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Abstract: In this paper, we provide a procedure to solve the eigen isolitof Dirac equation with complicated potential
approximately. At first, we solve the eigen solutions of a#inDirac equation with complete eigen system, which apprately
equals to the original equation. Take the eigen functionsaae of Hilbert space, and expand the spinor on the baseyiwertthe
original problem into solution of extremum of an algebraiadtion on the unit sphere of the coefficients. Then the grobtan be
easily solved. This is a standard finite element method vttt sheory for convergence and effectiveness.
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1 Introduction only normal mathematics is involved and the calculation
can be easily performed by computer. In what follows, we

To study the properties of the elementary particles Wetake an electron in Coulomb potential and magnetic field

solve the eigen solutions of Dirac equations. In some?s an example to show the solving procedure.

cases with symmetrical potential, the eigen solutions of

Dirac can be solved exactljf [6]. However, in the usual . . .

cases, the rigorous solution is absent, and we have t¢ Equations and Simplification

solve the approximate solutions with required accuracy. ) , )

Quantum field theory provides a method to solve theAt_ first, we |n.troduce some notations. Denote 'the
approximate solutions. However it is inconvenient for Minkowski metric by ny, = diag1,—-1,—1,-1), Pauli
some cases due to the complicated procedure, infiniyhatrices by

problem. . 01 0 —i 10
. . . — 1y — I 21
In this paper, we provide a standard finite element? = (o) = 10/)°'\Vio/)'\o=1]/ (" (2.1)
method to solve the eigen solutions approximately, which

is efficient for most cases and can be easily realized byP€fine 4x 4 Hermitian matrices as follows

computer. The solving procedure is that, at first, we solve u 10 0o I 0

the eigen solutiongl, of a linear Dirac equation with = {(0 I > ’ (a 0 ) }’ y= <0 — ) ’ (2.2)
complete eigen functions, which approximately equals to ) .

the original equation. The normalized eigensolutigns ~ Wherep € {0,1,2,3}, x? = ct. The Dirac equation for an
form the bases of Hilbert space, and we can represent th@lectron in potentiah** is given by

solutions of the original Dirac equation ly= 3 Xath,  oH(Rid, —eA,)p = HcyQ, (2.3)
whereX, are coefficients. Substituting it into the action of . )

the original equation, we convert the problem into solving in Which the potential reads

the extremum of an algebraic equation on the unit spher Ze 1 Lo .

$ X2 = 1, which is much simpler than the original one. o= —% A=3B(-¥,x0) = 3Brsin6(—sing,cosp,0).

The calculation shows that this procedure is effective andThe corresponding Laaranaian is aiven b (2.4)
convenient and suitable for the nonlinear Dirac equations. ponding Lagrangian s giv y
This process is similar to second quantization, but here? = ¢*a*(id, —eAy)p— pce™ yo. (2.5)
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If the magnetic fieldB +~ 0, the rigorous solution is absent. and

In this case, the magnetic quantum numipgand the (roU — (K—1)U+)p
sipnsare still conserved, which also hold for most cases.V = 2—or : (2.16)
So the eigen solution takes the following foBh[

me The .above equations can be e.asily solved, an(_j_the
@ = (up,uze?, —ivy, —ivoe?) T exp(myi — —it), (2.6)  Solutions are all elementary functions. The normalizing
h conditions are as follows
where the index ‘T° stands for transpose, /7
m, € {0,£1,£2---}, and u,w(k = 1,2) are real /o
functions ofr and6.
In the caseB = 0, we haveu; = up, v = £V, and the
solution can be solved in the form of spin spherical 3 Eigen Solutions to the equation
harmonics]]. However this solution has complicated
coefficients, which is inconvenient for expansion as basefue to the parity invariance of the eigensolutionsgif

