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Abstract: The accuracy of the Heller’s derivative rule to calculate the numerical weights associated with discretized energy 

spectrum is enhanced by Broad’s extension, which adds (N1) more interpolating points to the original N points. The 

extension scheme is then used to show how to realize the rule without any approximation. 
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1 Introduction 

The idea of using a finite square-integrable (L2) basis 

functions to perform scattering calculations was bold on two 

counts [1-6]. First, the L2 basis is usually a bound-state-like 

tool usually reserved for structure calculation. It is thought 

to be counter-intuitive for this basis to represent non-square-

integrable wavefunctions. Second, the finite nature of the 

basis destroys the needed analytic properties of important 

scattering quantities such as the S-matrix or the Green’s 

function. This results from the fact that the continuous 

scattering spectrum is rendered discrete by the use of finite 

basis (See for example [6] for discussion of this point). 

It is now an established fact that the use of finite as well as 

complete L2-basis functions proved to be very successful 

and efficient calculational tools with rich mathematical 

underpinnings. One such tool is the Heller’s ansatz [7,8], 

which gives a clear and straightforward rule of how to 

approximate an integral over the continuous energy 

spectrum by a sum over discrete energies. More explicitly, 

if H is the scattering Hamiltonian and H  is the NN matrix 

representation of H in the finite basis  
1

0

N

n n





 having 

discrete energy eigenvalues  
1

0

N

 





, then we have the 

following integral approximation 

1

00

( ) ( )
N

dF d F 


   
 



 .    (1) 

The procedure to specify the set of N numbers  
1

0

N
d

 





 is as 

follows: 

(a) Find a function ( )x  that interpolate the sorted 

eigenvalues  
1

0

N

 





 in the index  such that 

( )    .     (2) 

(b) Calculate the derivative weights  
1

0

N
d

 





 simply as 

( )d

x

d x

dx









 
  
 

.    (3) 

From the outset, it is useful to note that the  
1

0

N
d

 





 are 

different from the usual quadrature approximation scheme 

for energy integrals where the abscissas  
1

0

N

 





 and the 

numerical weights  
1

0

N

 





 are derivable from a positive 

density function ( )   so that [9] 

1

00

( ) ( ) ( )
N

F d F 


     
 



 .   (4) 

We see that actually 

( )d

      .     (5) 

The one often cited example where the Heller rule yields an 

exact result is the case of the Chebyshev polynomials [8,9]. 

In this case 

1
cos , 0,1,..., 1

1
N

N



  

 
    

 
. 

Naturally, then 
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1
( ) cos

1

x
x

N
 

 
   

 
. 

Thus the rule gives 

1
sin , 0,1,..., 1

1 1

d N
N N



 
  

 
   

  
. 

This result is in exact correspondence with Chebyshev 

system where 

2( ) 1    , and 

2 1
sin , 0,1,..., 1

1 1
N

N N


 
  

 
   

  
. 

For other cases where no clear interpolation scheme is 

known, the rule is introduced by Heller as an approximation. 

2 Broad’s extension 

In this work, we show that Heller’s ansatz has strong 

theoretical support. The first step in that direction was taken 

by Broad who carried out an analysis to mathematically 

justify and subsequently improve the accuracy of the 

Heller’s rule by essentially adding more interpolation points 

to the original N points  
1

0

N

 





 [10]. Broad considered the 

finite Green’s function matrix elements 00 ( )g z  which he 

wrote explicitly as 

 

 

2

0
00 1

0

ˆ

( )

N

N

z

g z

z






























,     (6) 

where  
2

0
ˆ

N

 





 is the set of ( 1N  ) eigenvalues of the matrix 

abbreviated from H  by deleting the first row and first 

column [11]. In the limit as N   when the basis set 

becomes complete, it approaches the exact Green’s function 

matrix element 
( )

00 ( )G z
 associated with the scattering 

Hamiltonian H. Broad’s significant contribution is in 

showing that the interpolating function ( )x , or rather its 

inverse 
1( ) 

, has the form 

( )
1 00

( )

00 00

Im ( )
tan ( )

Re ( ) ( )

G

G g


  

 





    

.   (7) 

We note immediately that this form already contains the 

Heller’s interpolation condition of Eq. (2) since at the poles 

 
1

0

N

 





 of  00( )g z , 

1tan ( )      vanishes, giving 

1( )    , an integer. 

