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Abstract: In this paper, we provide a procedure to solve the eigen solutions of Dirac equation with complicated potential
approximately. At first, we solve the eigen solutions of a linear Dirac equation with complete eigen system, which approximately
equals to the original equation. Take the eigen functions asbase of Hilbert space, and expand the spinor on the bases, we convert the
original problem into solution of extremum of an algebraic function on the unit sphere of the coefficients. Then the problem can be
easily solved. This is a standard finite element method with strict theory for convergence and effectiveness.
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1 Introduction

To study the properties of the elementary particles we
solve the eigen solutions of Dirac equations. In some
cases with symmetrical potential, the eigen solutions of
Dirac can be solved exactly[1]- [6]. However, in the usual
cases, the rigorous solution is absent, and we have to
solve the approximate solutions with required accuracy.
Quantum field theory provides a method to solve the
approximate solutions. However it is inconvenient for
some cases due to the complicated procedure, infinity
problem.

In this paper, we provide a standard finite element
method to solve the eigen solutions approximately, which
is efficient for most cases and can be easily realized by
computer. The solving procedure is that, at first, we solve
the eigen solutionsψn of a linear Dirac equation with
complete eigen functions, which approximately equals to
the original equation. The normalized eigensolutionsψn
form the bases of Hilbert space, and we can represent the
solutions of the original Dirac equation byφ = ∑Xnψn,

whereXn are coefficients. Substituting it into the action of
the original equation, we convert the problem into solving
the extremum of an algebraic equation on the unit sphere
∑X2

n = 1, which is much simpler than the original one.
The calculation shows that this procedure is effective and
convenient and suitable for the nonlinear Dirac equations.
This process is similar to second quantization, but here

only normal mathematics is involved and the calculation
can be easily performed by computer. In what follows, we
take an electron in Coulomb potential and magnetic field
as an example to show the solving procedure.

2 Equations and Simplification

At first, we introduce some notations. Denote the
Minkowski metric by ηµν = diag(1,−1,−1,−1), Pauli
matrices by

σ = (σ j) =

{(

0 1
1 0

)

,

(

0 −i
i 0

)

,

(

1 0
0 −1

)}

. (2.1)

Define 4×4 Hermitian matrices as follows

αµ =

{(

I 0
0 I

)

,

(

0 σ
σ 0

)}

, γ =

(

I 0
0 −I

)

, (2.2)

whereµ ∈ {0,1,2,3}, x0 = ct. The Dirac equation for an
electron in potentialAµ is given by

αµ(h̄i∂µ −eAµ)φ = µcγφ , (2.3)

in which the potential reads

A0 =−Ze
r , A = 1

2B(−y,x,0) = 1
2Brsinθ (−sinϕ ,cosϕ ,0).

(2.4)
The corresponding Lagrangian is given by

L = φ+αµ(i∂µ −eAµ)φ − µcφ+γφ . (2.5)
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If the magnetic fieldB 6= 0, the rigorous solution is absent.
In this case, the magnetic quantum numbermz and the

sipns are still conserved, which also hold for most cases.
So the eigen solution takes the following form[6]

φ = (u1,u2eϕ i
,−iv1,−iv2eϕ i)T exp(mzϕ i − mc2

h̄
it ), (2.6)

where the index ‘T’ stands for transpose,
mz ∈ {0,±1,±2, · · ·}, and uk,vk(k = 1,2) are real
functions ofr andθ .

In the caseB= 0, we haveu1 = u2,v1 = ±v2 and the
solution can be solved in the form of spin spherical
harmonics[1]. However this solution has complicated
coefficients, which is inconvenient for expansion as bases
of Hilbert space.

