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Abstract: In this work a new class of life distribution, namely used better than aged in Laplace transform order (UBAL) class of life
distribution is introduced, Relations of this aging to other well-known aging and their applications to a shock model are discussed.
Preservations of this aging concept under some reliabilityoperations are also given. Testing exponentiality versus (UBAL) class of life
distribution is proposed. Pitman’s asymptotic efficiencies of the test are calculated and compared with other tests. The percentiles of
this test statistic are tabulated.
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1 Introduction

Needing to the reliability theory is very important because, it gives a common scientific language between the Scientists
working in various fields of aging studies. In relation to various aging characteristics statisticians divided the life
distributions into classes such as increasing failure rate(IFR), increasing failure rate average (IFRA), new better than
used (NBU), new better than used in convex ordering (NBUC), new better than used in expectation (NBUE), harmonic
new better than used in expectation (HNBUE), new better thanused in Laplace transform order (NBUL), used better
than aged (UBA), (UBACT) and a lot of other classes. Cline [12] and others studied the connection between the class of
age-smooth distributions and the class of distribution with sub-exponential tails which have many applications in
queuing theory random walk and infinite divisibility.

Such aging classes are derived via several notions of comparison between random variables. So we introduce a new
aging notion derived from the Laplace transform order. Before we go into the details, let us quickly review some common
notions of stochastic orderings and aging notions considered in this paper.

If X andY are two random variables with distributions F andG (survivalsF andG), respectively, then we say thatX
is smaller thanY in the:

a)Usual stochastic order, denoted by X≤stY if

F(x)≤G(x) for all x.

b)Increasing convex order, denoted by X≤icxY if
∫ ∞

x
F(u)du≤

∫ ∞

x
G(u)du.

c)Increasing concave order, denoted by X≤icvY if
∫ x

0
F(u)du≤

∫ x

0
G(u)du.
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Another importing ordering that has come to use in reliability and life testing is the following:
A random variableX is smaller than a random variableY with respect to Laplace transform order (denoted byX≤Lt Y

) if, and only, if ∫ ∞

0
e−sxdF(x)≥

∫ ∞

0
e−sxdG(x), s≥0. (1)

It is easy to check that (1) is equivalent to
∫ ∞

0
e−sxF(x)dx≤

∫ ∞

0
e−sxG(x)dx. (2)

Applications, properties and interpretations of the Laplace transform order in the statistical theory of reliability, and
in economics can be found in Denuit [13], Klefsjo [16], and Ahmed and Kayid [6].

On the other hand, in the context of lifetime distributions,some of the above orderings have been used to give
characterizations and new definitions of aging classes. By aging, we mean the phenomenon whereby an older system has
a shorter remaining lifetime, in some statistical sense, than a younger one (Bryson and Siddiqui [11]).

We aim in this paper to introduce a new aging notion derived from the Laplace transform order, namely used better
than aged Laplace transform order (UBAL) class of life distribution. Definition and relationships are given in section 2.
In section 3, we discussed some closure properties to (UBAL)such as convolution and formation of a coherent system. In
section 4, applications of this aging to a shock model is given. Based on goodness of fit approach our test is constructed
in section 5. Monte Carlo null distribution critical valuesare simulated and tabulated in Table 1 for sample sizes n =
5(5)100 using Mathematica 8 programme in section six. Finally, Pitman asymptotic efficiencies for linear failure rate
(LFR), Weibull and Makeham distributions, which are belongto the UBAL class, are calculated in section seven.

2 Definitions and Preliminaries

In reliability theory, aging life is usually characterizedby a nonnegative continuous random variableX ≥ 0 representing
equipment life with distribution functionF and survival functionF (t) = 1−F(t) such thatF (0−) = 0. One of the most
important approaches to the study of aging is based on the concept of the residual life. For any random variableX, let
Xt = [X− t | X > t] , t ∈ {x : F (x)< 1) , denote a random variable whose distribution is the same as the conditional
distribution ofX − t given thatX > t and has survival function

F t (x) =

{
F(x+t)

F(t)
F (t)> 0

0 F (t) = 0
.

WhenX is the lifetime of a device which has a finite meanµ = E (X) =
∫ ∞

0 F (u)du, the mean ofXt is called mean
residual life (MRL) and is given by

µ (t) = E (Xt) =

∫ ∞
t F (u)du

F (t)
. (3)

Further, the hazard rate ofX is defined by

h(t) =−
d
dt

lnF (t) =
f (t)

F (t)
, t ≥ 0, F (t)> 0,

wheref (t) = F ′(t) is the probability density ofX assuming it exist. Note that if limt→∞ h(t) = h(∞) exists and is positive,
then cf. Willmot and cai [22]

µ (∞) = lim
t→∞

µ(t) =
1

h(∞)
.