Broad further argued that at the extra ( 1N  ) points  
2

0
ˆ

N

 





 

which are the zeros of 00( )g z , we have 

( )
1 ( )00

00( )

00

ˆIm ( )
ˆ ˆtan ( ) tan arg ( )

ˆRe ( )

G
G

G


 




   




 


        . 

With ( 2 1N  ) points the ansatz now reads as follows: 

(a) Choose the argument of ( )

00 ( )G   to lie  in the interval 

 0,  and, utilizing the fact that that two sets of 

energies  
1

0

N

 





 and  

2

0
ˆ

N

 





 interweave, sort them 

according to the scheme 
 

0 0 1 1 3 2 2 1
ˆ ˆ ˆ ˆ

N N N N                  . 
 

(b) Augment the Heller’s interpolation condition of 

equation (2) by the conditions 

1 ( )

00

1
ˆ ˆ( ) arg ( )G    



      ; 0,1,..., 2N   , (8) 

for a total of ( 2 1N  ) interpolation points. 

We naturally expect that as a result of  the Broad’s proposal, 

these many points pin down the function ( )x  more 

accurately and consequently lead to a more accurate 

estimate of derivative weights  
1

0

N
d

 





. In fact for cases 

where ( )

00 ( )G   is exactly known, we have found [6] that 

Broad’s extension indeed produce more accurate values of 

 
1

0

N
d

 





. However, an accurate knowledge of ( )

00 ( )G   is 

usually not available since it assumes knowledge of the 

system beyond knowledge of the properties of the finite 

Hamiltonian matrix H . 

3 J-matrix extension and exact realization 

In the absence of accurate knowledge of 
( )

00 ( )G 
, we 

propose to show that the J-matrix approach [12-15] provides 

a way around this challenge while at the same time builds 

on the significant step taken by Broad. In this approach, we 

work in a complete basis set  
0n n





 in which the 

representation of reference Hamiltonian 0H  is tridiagonal 

and the coefficients of the associated asymptotically sine-

like ( )S   and cosine-like ( )C   solutions of the 

reference problem are known, 

0

( ) ( )n n

n

S s  




 ,    (9a) 

0

( ) ( )n n

n

C c  




 .    (9b) 

Furthermore, the scattering potential V is restricted to the 

subspace spanned by the finite basis  
1

0

N

n n





, so that 

0

0

,0 , 1

,otherwise

nm nm

nm

nm

H V n m N
H

H

    
 


  (10) 

In this setup, it has been previously worked out that [6] 
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 

( )

00 00

0, 1 1, 1,0

( ) ( )

( ) ( ) ( ) ( ) ( )N N N N N N

G g

g J R g

 

    



 

  

 


  (11) 

where 

 0( )nm n mJ H     , 

 
1

1

0

( )
N

n m

nm n mg H
 

 

   
 






 
  


 , 

1 1

( ) i ( )
( )

( ) i ( )

n n
n

n n

c s
R

c s

 


 



 





, 

1, 1 1,( ) 1 ( ) ( ) ( )N N N N N Ng J R    

     , 

and  
1

0

N

n n




  is the normalized eigenvector of H associated 

with the eigenvalue  . Now, since 00 ( )g   and 1, ( )N NJ   

are real for real energies, Broad’s proposal for the 

interpolation function ( )x  now reads as 

 

( )

00 001

( )

00 00

Im ( ) ( )
tan ( )

Re ( ) ( )

Im ( ) ( )
tan arg ( ) ( )

Re ( ) ( )

N N

N N

N N

G g

G g

R
R

R

 
  

 

 
 

 







 

 

 

        

      
   

 (12) 

We note three points about this expression. First, it too 

contains the Heller’s condition of equation (2). Second, it 

requires information related only to the finite Hamiltonian 

matrix H  and the reference Hamiltonian 0H  all of which 

are accurately available. Moreover, this expression suggests 

the way to implement effectively an extension to the 

Heller’s derivative rule. It is seen that the set  
2

0

N

 





 of 

zeros of the function 1, 1( )N Ng    is very special. These 

1N   energies are precisely the eigenvalues of the matrix 

abbreviated from H  by deleting the last row and last 

column. We may now arrange the two interweaving sets of 

energies  
1

0

N

 





 and  

2

0

N

 





 to state the interpolation 

conditions as 

1 1
( ) arg ( )NR    



      ; 0,1,..., 2N   . (13) 

This allows us to interpolate an accurately known 
1( ) 

 at 

( 2 1N  ) for more accurate determination of  
1

0

N
d

 





 via 

Eq. (3). This is essentially the Broad extension albeit with 

different set of points. 

