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Abstract: In this work a new class of life distribution, namely usedteethan aged in Laplace transform order (UBAL) class of life
distribution is introduced, Relations of this aging to atheell-known aging and their applications to a shock model discussed.
Preservations of this aging concept under some relialmipgrations are also given. Testing exponentiality verdiB\L) class of life
distribution is proposed. Pitman’s asymptotic efficiesadé the test are calculated and compared with other testspé&fcentiles of
this test statistic are tabulated.
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1 Introduction

Needing to the reliability theory is very important becausgives a common scientific language between the Scisntist
working in various fields of aging studies. In relation to igas aging characteristics statisticians divided the life
distributions into classes such as increasing failure ({&R), increasing failure rate average (IFRA), new bethemt
used (NBU), new better than used in convex ordering (NBU@)y better than used in expectation (NBUE), harmonic
new better than used in expectation (HNBUE), new better tismd in Laplace transform order (NBUL), used better
than aged (UBA), (UBACT) and a lot of other classes. Cling @rad others studied the connection between the class of
age-smooth distributions and the class of distributionhvatib-exponential tails which have many applications in
queuing theory random walk and infinite divisibility.

Such aging classes are derived via several notions of cosoparetween random variables. So we introduce a new
aging notion derived from the Laplace transform order. Befee go into the details, let us quickly review some common
notions of stochastic orderings and aging notions consdlier this paper.

If X andY are two random variables with distributions F aBdsurvivalsF andG), respectively, then we say thét
is smaller thary in the:

a)Usual stochastic order, denoted by XY if
F(x)<G(x)  forall x.
b)Increasing convex order, denoted by Y if

/Xmlf(u)dug /Xooé(u)du.

c)Increasing concave order, denoted byiX Y if

/O “E(uydu< /0 "Bu)du
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Another importing ordering that has come to use in religbdind life testing is the following:
A random variableX is smaller than a random variabfavith respect to Laplace transform order (denotedby ; Y
) if, and only, if
/ & SdF(x)> / e dG(x), $>0. L)
0

0
It is easy to check thatflf is equivalent to

/ " e SF(x)dx< / e 9G (x)dx. @)
0

0

Applications, properties and interpretations of the Laplaansform order in the statistical theory of reliabjliéyd
in economics can be found in Denuit [13], Klefsjo [16], andnAdd and Kayid [6].

On the other hand, in the context of lifetime distributioeeme of the above orderings have been used to give
characterizations and new definitions of aging classesgdyawe mean the phenomenon whereby an older system has
a shorter remaining lifetime, in some statistical sensa tayounger one (Bryson and Siddiqui [11]).

We aim in this paper to introduce a new aging notion derivedifthe Laplace transform order, namely used better
than aged Laplace transform order (UBAL) class of life dlsttion. Definition and relationships are given in section 2
In section 3, we discussed some closure properties to (UBAth as convolution and formation of a coherent system. In
section 4, applications of this aging to a shock model ismgiBased on goodness of fit approach our test is constructed
in section 5. Monte Carlo null distribution critical valuase simulated and tabulated in Table 1 for sample sizes n =
5(5)100 using Mathematica 8 programme in section six. BinRitman asymptotic efficiencies for linear failure rate
(LFR), Weibull and Makeham distributions, which are belodaghe UBAL class, are calculated in section seven.

2 Definitions and Preliminaries

In reliability theory, aging life is usually characterizbg a nonnegative continuous random variakle 0 representing
equipment life with distribution functiof and survival functiorF (t) = 1 — F(t) such thaf (0—) = 0. One of the most
important approaches to the study of aging is based on theepbof the residual life. For any random variab¥e let
X =[X-t|X>t], te{x:F(x)<1),denote a random variable whose distribution is the sameeasahditional
distribution ofX — t given thatX > t and has survival function

F(x+t) =
F)=J FO F)>0
0 F(t)=0

WhenX is the lifetime of a device which has a finite meanr= E (X) = /5 F (u)du, the mean of; is called mean
residual life (MRL) and is given by

®3)

Further, the hazard rate ¥fis defined by

h(t) = —%Inf(t) = % t>0, F(t) >0,

wheref (t) = F'(t) is the probability density ok assuming it exist. Note that if lim.. h(t) = h(e) exists and is positive,
then cf. Willmot and cai [22]

pe) = Jim 1) = o

t—oo

Two classes of life distributions were introduced by Alzgifiwhich are used better than aged (UBA) and used better
than aged in expectation (UBAE) classes of life distribatio
Precisely we have the following definitions:

Definition 1.The df F is said to be used better than aged (UBAR)<f t («0) < o and for all xt > 0,

F(x+1t) > F (t)e XK, Xt >0 (4)
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Definition 2.The distribution function Fis said to be used better thandaigeexpectation (UBAE) i < 1 () < c0 and
for all x,t > 0,

p(t) > p (o) (5)

Remark thatf is UBA (UBAE) if and only if X; converges in distribution to a random varialfle(say) exponentially
distributed with failure ratey and

Xt <stXa, (E(Xt) <stE(Xa))-

According to the above definitions we can deduce the follgwiew definition for used better than aged in the Laplace
transforms order as follows.