Two classes of life distributions were introduced by Alzaid[7] which are used better than aged (UBA) and used better
than aged in expectation (UBAE) classes of life distribution.

Precisely we have the following definitions:

Definition 1.The df F is said to be used better than aged (UBA) if0< µ (∞)< ∞ and for all x, t ≥ 0,

F (x+ t)≥ F (t)e−x/µ(∞), x, t ≥ 0 (4)
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Definition 2.The distribution function Fis said to be used better than aged in expectation (UBAE) if0< µ (∞) < ∞ and
for all x, t ≥ 0,

µ (t)≥ µ (∞) (5)

Remark that,F is UBA (UBAE) if and only if Xt converges in distribution to a random variableXA (say) exponentially
distributed with failure rateγ and

Xt ≤stXA, (E ( Xt)≤stE (XA)) .

According to the above definitions we can deduce the following new definition for used better than aged in the Laplace
transforms order as follows.

Definition 3.The distribution function F is said to be used better than aged in the Laplace transform order (UBAL) if
0< µ (∞)< ∞ and for all x, t ≥ 0,

∫ ∞

0
e−sxF(x+ t)dx≥

µ (∞)

1+ sµ (∞)
F (t) , s≥0, (6)

It is obvious that (6) is equivalent toXt ≤LtXA for all t ≥0.
To introduce the definition of the discrete UBAL, letX be a discrete non-negative random variable such that

P(X = k) = pk, k = 0, 1, 2, ... . Let Pk = P(X > k) , k≥ 1, P0 = 1 denote the corresponding survival function.
The discrete non-negative random variableX is said to be discrete used better than aged in Laplace transform order

(discrete UBAL) if, and only, if

∞

∑
k=0

Pk+iz
k ≥Pi

∞

∑
k=0

zk, f or all 0≤ z≤ 1 and i= 0, 1, . . . .

Now,
X ≤st XA ⇒ X ≤Lt XA.

Then, we have the following implication:

IFR ⊂ UBA ⊂ UBAL⋃

UBAE

See Abu-Youssef and Bakr [1,2].
Applications, properties and interpretations of the Laplace transform order in the statistical theory of reliability, and

in economics can be found in Denuit [13], Klefsjo [16], and Ahmed and Kayid [6].
Some interpretations for the UBAL class are as follows:

–One simple interpretation of
∫ ∞

0 e−sxF(x)dx is that the mean life of a series system of two statistically independent
components, one having exponential survival function and the other having survival functionF. Consider now two
series systems, say system A and system B. System A has a used component of aget with survival function Ft while
system B has an aged component with exponential survival function.
Thus, F ∈ UBAL implies that the mean life of a system B is not larger thanthat of system A.

–A machine has survival functionF and produces one unit of output per hour when functioning. The present value of
one unit produced at timet is 1.e−st, wheres is the discount rate. Then the expected present value of total output
produced during the life of the machine is ∫ ∞

0
e−sxF(x)dx.

Thus, F ∈ UBAL implies that a used machine of aget governed by survival functionFt produces a greater expected
total present value than does an aged machine governed by exponential survival function.

3 Preservation Results

As an important reliability operations, convolution, mixture and formation of coherent system of a certain class of life
distribution is often paid much attention. It has been shownthat UBAL are closed under these operations.
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3.1 Convolution

In the next theorem we establish the closure property for UBALunder convolution.

Theorem 1.UBAL class of life distribution is closed under convolutionoperation.

Proof.SupposeF1 andF2 are UBAL, then we have
∫ ∞

0
e−sxF(x+ t)dx=

∫ ∞

0

∫ ∞

0
e−sxF1 (x+ t−u)dF2 (u)dx

=
∫ ∞

0

∫ ∞

0
e−sxF1 (x+ t−u)dx dF2 (u)

≥

∫ ∞

0

µ (∞)

1+ sµ (∞)
F1 (t −u)dF2 (u)dx

=
µ (∞)

1+ sµ (∞)
F(t) .

Which proved that the UBAL is closed under convolution operation.
Where

F(x+ t) =
∫ ∞

0
F1 (x+ t−u)dF2 (u) .

3.2 Formation of coherent systems using independent components

A system is called coherent if:

1.Every component is relevant.
2.The structure function, which represents the performance of the system in terms with performance of the component

is increasing.

