( j = 1,2, . . . ,n), (35)

admits a unique solution in the space L(a,b), given by

ϕ(x) =
n

∑
j=1

b j

(
xρ −aρ

ρ

)Λ− j

Ek,α ,k(Λ− j+1)

[

λ
(

xρ −aρ

ρ

) α
k
]

, (36)

where Ek,ξ ,σ (·) is defined inEq.(7).

Proof.According toTheorem 3, we just need to solve the Volterra integral equation,Eq.(33), with f (t,ϕ(t)) = λ ϕ(t). As
the Volterra integral equation of the second kind admits a unique solution [41], the uniqueness ofEq.(33)is guaranteed.
In order to find the exact solution, we use the method of successive approximations, that is, we consider

ϕ0 =
n

∑
j=1

b j

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

(37)

ϕi(x) = ϕ0(x)+
λ

kΓk(α)

∫ x

a

(
xρ − tρ

ρ

) α
k −1

tρ−1ϕi−1(t)dt. (38)

We define a parameterΛm by

Λm =
ν(nk−α)+αm

k
with m= 1,2, . . . , i +1. (39)
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In casem= 1, we haveΛ1 = Λ given byEq.(25). Thus, fromEq.(37)andEq.(38), we can write

ϕ1(x) = ϕ0(x)+
λ

kΓk(α)

∫ x

a

(
xρ − tρ

ρ

) α
k −1

tρ−1ϕ0(t)dt

= ϕ0(x)+
n

∑
j=1

λ b j

Γk[k(Λ − j +1)]

[

ρ
k J α

a+

(
tρ −aρ

ρ

)Λ− j
]

(x).

UsingTheorem 2, we obtain

ϕ1(x) =
n

∑
j=1

b j

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

+
n

∑
j=1

b j

Γk[k(Λ2− j +1)]

(
xρ −aρ

ρ

)Λ2− j

=
n

∑
j=1

b j

2

∑
m=1

λ m−1

Γk[k(Λm− j +1)

(
xρ −aρ

ρ

)Λm− j

. (40)

Similarly, usingEq.(37), Eq.(40)andTheorem 2, we obtain the expression forϕ2(x), that is,

ϕ2(x) = ϕ0(x)+
λ

kΓk(α)

∫ x

a

(
xρ − tρ

ρ

) α
k −1

tρ−1ϕ1(t)dt

= ϕ0(x)+λ
n

∑
j=1

b j

2

∑
m=1

λ m−1

Γk[k(Λm− j +1)]

[

ρ
k J α

a+

(
tρ −aρ

ρ

)Λm− j
]

(x)

=
n

∑
j=1

b j

3

∑
m=1

λ m−1

Γk[k(Λm− j +1)

(
xρ −aρ

ρ

)Λm− j

.

Repeating this process, we obtain the expression forϕi(x), with i ∈ N:

ϕi(x) =
n

∑
j=1

b j

i+1

∑
m=1

λ m−1

Γk[k(Λm− j +1)

(
xρ −aρ

ρ

)Λm− j

.

Takingi → ∞, we obtain the explicit solution forϕ(x)

ϕ(x) =
n

∑
j=1

b j

∞

∑
m=1

λ m−1

Γk[k(Λm− j +1)

(
xρ −aρ

ρ

)Λm− j

.

Changing the summation index,m→ m+1, we have

ϕ(x) =
n

∑
j=1

b j

∞

∑
m=0

λ m

Γk[k(Λm+1− j +1)]

(
xρ −aρ

ρ

)Λm+1− j

.

Moreover, we can rewrite this last expression in terms ofk-new generalized Mittag-Leffler function, that is,

ϕ(x) =
n

∑
j=1

b j

(
xρ −aρ

ρ

)Λ− j

Ek,α ,k(Λ− j+1)

[

λ
(

xρ −aρ

ρ

) α
k
]

. (41)

As another application, we considerf (x,ϕ(x)) = λ (ρ
k D

β ,ν
a+ ϕ)(x) in Theorem 3.