(P2 +Q%)2msin6d6 — 1, / (UZ+Vv2r2dr=1. (2.17)
0

of Hilbert space. takes the form yUnexp(2nBi), then f will be
In order to simplify @.5) for approximate computation, ¥ Vhexp((2n—1)6i), or vice verse. Considering the case
we make transformation m; = 0, by solving 2.13 and @.14), we have normalized
9= Up+ Ui f = v — Wi, @2.7) functionsMyk. Some simple ones are displayed as follows
Substituting it into 2.5 we get M_, = %(392& +1), My=51=, M= %(ezei 424 5261,
&L = (L+ Lo+ Z)uc, 2.8 _ _ (3.1)
(o ® H 28) In usual cases, taking<| < 3 is enough for approximate
% = (Re[ef <7gidr+%zde)f+f(dr+%dg)g‘)}—E%Fg(nt+%)(§F—gf)>p 29 solution. By Q.la, we get
+ (2092 +1112) - £521g12~ 2+ 10/ 1[2), '
( 9+ 9% -2+ ) U= [CHKflLﬁlfkl (?_rr]) +C2F7KL%1§|§1<E—:>:| exp(—#()S,Z)
Za . . . i
L = (K——p> |f|2, (2.10)  whereL is Laguerre polynomialsn > |K| is positive
r _ integer, C; = 0 corresponding tocK < 0 andC, =0
i(gf —gf)rsi ;
Lo = 11sB- i(gf—g )rsme’ (2.11)  corresponding & > 0, and
P 27%a? (Z2a2+4n)p
in which ¢ < 1 is dimensionless energy defined by & = 7202+ 4n2’ =  4Zan (33)

m= (1— &)y, p = ;% is the Compton wave length used

as length unitk is a constant to improve convergent rate.
In the caseZ.4) we setk = 0 due to the small value af

Substituting 8.2) and @.3) into (2.16), we can get function
V. For all eigensolutions we have

. . . 00 1 00 1
or Weakness of electromagnetic interaction. For the strong U,%nrzdr —1-Zg, / V,E nrzdr ~ g, (3.4)
|ntera(h;t|on we can sat equal to the average potentigl[ 0 ’ 2 0 2
Mg = 7 is the Bohr magneton of electron. Since the solutionUk, can be easily generated by

and has simple and complete eigensolutions, which can

be used as the bases of Hilbert space, we call it th V22-&) ¢  —V2p o
; ) 11=~+——>e1, Vjp=————e". (3.5)
representation space of spingf; and.%g are the trouble ’ 3 ’ (2— &)
terms with small energy, which act as perturbation in the 1 vl
calculation. Due to the normalization of the eigenfunctions, the

In what follows we takeuc = 1 as energy unit, then  calculation of expansion ofg, f) is convenient. For
(2.8 becomes dimensionless. F@.9), we can solve the example, we take
rigorous eigensolutions by making transformation

3
g= U(r)M(G), f :V(r)N(e), M= P(@) -I—Q(e)i. (2.12) g= k;xkul.k+1Ml+<X4U—2,3+X5U—2.4)M—2+<x5U3,3+x7U3.4>M3- (3.6)

.. . o _ig
By variation of €.9) we findN = Me™"" and f= [i XV My + (XaV_23+ XsV_2.4)M_p + (XeVa 3+ X7Vaa)Mgle @ (3.7)

0gP = cotBm,P + (m;+K)Q, (2.13) gob tituting them into2.9 have the acti
99Q = —cotd(m+1)Q+ (my+1—K)P, (2.14) bstiuting fem in(ea:9 we have e action

00 7
inwhichK = +1,£2,--- corresponding to orbital angular | — 27T/ dr/n.,%rzsinede _ z (e—8)X2. (3.8)
momentum P, Q are associated Legendre functions. The 0 0 P ’

radial functions satisfy which is diagonal due to eigenfunctions .&%. This can

be used to check the correctness of computing program.
Usually, (g, f) is mainly related with the eigenfunctions
(2.15)  whose quantum numbers near that@ff ).