Definition 3.The distribution function F is said to be used better thandagethe Laplace transform order (UBAL) if
0 < p () < ooand forall xt >0,

C e H(o) =
/O &SR0 TSF ), $20 6)

It is obvious that §) is equivalent toX; <X for all t >0.

To introduce the definition of the discrete UBAL, leK be a discrete non-negative random variable such that
PX =K =p, k=0,1,2, ....Let Pk =P(X > k), k> 1, Py = 1 denote the corresponding survival function.

The discrete non-negative random variallés said to be discrete used better than aged in Laplace tramsfrder
(discrete UBAL) if, and only, if

P iZ>P Y £, forall0<z<landi=0,1,....
2, 2,

Now,
X <gt Xa = X <yt Xa.

Then, we have the following implication:

IFR C UBA C UBAL

U
UBAE

See Abu-Youssef and Bakr [1,2].

Applications, properties and interpretations of the Laplaansform order in the statistical theory of reliabjliyd
in economics can be found in Denuit [13], Klefsjo [16], andnAdéd and Kayid [6].

Some interpretations for the UBAL class are as follows:

-One simple interpretation of;’ e F(x)dx is that the mean life of a series system of two statisticaltyependent
components, one having exponential survival function dedather having survival functioR. Consider now two
series systems, say system A and system B. System A has aamgdment of agewith survival function F; while
system B has an aged component with exponential survivatifum
Thus, F € UBAL implies that the mean life of a system B is not larger tlfaait of system A.

—A machine has survival functiol and produces one unit of output per hour when functionimg. @resent value of
one unit produced at timeis 1., wheres is the discount rate. Then the expected present value dfdotput
produced during the life of the machine is

/ e F(x)dx.
0

Thus, F € UBAL implies that a used machine of aggoverned by survival functiorir, produces a greater expected
total present value than does an aged machine governed byexjl survival function.

3 Preservation Results

As an important reliability operations, convolution, mix¢ and formation of coherent system of a certain class ef lif
distribution is often paid much attention. It has been shtivat UBAL are closed under these operations.
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3.1 Convolution

In the next theorem we establish the closure property for UB#der convolution.
Theorem 1UBAL class of life distribution is closed under convolutaperation.

ProofSupposd-; andF, are UBAL, then we have

/e‘sxlf(x+t)dx:/ / e ¥F1(x+t—u)dFz (u)dx
0 0o JO

:/ / e SF1 (x+t — u)dx dF, (u)
0o JO

T _H(®) £
ZA mFl(t—U)sz(u)dX
p (0

_ ) =
e

Which proved that the UBAL is closed under convolution ofiera
Where

TR SAS——

3.2 Formation of coherent systems using independent coemp®n

A system is called coherent if:

1.Every componentis relevant.
2.The structure function, which represents the perforraafthe system in terms with performance of the component
is increasing.

Design engineers give greater importance to coherencyiliditg systems.

For more details about coherent system see Barlow and @n$gh

In the next theorem we establish the closure property of tBAlUclass under the formation of a coherent system
operation.

Theorem 2A series system of n independent UBAL components is UBAL.

ProoflLet X1, Xz, ..., X, be independent UBAL then we have

® moP(MiN(Xy,.... Xn) 2y +1) | s P 2y +t)
/o TP MinOL,. X > 1) rl/ oy

y+t

_rl / —
z[l /0 &S H/Hi() g

_ / “ e e X/ (311 (@) gy

(1+S<Z| 1H| )

— / Z| 1 Hj (e de

_ 2I:1I"ll( )
1+ s(Fily Hi())

Since FisUBAL

This implies that the series system, Xo, ..., X, is UBAL.
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4 Applications:

4.1 Shock model application

Suppose that a device is subject to shocksN(&} be the number of shocks in time intervgd, t |. Thekthshock arrives
attimeTy . LetXq = Tks1 — Tk be the time between theh and(k+1)st shocks. We assume that;, Xp, . .. are mutually
independent and identically distributed according to

Let
a(t)=p(N(t)=k), k=1,2,...

and letPy be the probability of the device survivirkgshocks.
Then the survival probability of the system until tirnis

Theorem 3F is UBAL implies H is UBAL.