The third point is the realization that we really do not even 

need to interpolate the function 
1( ) 

 artificially since 

expression (12) is actually valid for all energies, not just at 

a finite number of them. Broad's extension embodies a 

natural interpolation scheme, which can be implemented 

directly. We evaluate 
1( ) 

 directly and then affect an 

exact realization of the ansatz (3) without the need for any 

interpolation. This can be done by first writing 1( ) x    

and hence ( )x   such that ( )     and noting that 

d

x

d d

dx dx




  

 


 

   
    
   

.    (14) 

Now, since 
2

1, 1 1,

2

( ) ( ) ( ) ( )( )

( ) ( )

N N N N N NN

N N

R g J RR    

 

 
  

 




 
, 

we can write 

2

1, 1 1,

Im ( )
tan

Re ( ) ( ) ( ) ( )

N

N N N N N N

R
x

R g J R




   



 

  

  


 
  

.    (15) 

Differentiating both sides with respect to the energy  and 

taking the limit of the result as   approaches  , we obtain 

2
2

1, 1,

Im ( )

( ) ( )

N

N N N N

Rdx

d J R



 
  



   






 

    
 

  
. 

This yields the final result that 
2

1, 1, ( )

Im 1 ( )

N N Nd

N

J

R

 





 




 






  

.   (16) 

Without any need for interpolation. 

4 Results and discussion 

To test the proposed extension and also the exact realization, 

we consider a model problem where the exact answer is 

known. The chosen model is a modified version of the 

Chebyshev system [9,11], namely the one associated with 

the following infinite tridiagonal symmetric matrix 

1
2

1 1
2 2

1
2

0

0

0

0

0

A B

B

H

 
 
 
 
 
 

  
 

   
 

   
   

   (17) 

where A and B are real constant parameters and 0B  , and 

this Hamiltonian is  associated with the reference 

Hamiltonian  0

, 1 , 1
1
2nm n m n mH     . The finite matrix H  

is obtained by truncating the above matrix to a finite NN 

sub-matrix and the corresponding discretized continuum lies 

within the interval [ 1, 1]    . The exact Green’s function, 

density function and J-matrix coefficient associated with 

this model are: 
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 
1

2 2 2

00( ) 2 1 2 1G z A B z B z


     
 

,  (18) 

2 2

4 2

(2 ) 1
( )

4 ( ) (4 1)

B x
x

B A x A B x







     

, and (19) 

 
1

2( ) i 1NR x x x


    ,   (20) 

respectively. Table 1 shows the results of calculating the 

derivative weights using the four different methods for 

1
3

A B   and N = 10: 

(1) The original Heller’s rule represented by Eq. (3). 

(2) Broad’s extension of the rule where Eq. (2) is 

augmented by Eq. (8) and using the exact Green’s 

function (18). 

(3) The J-matrix extension where Eq. (2) is augmented 

by Eq. (13) and using the J-matrix coefficient (20). 

(4) The exact J-matrix realization of the rule as 

stipulated by Eq. (16). 

 

 

 

Table 1: The derivative weights  
1

0

N
d

 





 associated with the NN sub-matrix of (17) for 1

3
A B   and N = 10 and obtained 

using the four indicated schemes. The values in the last two columns agree to machine accuracy (not displayed). 

 

          
Heller 

Eq. (2) 

Broad 

Eqs. (2&8) 

J-matrix 

Eqs. (2&13) 

J-matrix 

Eq. (16) 

Exact 

( )     

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0.952972 

0.816684 

0.605168 

0.340783 

0.053421 

  0.219605 

  0.447418 

  0.648931 

  0.830589 

  0.955819 

0.090485 

0.177423 

0.242124 

0.281642 

0.286715 

0.253290 

0.205993 

0.199704 

0.155402 

0.096834 

0.093250 

0.176970 

0.242319 

0.281475 

0.286976 

0.252617 

0.207850 

0.196699 

0.159295 

0.085524 

0.093250 

0.176970 

0.242319 

0.281475 

0.286976 

0.252617 

0.207848 

0.196695 

0.159300 

0.085916 

0.093250 

0.176970 

0.242319 

0.281475 

0.286976 

0.252616 

0.207845 

0.196688 

0.159273 

0.087189 

0.093250 

0.176970 

0.242319 

0.281475 

0.286976 

0.252616 

0.207845 

0.196688 

0.159273 

0.087189 

 