Theorem 5.Let α,β ∈ R, α > β > 0, n−1< α ≤ n, n∈N andλ ∈R. Then, the Cauchy problem

(
ρ
k Dα ,ν

a+ ϕ)(x) = λ (ρ
k D

β ,ν
a+ ϕ)(x)

(
ρ
k J

(1−ν)(kn−α)−k(n− j)
a+ ϕ)(a+) = b j , b j ∈ R, ( j = 1,2, . . . ,n),

admits a unique solution in the space L(a,b), given by

ϕ(x) =
n

∑
j=1

b j

(
xρ −aρ

ρ

)Θ− j

Ek,α−β ,k(Θ− j+1)



λ
(

xρ −aρ

ρ

) α−β
k



 ,

whereΘ =
α +ν(nk−α +β )

k
.
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Proof.Suppose the solutionϕ = (
ρ
k J β

a+g)(x) ∈ L(a,b), then

(
ρ
k Dα ,ν

a+
ρ
k J β

a+g)(x) = λ (ρ
k Dβ ,ν

a+
ρ
k J β

a+g)(x).

By Lemma 2, we can write

(
ρ
k Dα ,ν

a+
ρ
k J β

a+g)(x) = λg(x),

and byLemma 3, we have

(
ρ
k J

β−α
a+ g)(x) = λg(x) or (

ρ
k D

α−β ,ν
a+ g)(x) = λg(x).

We shall use the second expression. Thus, letϒm =
(α −β )m+α +β +ν(nk−α +β )

k
; in the casem= 1 we denote

ϒm =ϒ . Takingα → α −β in Theorem 4, we can write

g(x) =
n

∑
j=1

b j

(
xρ −aρ

ρ

)ϒ− j

Ek,α−β ,k(ϒ− j+1)



λ
(

xρ −aρ

ρ

) α−β
k



 . (42)

As ϕ(x) = (
ρ
k J β

a+g)(x), we apply the operator(ρ
k J β

a+) on both sides ofEq.(42), in order to obtain

(
ρ
k J β

a+g)(x) =
n

∑
j=1

b j

∞

∑
m=0

λ m

Γk[k(ϒm− j +1)]

[

ρ
k J β

a+

(
tρ −aρ

ρ

)ϒm− j
]

(x).

UsingTheorem 2and rewriting the expression, we obtain

ϕ(x) =
n

∑
j=1

b j

(
xρ −aρ

ρ

)Θ− j

Ek,α−β ,k(Θ− j+1)



λ
(

xρ −aρ

ρ

) α−β
k



 .

In the next theorem we consider a sequence of linear fractional differential equations of orderαn. This theorem generalizes
the results presented in [24].

Theorem 6.Let α,β ∈ R, α > β > 0, n−1< α ≤ n, n∈N andλ ∈R. Then, the Cauchy problem

(
ρ
k Dαn,ν

a+ ϕ)(x) = λ ϕ(x) (43)

(
ρ
k J

(1−ν)(kn−αn)−k(n− j)
a+ ϕ)(a+) = b j , b j ∈ R, ( j = 1,2, . . . ,n), (44)

admits a unique solution in the space L(a,b), given by

ϕ(x) =
n

∑
j=1

b j

(
xρ −aρ

ρ

)Λn− j

Ek,αn,k(Λn− j+1)

[

λn

(
xρ −aρ

ρ

) αn
k
]

, (45)

whereΛn =
ν(nk−αn)+αn

k
.

Proof.We considerα → αn in Theorem 4; we thus obtain the solution,Eq.(45).

6 Dependence on Initial Conditions

In this section, we present the changes in a solution entailed by small changes in initial conditions. ConsiderEq.(31)with
the following changes in the initial conditions shown inEq.(32):

(
ρ
k J

(1−ν)(kn−α)−k(n− j)
a+ ϕ)(a+) = b j +η j , b j ∈R, ( j = 1,2, . . . ,n), (46)

whereη j ( j = 1, . . . ,n) are arbitrary constants.
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Theorem 7.Suppose that the hypotheses ofTheorem 3are satisfied. Letϕ(x) and ϕ̃(x) be solutions of the initial value
problemsEq.(31)-Eq.(32)andEq.(31)-Eq.(46), respectively. Then,

|ϕ(x)− ϕ̃(x)| ≤
n

∑
j=1

|η j |

(
xρ −aρ

ρ

) ν(nk−α)+α
k − j

Ek,α ,α+ν(nk−α)−k( j−1)

[

A

(
xρ −aρ

ρ

) α
k
]

,

with x∈ (a,b], where Ek,ξ ,σ (z) is the k-Mittag-Leffler function,Eq.(7).