Proof: Observe thaH (t) can be written in the form

8

H(t) = Y Fk(t) b
k=1

Where p, =Py_1 — Py, k=1, 23, ... andF is the distribution function ofy, and

/ e ¥H (x+t)dx = Z/ k(X+1) pedx

Ho) o=
> m Z Fe(t) p
SinceF is UBAL ()
- IJ o] _
; 1+su(°°)H(t)

)

thenH is UBAL.

5 Testing Against UBAL

This section is concerned with the construction of the pseplostatistic as a U-statistic and discussing its asyneptoti
normality.

Here, We hope to test the null hypothadis: F is exponential, against; : F is UBAL, and is not exponential. Non-
parametric testing for classes of life distributions hasrbeonsidered by many authors (see Hendi et al. [15]; Mahmoud
et al., [19,20]; Abu-Youssef and Bakr [1,2]; Abu-Yousse&kf3,4].

According to Eq. §) We may use the following as a measure of departure figm

5(9)=E [/w lef(x+t)dx—%f(t)

= ‘lefxtdx—ﬂft dRp(t),
= [ e R o o T F )] dR)
The following theorem is essential for the development oftest statistic.
Theorem 4Let X be the UBAL random variable with distribution functienthen based on the Goodness of fit approach

technique,
o 1HH(®) (1% exgri)—
50— gl (1 O ey ([ e aF00-1)) )

where¢ (s)= [ e S*dF(x).
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ProofSince

L
.
S~—

o
d!
=
N—

R A L H ()
5(5)_/0 [/0 L

We can take f(x) =1—e %, x>0, then

// e "SR (u+ t)dudt— /F t) e 'dt

.
Where,
/waome e SF(u+t)dudt
_ / / e teS0UF (x)dxdt
0 Jt
0 rt
—t—S(t—X)F
/0 Oe e (t)dxdt (8)
1= —S
=5 e Y(1-e SHF(t)dt
—1%5 %(1—¢(s))—1+/0 e‘tdF(t)]
And,
LG B = GO P
Iy — 1+Su(oo)/o P R0~ {1 /0 e dF(t)]. ©)

From equations 8) and ), we obtain 7).
Let Xg,Xp, ..., X, be arandom sample from the distribution function F.

For generality, we assume(«) is known and equal one. The empirical estimaﬁcés) of our test statistic can be

obtained as follows:
~ 1 1

—SXi 2 —Xi
e P HE - L

To make the test is invariant, let R
—~ on(s
then, R
Let us rewrited as follows,

1
9= 2 9
where

2

Gy

0(X) =g {5 (1-e ) +

To find the limiting distribution ofS(s) we resort to the U-statistic theory and practice (Lee [17]).

Set 1 1
aogtste™+

®(X1)=

Then,A, (s) is equivalent to U-statistic given by:

= (p) 3o

The following theorem summarizes the asymptotic norma;litggn ().
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Table 1: The Upper Percentile Points 3(5) with 10000 Replications.
n | 90% 95% 99%

5 | 0.006021 | 0.0070851| 0.0085853
10 | 0.004619 | 0.0057107| 0.0074085
15 | 0.003828 | 0.0046726| 0.006104
20 | 0.003680 | 0.0045432| 0.0057393
25 | 0.003424 | 0.0041355| 0.0052877
30 | 0.002935 | 0.0035352| 0.0047174
35 | 0.002756 | 0.003277 | 0.004525
40 | 0.002546 | 0.0032092| 0.0044086
45 | 0.002419 | 0.0031397| 0.0043173
50 | 0.002323 | 0.0030042| 0.0042904
55 | 0.002235 | 0.0028723| 0.0039834
60 | 0.002149 | 0.0027979| 0.0038899
65 | 0.002048 | 0.0027145| 0.0037649
70 | 0.001937 | 0.0027041| 0.0035067
75 | 0.001817 | 0.0024491| 0.0032827
80 | 0.001718 | 0.0024184| 0.0030806
85 | 0.001627 | 0.0024076| 0.0029668
90 | 0.001534 | 0.0022396| 0.0028221
95 | 0.001434 | 0.0021586| 0.0027326
100 | 0.001352 | 0.0021096| 0.0026798

Theorem 5. (i))Asn—oo, (Sn (s)—o(s)) is asymptotically normal with mean 0 and varianwg(s) where,
2(a) s _ 1 1 —SX 2 —X 2
o (s)_Var[an(s)] ~E(—g {g (1-e )+m (e —1)})

(iiyUnder Ho, the variancesg (s) :m.