Design engineers give greater importance to coherency in building systems.
For more details about coherent system see Barlow and proschan [8].
In the next theorem we establish the closure property of the UBAL class under the formation of a coherent system

operation.

Theorem 2.A series system of n independent UBAL components is UBAL.

Proof.Let X1,X2, . . . ,Xn be independent UBAL then we have

∫ ∞

0
e−sxp(min(X1, . . . ,Xn)≥ y+ t)

p(min(X1, . . . ,Xn)≥ t)
dx=

n

∏
i=1

∫ ∞

0
e−sxp(Xi ≥ y+ t)

p(Xi ≥ t)
dx

=
n

∏
i=1

∫ ∞

0
e−sxF i(y+ t)

F i(t)
dx

≥
n

∏
i=1

∫ ∞

0
e−sxe−x/µi(∞)dx

Since Fi is UBAL

=

∫ ∞

0
e−sxe−x/(∑n

i=1 µi(∞))dx

=

∫ ∞

0
e
−

(1+s(∑n
i=1 µi (∞))

∑n
i=1 µi (∞)

x
dx

=
∑n

i=1 µi(∞)

1+ s(∑n
i=1 µi(∞))

.

This implies that the series system X1,X2, . . . ,Xn is UBAL.
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4 Applications:

4.1 Shock model application

Suppose that a device is subject to shocks. LetN(t) be the number of shocks in time interval(0, t ]. Thekthshock arrives
at timeTk . LetXk = Tk+1 − Tk be the time between thekth and(k+l)st shocks. We assume thatX1,X2, . . . are mutually
independent and identically distributed according toF .

Let
ak (t)=p(N(t)=k) , k= 1, 2, . . .

and letPk be the probability of the device survivingk shocks.
Then the survival probability of the system until timet is

H (t) =
∞

∑
k=0

ak (t)Pk .

Theorem 3.F is UBAL implies H is UBAL.

Proof.: Observe thatH (t) can be written in the form

H (t) =
∞

∑
k=1

Fk(t) pk

Where pk = Pk−1−Pk, k= 1, 23, . . . andFk is the distribution function ofTk, and

∫ ∞

0
e−sxH (x+ t)dx =

∞

∑
k=1

∫ ∞

0
e−sxFk (x+ t) pkdx

≥
µ(∞)

1+ sµ(∞)

∞

∑
k=1

Fk (t) pk

SinceF is UBAL

=
µ(∞)

1+ sµ(∞)
H (t) ,

thenH is UBAL.

5 Testing Against UBAL

This section is concerned with the construction of the proposed statistic as a U-statistic and discussing its asymptotic
normality.

Here, We hope to test the null hypothesisH0 : F is exponential, againstH1 : F is UBAL, and is not exponential. Non-
parametric testing for classes of life distributions has been considered by many authors (see Hendi et al. [15]; Mahmoud
et al., [19,20]; Abu-Youssef and Bakr [1,2]; Abu-Youssef etal [3,4].

According to Eq. (6) We may use the following as a measure of departure fromH0.

δ (s) = E

[∫ ∞

0
e−sxF(x+ t)dx−

µ(∞)

1+ sµ(∞)
F (t)

]

=

∫ ∞

0
[

∫ ∞

0
e−sxF(x+ t)dx−

µ(∞)

1+ sµ(∞)
F (t) ] dF0(t),

The following theorem is essential for the development of our test statistic.

Theorem 4.LetX be the UBAL random variable with distribution functionF; then based on the Goodness of fit approach
technique,

δ (s)=
1

(1− s)
[
1
s
(1− ϕ)+

1+ µ (∞)

(1+ sµ (∞))

(∫ ∞

0
e−xdF(x)−1

)
] (7)

whereϕ (s)=
∫ ∞

0 e−sxdF(x).
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Proof.Since

δ (s) =
∫ ∞

0
[

∫ ∞

0
e−sxF(x+ t)dx−

µ (∞)

1+ sµ (∞)
F (t) ] dF0(t).

We can take F0 (x) = 1−e−x, x≥ 0, then

δ (s) =
∫ ∞

0

∫ ∞

0
e−t−suF(u+ t)dudt−

µ(∞)

1+ sµ(∞)

∫ ∞

0
F(t) e−t dt

=== I1− I2.