Proof.According toTheorem 4, we have

ϕ(x) = lim
i→∞

ϕi(x)

whereϕ0(x) is given byEq.(37)and

ϕi(x) = ϕ0(x)+
1

kΓk[α]

∫ x

a

(
xρ −aρ

ρ

) α
k −1

tρ−1 f (t,ϕi−1(t))dt. (47)

We also have

ϕ̃(x) = lim
i→∞

ϕ̃i(x), (48)

ϕ̃0(x) =
n

∑
j=1

(b j +η j)

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

, (49)

ϕ̃i(x) = ϕ̃0(x)+
1

kΓk[α]

∫ x

a

(
xρ −aρ

ρ

) α
k −1

tρ−1 f (t, ϕ̃i−1(t))dt, i = 1,2, . . . (50)

FromEq.(37)andEq.(49), we can write

|ϕ0(x)− ϕ̃0(x)| ≤
n

∑
j=1

|η j |

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

. (51)

We finally considerEq.(47)andEq.(50)with i = 1, the Lipschitz condition for functionf (t,ϕ), Definition 2, the inequality
Eq.(51)andTheorem 2, in order to obtain

|ϕ1(x)− ϕ̃1(x)| ≤
n

∑
j=1

|η j |

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

+
A

kΓk[α]

∫ x

a

(
xρ − tρ

ρ

) α
k −1

tρ−1| f (t,ϕ0(t))− f (t, ϕ̃0(t))|dt

≤
n

∑
j=1

|η j |

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

+
A

kΓk[α]

∫ x

a

(
xρ − tρ

ρ

) α
k −1

tρ−1|ϕ0(t)− ϕ̃0(t)|dt

≤
n

∑
j=1

|η j |

Γk[k(Λ − j +1)]

(
xρ −aρ

ρ

)Λ− j

+
A

kΓk[α]

n

∑
j=1

|η j |

Γk[k(Λ − j +1)]

∫ x

a

(
xρ − tρ

ρ

) α
k −1

tρ−1
(

tρ −aρ

ρ

)Λ− j

=
n

∑
j=1

|η j |
2

∑
m=1

Am−1

Γk[k(Λm− j +1)]

(
xρ −aρ

ρ

)Λm− j

,

whereΛm is given byEq.(39). Thus, continuing this procedure, we obtain

|ϕi(x)− ϕ̃i(x)| ≤
n

∑
j=1

|η j |
i+1

∑
m=1

Am−1

Γk[k(Λm− j +1)]

(
xρ −aρ

ρ

)Λm− j

.
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Takingi → ∞ andm→ m+1, it follows that

|ϕ(x)− ϕ̃(x)| ≤
n

∑
j=1

|η j |

(
xρ −aρ

ρ

)Λ− j

Ek,α ,k(Λ− j+1)

[

A

(
xρ −aρ

ρ

) α
k
]

.

7 Conclusion

We presented a generalization for a fractional derivative recently discussed in [3], obtained by inserting a new parameter
in its definition. This generalization, for adequate valuesof its parameters, recovers a wide list of definitions of classical
fractional derivatives. We presented some properties of this generalized(k,ρ)-fractional derivative. Furthermore, we
discussed the equivalence between a Cauchy problem, using this operator of fractional differentiation, and a Volterra
integral equation of the second kind. Finally, we considered some particular cases for this Cauchy problem, and proved
that small changes on initial conditions entail small changes in the solution of the problem.

A natural continuation of this paper consists in verifying the Leibniz’s rule, or product rule, for the generalized(k,ρ)-
fractional derivative and to investigate the validity of the fundamental theorem of fractional calculus. Studies in this
direction have already begun [40].
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