g7+ 200 (KD 4 se , Taza) g
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Substituting 8.6, 3.7) into (2.10, we can get action 4 Discussion and Conclusion
le=—3 a XX, and then we have
. In this paper we provide a convenient procedure to
5 approximately solve the eigen solutions to the Dirac
lo+le= Z)(g_gk)xk - Z A1 KX, (3:9) equation with complicated potential.9) has complete
k= k1=0 eigen functions and2(19 is similar to the Schrodinger
which becomes the approximate action of an electron inequation. The approximate equatich9) keeps all main
Coulomb potential. Solving the eigenvalues 8fg) we  properties of the original equatio.g), such as energy
get the numerical energy spectrums. Comparing then$pectrums, invariance etc. Expressing the physical
with rigorous one variables and relations of spinor by the eigen functions of
the representation space, we have simple and neat
-3 formalism, such as3(2 3.3 3.4) and @.11).
This procedure is a standard finite element method
2 which has strict mathematical theory for its convergence
(n— |K|+VK2—UZ) and effectiveness. Practical simulation shows the

o? 1 3 procedure is also suitable for computing nonlinear
= _+(———> 4+O(a6), (3.10) potentials. The procedure can be easily realized by

2nz =\ 2n%K|  8n* computer. For the total action of the original problem
similar to (.13, we can design high convergent speed
numerical program.

It should be mentioned the base functions as an
ensemble have orthogonality for differeft K), but the
radial base functions corresponding to differ&nare not

K(2my+1) definitely orthogonal. Besides, under what conditions the
OE = gsigB, 9= "0 1 (3.11)  bases of the representation space have completeness is
still a problem.
Os is similar to the Lande factor, which is independent of
n. From the above equations we find that, for the
eigenfunctions ot the relations become simple and References
neat. So these eigenfunctions form a good coordinate

system for expansion of the original functiofs f ). [1]W. Greiner, Relativistc Quantum Mechanics (Wave
Substituting 8.6) and @.7) into “ we get action Equations), Springer-Verlag Berlin Heidelberg, 1990
[2] G. V. Shishkin, V. M. Villalba, J. Math. Phys4, 5037-5049
7
o (1993), hep-th/9307061
ls = “BBkZObk*' (Z)XX- (3.12) [3] V. G. Bagrov, M. C. Baldiotti, D. M. Gitman, I. V. Shirokov
. J. Math. Phys43, 2284-2305 (2002), hep-th/0110037
We solve the eigen values of the coefficient matrix, and[4] M. A. Rodriguez, P. Winternitz, J. Math. Phy43, 1309-1322
then we can compute the anomalous magnetic moment of (2002), math-ph/0110018
a free electron. In this case, the eigenfunctions just act afl P- Winternitz, I. Yurdusen, J. Math. Phy&z, 103509 (2006),
the bases of representation space, rather than the electron Math-ph/0604050 » _ ,
is really in Coulomb potential. By adjusting paramezer 6] Y- Q. Gu, Integrable conditions for Dirac Equation and
whenZ=12 andr=45p we get the magnetic momegy = Schrodinger equatigrarXiv:0802.1958 o
—1.001159652, which means the wave function of a freem Y. Q. Gu, Mass Spectrum of Dirac Equation with Local
electron is a concentrated package. However the magnetic Parabolic Potentig|arXiv:hep-th/0612214
moment of an electron is not a constant, which depends on

its state. o ] .
The total approximation action corresponding to the
original equation2.3) is given by

7

a2

gK’n:].— 1+

we have the accuracy(@°) for (3.6, 3.7).

Now we compute the magnetic energy di.XJ).
Substituting 8.2, 3.3 3.4) and .16 into £, we get the
energy of magneton
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I =lo+le+lg= - 2 Bhi ) XX - 3.13
ot+letls kzb(s &)X k;:O(ak,wuB By 1) XX (3.13)

Solving the eigenvalues and eigenvectors of the
coefficient matrix, and substituting them into

approximation 8.6, 3.7), we get the approximation including the mathematical
solutions to the original problen2(3). This process is methods and models for

equivalent to solving the extremum oB.03 on the  elementary systems, general relativity and foundation of
spherezxk2 =1, which is also suitable for the case with physics.
nonlinear potentials.
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