 

 
Fig. 1: The interpolation process to obtain ( )x  associated 

with the quadrature matrix (17) using the J-matrix extension 

depicted by Eq. (2) and Eq. (13) for N = 10. Solid squares 

and circles correspond to  
9

0n n



 and  

8

0m m



, respectively.  

The thin solid curve connecting these 19 points is obtained 

using Schlessinger fitting routine of order 17. The thick 

solid curve represents d dx  (scaled up by a factor of 10 

and shifted down on the energy axis by 1.5 units for better 

presentation). 

 

 

 

For the sake of comparing the accuracy of the four methods, 

the exact values are also shown. These are obtained using 

the exact numerical weights  
1

0

N

 





 and density (19) in 

( )d

      . The exact J-matrix values agree with these 

values to machine accuracy. 

 

The figure shows an example of the interpolation process to 

obtain the function ( )x  using the J-matrix extension 

(method 3 above). In the figure, squares correspond to 

 
1

0

N

n n





 and circles correspond to  

2

0

N

m m





 whereas the thin 

solid curve connecting these ( 2 1N  ) points represents 

( )x , which is obtained using Schlessinger fitting routine 

[16] of order 2 3N  . The thick solid curve represents 

d dx  (scaled and shifted for better presentation). 

 

The second example we give is the -th  partial wave kinetic 

energy Hamiltonian operator 
2

2 2

1 ( 1)

2 2

d
H

dr r


   . The 

matrix representation of the Hamiltonian in the orthonormal 

basis [2] 
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2 21 /2 1/2 2 2( ) ( )r

n n nr a r e L r     , 

where 2 ( 1) / ( 3 2)na n n       and   is a free 

parameter, has a tridiagonal representation 

1 , 1 , , 1n m n n m n n m n n mH D C D         , where 

2

2
(2 3 2)nC n    and 

2

2
( 1)( 3 2)nD n n    . 

This Hamiltonian has been studied extensively [6,13,15]. 

We know that associated with it is the following solution 

22 1 / 1/2 2( 1)
( ) (2 ) (2 )

2

n

n n ns a e L 
    



  
 , and 

22 1 /

2

1 1
1 1
2 2

( 1)
( ) (2 )

2

( , ; ;2 )

n

n nc a e

F n

 
  



 

 


    

 

It is also known that the energy eigenvalues of the finite 

NN matrix H  associated with H falls as the zero of ( )Ns 

or equivalently the polynomial 1/2 2(2 / )NL   . This enables 

us to calculate the exact value of d

  via the quadrature 

formula of Eq. (5). In Table 2 we follow the same procedure 

as in the previous example but limit the comparison of 

results from applying the Heller derivative rule and from 

applying J-matrix formula Eq. (16) with the exact result for 

the case 1  and N = 5. As expect the J-matrix result is 

identical to the exact result. 

 

Table 2: The results of comparing the Heller rule Eq. (2), 

and the J-matrix result Eq. (16) with the exact derivative 

weight associated with finite (N = 5) energy eigenvalues of 

the 1  partial wave kinetic energy operator. 

   
Heller 

Eq. (2) 

J-matrix 

Eq. (16) 

Exact 

( )     

0 

1 

2 

3 

4 

0.69089884 

2.08912217 

4.32302517 

7.64230380 

12.7171500 

0.97639588 

1.80175781 

2.70709413 

4.03613269 

6.36638 

1.02527960 

1.78939724 

2.71682237 

4.01574624 

6.50593564 

1.02527960 

1.78939724 

2.71682237 

4.01574624 

6.50593564 

 

5 Conclusion 

In summary, we have provided an exact realization of the 

very powerful and simple to use Heller derivative rule. The 

key to this realization is the specification of the interpolation 

scheme as that suggested by the work of Broad. This scheme 

can be exactly implemented in the J-matrix context leading 

to an exact form for the derivative weight derivable from the 

properties of the finite matrix H  and the reference 

Hamiltonian 
0H . 
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