Where,

I1 =
∫ ∞

0

∫ ∞

0
e−te−suF(u+ t)dudt

=

∫ ∞

0

∫ ∞

t
e−te−s(x−t)F(x)dxdt

=

∫ ∞

0

∫ t

0
e−te−s(t−x)F(t)dxdt

=
1
s

∫ ∞

0
e−t(1−e−st)F(t)dt

=
1

1− s

[
1
s
(1−ϕ (s))−1+

∫ ∞

0
e−tdF(t)

]
.

(8)

And,

I2 =
µ(∞)

1+ sµ(∞)

∫ ∞

0
F(t) dF0(t)=

µ(∞)

1+ sµ(∞)

[
1−

∫ ∞

0
e−tdF(t)

]
. (9)

From equations, (8) and (9), we obtain (7).
Let X1,X2, . . . ,Xn be a random sample from the distribution function F.
For generality, we assumeµ(∞) is known and equal one. The empirical estimatorδ̂ (s) of our test statistic can be

obtained as follows:

δ̂n (s)=
1

n(1− s)∑
i

{
1
s

(
1−e−sXi

)
+

2
(1+ s)

(e−Xi −1)

}
.

To make the test is invariant, let

∆̂n (s)=
δ̂n (s)

X
.

then,
Let us rewriteδ̂ as follows,

∆̂n(s)=
1

Xn ∑
i

φ(X i)

where

φ (X i)=
1

(1− s)
{

1
s

(
1−e−sXi

)
+

2
(1+ s)

(
e−Xi −1

)
}.

To find the limiting distribution of̂δ (s) we resort to the U-statistic theory and practice (Lee [17]).
Set

φ (X1)=
1

(1− s)
{

1
s

(
1−e−sX1

)
+

2
(1+ s)

(
e−X1 −1

)
}.

Then,∆̂n (s) is equivalent to U-statistic given by:

Un =

(
1
n

)
∑

i

φ(X i).

The following theorem summarizes the asymptotic normalityof δ̂n (s).
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Table 1: The Upper Percentile Points of̂δ (5) with 10000 Replications.
n 90% 95% 99%
5 0.006021 0.0070851 0.0085853
10 0.004619 0.0057107 0.0074085
15 0.003828 0.0046726 0.006104
20 0.003680 0.0045432 0.0057393
25 0.003424 0.0041355 0.0052877
30 0.002935 0.0035352 0.0047174
35 0.002756 0.003277 0.004525
40 0.002546 0.0032092 0.0044086
45 0.002419 0.0031397 0.0043173
50 0.002323 0.0030042 0.0042904
55 0.002235 0.0028723 0.0039834
60 0.002149 0.0027979 0.0038899
65 0.002048 0.0027145 0.0037649
70 0.001937 0.0027041 0.0035067
75 0.001817 0.0024491 0.0032827
80 0.001718 0.0024184 0.0030806
85 0.001627 0.0024076 0.0029668
90 0.001534 0.0022396 0.0028221
95 0.001434 0.0021586 0.0027326
100 0.001352 0.0021096 0.0026798

Theorem 5. (i)Asn→∞, (δ̂n (s)−δ (s)) is asymptotically normal with mean 0 and varianceσ2 (s) where,

σ2 (s)= Var
[
δ̂n (s)

]
= E(

1
(1− s)

{
1
s

(
1−e−sx)+ 2

(1+ s)

(
e−x −1

)}
)2

(ii)Under H0, the varianceσ2
0 (s)=

2s2−8s−6
3s(2s+1)(s−1)2(s+1)2

.

Proof. (i)Using standard U-statistic theory, Lee [17], and directcalculations, we get

E
[
δ̂n (s)

]
= E

(
1

(1− s)

{
1
s

(
1−e−sx)+ 2

(1+ s)

(
e−x −1

)})
;

σ2 (s)= Var
[
δ̂n (s)

]
= E(

1
(1− s)

{
1
s

(
1−e−sx)+ 2

(1+ s)

(
e−x −1

)}
)2.

(ii)UnderH0, the parameters= 5 say, and

µ0 = E
[
δ̂n (s)

]
= 0;

σ2
0 (s)=

2s2−8s−6

3s(2s+1)(s−1)2(s+1)2
= 0.00004

6 Monte Carlo null distribution critical points

Based on 10000 generated samples from the standard exponential distribution the Monte Carlo null distribution critical
values of our test̂δ (5) are simulated and tabulated, where n = 5(5)100 in Table 1. Mathematica 8 programme is used.

From Table 1 and Fig. 1, the critical values decrease as the sample size increases and they increase as the confidence
level increases.
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Fig. 1: The Relation Between Sample Size and Critical Values.