In order to simplify (2.5) for approximate computation,
we make transformation

g= u1+u2i f = v1− v2i. (2.7)

Substituting it into (2.5) we get

L = (L0+LB+L f )µc, (2.8)

L0 ≡
(

Re
[

eθ i
(

−ḡ(∂r + i
r ∂θ ) f + f (∂r + i

r ∂θ )ḡ
)]

− i
r sinθ (mz+ 1

2 )(ḡ f̄ −g f)
)

ρ

+
(

ε(|g|2+ | f |2)− Zαρ
r |g|2− (2+κ)| f |2

)

,
(2.9)

L f ≡
(

κ − Zαρ
r

)

| f |2, (2.10)

LB ≡ µBB · i(g f − ḡ f̄ )r sinθ
ρ

, (2.11)

in which ε ≪ 1 is dimensionless energy defined by
m= (1− ε)µ , ρ = h̄

µc is the Compton wave length used
as length unit,κ is a constant to improve convergent rate.
In the case (2.4) we setκ = 0 due to the small value ofα
or weakness of electromagnetic interaction. For the strong
interaction we can setκ equal to the average potential[7].
µB = h̄e

2m is the Bohr magneton of electron.
In (2.8), L0 almost keeps all invariance of relativity

and has simple and complete eigensolutions, which can
be used as the bases of Hilbert space, we call it the
representation space of spinor.L f andLB are the trouble
terms with small energy, which act as perturbation in the
calculation.

In what follows we takeµc = 1 as energy unit, then
(2.8) becomes dimensionless. For (2.9), we can solve the
rigorous eigensolutions by making transformation

g=U(r)M(θ ), f =V(r)N(θ ), M = P(θ )+Q(θ )i. (2.12)

By variation of (2.9) we findN = Me−iθ and

∂θ P = cotθmzP+(mz+K)Q, (2.13)

∂θ Q = −cotθ (mz+1)Q+(mz+1−K)P, (2.14)

in whichK =±1,±2, · · · corresponding to orbital angular
momentum,P,Q are associated Legendre functions. The
radial functions satisfy

∂ 2
r U + 2

r ∂rU −
(

K(K−1)
r2 +

ε(2−ε)
ρ2 +

Zα(2−ε)
rρ

)

U = 0,
(2.15)

and

V =
(r∂rU − (K−1)U+)ρ

(2− ε)r
. (2.16)

The above equations can be easily solved, and the
solutions are all elementary functions. The normalizing
conditions are as follows
∫ π

0
(P2+Q2)2π sinθdθ = 1,

∫ ∞

0
(U2+V2)r2dr = 1. (2.17)

3 Eigen Solutions to the equation

Due to the parity invariance of the eigensolutions, ifg
takes the form ∑Unexp(2nθ i), then f will be
∑Vnexp((2n− 1)θ i), or vice verse. Considering the case
mz = 0, by solving (2.13) and (2.14), we have normalized
functionsMK . Some simple ones are displayed as follows

M−2 =
√

2
8
√

π (3e2θ i +1), M1 =
1

2
√

π , M3 =
√

3
16

√
π (e

2θ i +2+5e−2θ i).

(3.1)
In usual cases, taking|K| ≤ 3 is enough for approximate
solution. By (2.15), we get

U =
[

C1rK−1L2K−1
n−K

(

2r
rn

)

+C2r−KL1−2K
n+K−1

(

2r
rn

)]

exp
(

− r
rn

)

,(3.2)

where L is Laguerre polynomials,n ≥ |K| is positive
integer, C1 = 0 corresponding toK < 0 and C2 = 0
corresponding toK > 0, and

εn =
2Z2α2

Z2α2+4n2 , rn =
(Z2α2+4n2)ρ

4Zαn
. (3.3)

Substituting (3.2) and (3.3) into (2.16), we can get function
V. For all eigensolutions we have
∫ ∞

0
U2

K,nr2dr = 1− 1
2

εn,

∫ ∞

0
V2

K,nr2dr =
1
2

εn. (3.4)

Since the solutionUK,n can be easily generated by
computer, here we only display the simplest one

U1,1 =

√

2(2− ε1)
√

r3
1

e
r

r1 , V1,1 =
−
√

2ρ
√

(2− ε1)r5
1

e
− r

r1 . (3.5)