Proof. (i)Using standard U-statistic theory, Lee [17], and direadtulations, we get
N 1 1 —SX 2 —X .
e[ae]=E (g {s0e iy e 1))
_ < _ 1 1 —sX 2 —X 2
02(3)_Var[5n(s)} =E(=g {g (1-e )+(1+S) (e —1)}) .

(iUnder Hop, the parametes= 5 say, and

to=E [Sn (5)} =0;

2¢-8s5—6

= . = 0.00004
3925+ 1)(s— 1)*(s+1)?

a5 (9)

6 Monte Carlo null distribution critical points

Based on 10000 generated samples from the standard exjadwksitibution the Monte Carlo null distribution critica
values of our tesd(5) are simulated and tabulated, where n = 5(5)100 in Table 1h&faatica 8 programme is used.

From Table 1 and Fig. 1, the critical values decrease as thplseasize increases and they increase as the confidence
level increases.
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Fig. 1: The Relation Between Sample Size and Critical Values.

7 Pittman asymptotic relative efficiency (ARE)

Since the above test statisﬁis) = % is new and no other tests are known for this class (UBAL). Wg s@mpare
our test to the other classes. Here we choose thedigg} presented by Mugdadi and Ahmad [21] aﬁ@ presented

Mahmoud and Abdul Alim [18] for (NBAFR) class of life distuiiion. Then comparisons are achieved By using Pitman
asymptotic relative efficiency PARE, which is defined asdah:
Let Ty, and T,y be two statistics, then PARE @f, relative toT,, is defined by

e(Tin, Ton) = 01(6) / 02(6o)
Where
\ i 0
Hi' (Bo) = lim —oE(Tn) 06
—
and

2 .
of (6) = lim var(Ty,) .
Three of the most commonly used alternatives they are:

() Linear failure rate family

Fix)=e* 28 g x>0 (10)
(i)Weibull family:
Fo)=e, 8>1,x>0. (12)
(iiilMakeham family:
Fo(x)=e X 00e™1 g x>0 (12)
Note that H (the exponential distribution) is attained@&t 0 in (i) and (iii) and6= 1 in (ii). The Pitman’s asymptotic
. < PR L
efficiency (PAE) ofA(s) is equal to PAE(cS(s)) = —%® 0

_
E)

1 [ s 2 ® XA
s(l—s)/o € XdFGO(X)_(1+S)(1—S)/o & 7dFg (X

WhereF g (x) = SFo(U)]g g
This leads to:

(@© 2018 NSP
Natural Sciences Publishing Cor.



N <SS 2 113

J. Stat. Appl. Pro7, No. 1, 105-114 (2018)www.naturalspublishing.com/Journals.asp

(DPAE in case of the linear failure rate distribution:

TN T e A BN A N N S LRV A G N
PAE(a(s))_m’%/o e Xd(Te >+1—2/0 e¥d( e )| =143

(iPAE in case of the Weibull distribution:

1 __1 0 _g B L i/oo x B .
% (5) 20/0 e ¥d(—xin|x|e )+12 e d(—xin|x|e )

(iPAE in case of the Makeham distribution.

PAE(S(s)) - — 0.5972

1 |-1

_°°_S —x—e Xe X im—x v aX\a X )| —
%) 20/0 e ¥d((1-x—e e )+12/0 e Xd ((1-x—e¥)e™)| =0.1019

PAE(S(s)) -

Direct calculations of PAE af\g (1) , 6,:2n andg(s) are summarized in table (2), the efficiencies in table shdearly
our U—statistiog(s) perform well forF;, F and Fs.

Table 2: PAE ofAg (1) , 8 andd (s)

Distribution | g1y | 8% | 3(9)
LFR 0.408 | 0.217| 1.42
Weibull 0.170 | 0.050| 0.5972
Makeham | 0.0395| 0.144| 0.1019

In table (3), we give PARE’s 03(5) with respect tcﬁgy(l)andqgf) whose PAE are mentioned in table 2.

Table 3: PARE ofS(s) with respect td\g 1) andé,gf).

=

Distribution | e(3(s),0¢,1)) | € (8(5) , 5&?)
[FR 3.48 6.54
Weibull 351 11.94

Makeham 2.58 0.71

It is clear from table (3) that the statistqu) perform well forF;, F, andF3 andF, and it is more efficient than both
Do (1) andéé? for all cases mentioned above. Hence our test, which dealsitith larger UBA is better and also simpler.
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