7 Pittman asymptotic relative efficiency (ARE)

Since the above test statistiĉδ (s) = δ
X

is new and no other tests are known for this class (UBAL). We may compare

our test to the other classes. Here we choose the test∆θ ,(1) presented by Mugdadi and Ahmad [21] andδ (2)
Fn

presented
Mahmoud and Abdul Alim [18] for (NBAFR) class of life distribution. Then comparisons are achieved by using Pitman
asymptotic relative efficiency PARE, which is defined as follows:

Let T1n andT2n be two statistics, then PARE ofT1n relative toT2n is defined by

e(T1n,T2n) =
µ\

1(θ0)

σ1(θ0)
/

µ\
2(θ0)

σ2(θ0)
.

Where

µ\
i (θ0) = lim

n→∞

∂
∂θ

E(Tni )

∣∣∣∣
θ→θ0

,

and
σ2

i (θ0) = lim
n→∞

var(Tni ) .

Three of the most commonly used alternatives they are:

(i)Linear failure rate family

F1 (x) = e−x− x2
2 θ , θ ,x≥ 0. (10)

(ii)Weibull family:

F2 (x) = e−xθ
, θ ≥ 1, ,x≥ 0. (11)

(iii)Makeham family:
F2 (x) = e−x−θ(x+e−x−1), θ ,x≥ 0. (12)

Note that H0 (the exponential distribution) is attained atθ= 0 in (i) and (iii) andθ= 1 in (ii). The Pitman’s asymptotic

efficiency (PAE) of̂∆(s) is equal to PAE
(

δ̂ (s)
)
=

∣∣∣ ∂
∂ θ δ (s)

∣∣∣
θ→θ0

σ0(s)

=
1

σ0 (s)

∣∣∣∣
1

s(1− s)

∫ ∞

0
e−sxdF

\
θ0
(x)−

2
(1+ s)(1− s)

∫ ∞

0
e−xdF

\
θ0
(x)

∣∣∣∣

WhereF
\
θ0
(x) = d

dθ Fθ (u)
∣∣
θ→θ0

This leads to:
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(i)PAE in case of the linear failure rate distribution:

PAE
(

δ̂ (s)
)
=

1
σ0 (5)

∣∣∣∣
−1
20

∫ ∞

0
e−sxd

(
−x2

2
e−x

)
+

1
12

∫ ∞

0
e−xd

(
−x2

2
e−x

)∣∣∣∣= 1.43

(ii)PAE in case of the Weibull distribution:

PAE
(

δ̂ (s)
)
=

1
σ0 (5)

∣∣∣∣
−1
20

∫ ∞

0
e−sxd

(
−xln |x|e−x )+ 1

12

∫ ∞

0
e−xd

(
−xln |x|e−x )

∣∣∣∣= 0.5972

(iii)PAE in case of the Makeham distribution.

PAE
(

δ̂ (s)
)
=

1
σ0 (5)

∣∣∣∣
−1
20

∫ ∞

0
e−sxd

(
(1−x−e−x)e−x )+ 1

12

∫ ∞

0
e−xd

(
(1−x−e−x)e−x )

∣∣∣∣= 0.1019

Direct calculations of PAE of∆θ ,(1) , δ 2
Fn

andδ̂ (s) are summarized in table (2), the efficiencies in table shows clearly

our U-statisticδ̂ (s) perform well forF1, F2 and F3.

Table 2: PAE of ∆θ ,(1) , δ (2)
Fn

andδ̂ (s)

Distribution ∆θ ,(1) δ (2)
Fn

δ̂ (s)
LFR 0.408 0.217 1.42

Weibull 0.170 0.050 0.5972
Makeham 0.0395 0.144 0.1019

In table (3), we give PARE’s of̂δ (s) with respect to∆θ ,(1)andδ (2)
Fn

whose PAE are mentioned in table 2.

Table 3: PARE of δ̂ (s) with respect to∆θ ,(1) andδ (2)
Fn

.

Distribution e(δ̂ (s) ,∆θ ,(1)) e
(

δ̂ (s) ,δ (2)
Fn

)

LFR 3.48 6.54
Weibull 3.51 11.94

Makeham 2.58 0.71

It is clear from table (3) that the statistiĉδ (s) perform well forF1, F2 andF3 andF2 and it is more efficient than both

∆θ ,(1) andδ (2)
Fn

for all cases mentioned above. Hence our test, which deals the much larger UBA is better and also simpler.
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