Due to the normalization of the eigenfunctions, the
calculation of expansion of(g, f ) is convenient. For
example, we take

g =
3

∑
k=0

XkU1,k+1M1+(X4U−2,3+X5U−2,4)M−2+(X6U3,3+X7U3,4)M3. (3.6)

f = [
3

∑
k=0

XkV1,k+1M1+(X4V−2,3+X5V−2,4)M−2+(X6V3,3+X7V3,4)M3]e
−θ i

. (3.7)

Substituting them into (2.9) we have the action

I0 ≡ 2π
∫ ∞

0
dr

∫ π

0
L0r2sinθdθ =

7

∑
k=0

(ε − εk)X
2
k , (3.8)

which is diagonal due to eigenfunctions ofL0. This can
be used to check the correctness of computing program.
Usually, (g, f ) is mainly related with the eigenfunctions
whose quantum numbers near that of(g, f ).
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Substituting (3.6, 3.7) into (2.10), we can get action
Ie =−∑ak,l XkXl , and then we have

I0+ Ie=
7

∑
k=0

(ε − εk)X
2
k −

7

∑
k,l=0

ak,l XkXl , (3.9)

which becomes the approximate action of an electron in
Coulomb potential. Solving the eigenvalues of (3.9) we
get the numerical energy spectrums. Comparing them
with rigorous one

εK,n = 1−






1+

α2

(

n−|K|+
√

K2−α2
)2







− 1
2

=
α2

2n2 +

(

1
2n3|K| −

3
8n4

)

α4+O
(

α6
)

, (3.10)

we have the accuracy O(α6) for (3.6, 3.7).
Now we compute the magnetic energy of (2.11).

Substituting (3.2, 3.3, 3.4) and (2.16) into LB, we get the
energy of magneton

δE = gsµBB, gs =−K(2mz+1)
2K−1

, (3.11)

gs is similar to the Lande factor, which is independent of
n. From the above equations we find that, for the
eigenfunctions ofL0 the relations become simple and
neat. So these eigenfunctions form a good coordinate
system for expansion of the original functions(g, f ).

Substituting (3.6) and (3.7) into LB we get action

IB =−µBB
7

∑
k,l=0

bk,l (Z)XkXl . (3.12)

We solve the eigen values of the coefficient matrix, and
then we can compute the anomalous magnetic moment of
a free electron. In this case, the eigenfunctions just act as
the bases of representation space, rather than the electron
is really in Coulomb potential. By adjusting parameterZ,
whenZ=̇12 and ¯r=̇45ρ we get the magnetic momentgs=
−1.001159652, which means the wave function of a free
electron is a concentrated package. However the magnetic
moment of an electron is not a constant, which depends on
its state.

The total approximation action corresponding to the
original equation (2.3) is given by

I = I0+ Ie+ IB =
7

∑
k=0

(ε − εk)X
2
k −

7

∑
k,l=0

(ak,l +µBBbk,l )XkXl . (3.13)

Solving the eigenvalues and eigenvectors of the
coefficient matrix, and substituting them into
approximation (3.6, 3.7), we get the approximation
solutions to the original problem (2.3). This process is
equivalent to solving the extremum of (3.13) on the
sphere∑X2

k = 1, which is also suitable for the case with
nonlinear potentials.

4 Discussion and Conclusion

In this paper we provide a convenient procedure to
approximately solve the eigen solutions to the Dirac
equation with complicated potentials. (2.9) has complete
eigen functions and (2.15) is similar to the Schrödinger
equation. The approximate equation (2.9) keeps all main
properties of the original equation (2.8), such as energy
spectrums, invariance etc. Expressing the physical
variables and relations of spinor by the eigen functions of
the representation space, we have simple and neat
formalism, such as (3.2, 3.3, 3.4) and (3.11).

This procedure is a standard finite element method
which has strict mathematical theory for its convergence
and effectiveness. Practical simulation shows the
procedure is also suitable for computing nonlinear
potentials. The procedure can be easily realized by
computer. For the total action of the original problem
similar to (3.13), we can design high convergent speed
numerical program.

It should be mentioned the base functions as an
ensemble have orthogonality for different(n,K), but the
radial base functions corresponding to differentK are not
definitely orthogonal. Besides, under what conditions the
bases of the representation space have completeness is
still a problem.
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