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Abstract: We present a new class of time-dependent Hamiltonians éoBdhrodinger equation :

Re(t +iz)P Im(t+iz)P
Hp(t) = (mﬁw?iip —R(e(t +IZ|)z)P)

wherep € N*, andz > O is a scalar coupling parameter. The purpose of this shpserga to overview some common properties ta-l
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1 Introduction The 2 by 2 real symmetric and traceless Hamiltortign
. has two real eigenvaluedy = +(t>+ 2)P/2 . The
Let p € N*. We shall consider the vector-valued At A=
Schrddinger equation : difference of these eigenvaluAE = % is strictly
Row(t,z) positive. In the vicinity of the crossing, the energy gap is
N = Hp(tvz)w(tﬂz) ) (1) P

i ot

whereHp is the matrix-valued Hamiltonian :

equal toAE ~ 2%

From the physical viewpoind; and A, do not cross
(avoided level crossing). But the transition between
eigenstateg—) and |+) occurs through the quantum

_ (Re(t+iz)P Im(t+iz)P tunnelling effect. The quantum effect decreases in the
Helt.2) = ('m(t+iz)p —Re(t+iz)P @) adiabaticglimit. q

and W= (q"l) is a spinor of RemarkThe casez = 0 is trivial, and the corresponding

W DU L .
F = {YpcClteR, zeR,}. Equation @) falls S-matrix is simply the identity matrix i

into the class of nonautonomous linear first-order
ordinary differential equations.

By Cauchy-Kovalevskaya, the analyticity &fy in both 2 Ge.n eral features of the asymptotic
variables implies the existence and uniqueness of th&olutions of (1)

evolution operator for the Cauchy problem. Moreover, a

Liouville theorem states that the evolution of) (is .

volume-preserving since k, = 0. Without loss of 2.1 Invariants

generality, we can restrict ourselves to elements in

S7 = {|ynf+ go* = 1}.

RemarkThe casep = 1 gives birth to the renowned Observe that the Hamiltonidd, is a real-valued matrix.
Landau-Zener problem. By using shorter notationsrp = Re(t + iz)P and
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ip=Im(t+iz)P, Equation {) reads as : Differentiate with respect to, we find that the functions
Fdy a(t) andb;(t) must satisfy two independent sets of ODEs :
T it @ day .
and ——= =ipn—rpe. (4) (2): ,

Consider the linear combinatiapy (3) + s (4) : dt

iﬁ("i:2 + Apaz— Fpag—iphy =0

R/ dys  dy, (Z"): 9 . :
T (lﬂlﬁﬂ”ﬂzﬁ) IHW + Apby+rpby —ipay =0
:rp(|w1|2—|w2|2)+ip(w{w2+ Unrys) . At t — +oo, let us solve first(2’). Take a3 to be

t-independent (i.e. a constast. € C). The first equation

The RHS is real-valued. Hence : in (=) yields readily

LAy | dgp
p
The derivationg commutes with complex conjugation, as dby 1
well as with Re and Im, then the identity : Then in the second equation, the teft- is a & (ﬁ)
d dw# d dws: while the 3 last terms are of magnitud@(tP~1). By
((IJI% +yn ;’{{1) + <(IJ§‘% + wz%) neglecting the former, we obtain that :
d ip
= S (lpaP+lgeP) =0 (5) b2 = e
es*tabﬂslhes the conservation of the probability densityand thanks to the reIatiorAE, _ r%+i%, this is fully
vo=1 compatible. By doing the same trick fQE”), we get :
Now consider the linear combinatiaps (3) — 5 (4) : An—t
=0, b= pi Po .
p
h/ dygn  dgp
— (== -y == _ 1 . .
[ dt dt Finally, up to a2’ 2 error term in (), we find that the
= 1p (U + i) +ip (|02 * = [4nf?) - linear combinations :
Again, the RHS is real-valued. So we have : iAp Ap—Tp iAp
" " Q)l_w+exp<?> —Tw_exp(—?)
2l 2 Ap—r iN iN ’
Re(‘pz a  Yar ) o= pw+exp<?p>+w_exp(—?p)
p
Ldin dys dyi  .dip
= (‘/—’ZW —t dtz +{ g2 dtl “iy ) =0 with constantsw_, w. € C (that may depend only on

(6) and the initial conditions), are approximate asymptotic
solutions of () whent — +4c0. Similar computations can
which implies the conservation of the Poynting flux. be performed at — —oo to obtain :

UL =a, exp(?) - Ta_ exp ——¢-

P = i a+exp< ﬁ)+a.exp< =

with constantsx_, a; € C. Observe that for large values

2.2 Local analysis att-oo

t
Let Ap(t,2) = / Ap(s,z)ds Insert the following Ansatz
into (1) :

oft:
¢a(t,2) = ai(t)exp IApr(it’Z) —by(t)exp —IAp(ﬁtjz) wps1 2o (t2 4+ 2)P2 — Re(t +iz)P
ip(t,2) iNp(t,2)] - ~7 Im(t+iz)P
Ya(t,2) = by(t) exp 5 +ap(t)exp - oz
(7) e oY (8)
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2.3 Scattering matrix to t. Using the constant variation method, the solution of
the inhomogeneous equatidif with the initial condition

Definition 1.The scattering matrix S (or the S-matrix for €y (to,z) at some, say, positivig is given by :

short) of the coupled Schdinger equations1) is the

t
element of Sksuch that : vt >to, ey(t,2) =U(t,t0,2) {ew(t07z)+/ U(s7t07z)*1n(s)ds} .
to
W\ _ of 0+ Therefore :
|Ew<tz‘ HUttOZH/a%

in a suitable basis of eigenstates.

2
{lsw(to,z)|2+2Re<sw(to,z),/ttU(sto 27 'n > -1 5{ } ,

The Smatrix carries all the scattering data and the e
tunnelling effect occurring at the avoided level crossing. yitn (-,-) denoting the usual sesquilinear productGt

We also introduce the two transition probabilit&g) and  gjnce U (t,to,2) iS a measure-preserving isometry and
b(z) (as they depend on the coupling parame)duy :

_( a®@ b(»*
2= (—b(z) a2
For reasons that will be made clear in a moment, we have :
B . b(z)* implying the relevancy of the Ansatz. Stated differently,
{g* :g(z)ww+ _a (zguw, ) the stability is not actually an issue : as any physicist
- =b(D)w, +alz)w- knows, solutions of 1) feature pseudo-oscillations,
without exponential growth.

1 .
nit)y=0 (t—2> we get the estimate :

& (t,2)] = |ew<to,z>|+ﬁ(%) ,

Let us explain our current framework. Per se, we might
consider a single normalized state) in the limitt — oo,

Put it in another way ¢(+o) = (é) Butto achieve such 2.5 How to separate the coupled system

a final state, it is required to starttat> —o with a mixed

initial state, such thap(—o) = ary Going backwards, Sometimes, the theory of second-order linear differential
- equations can be used to find the solutions of 2
a(z)* simultaneous first-order equations as 1. (The key idea
theny(—c) = b(z) is to eliminate one of the unknown functions, sy, and
then find yn as the solution of a second-order linear
differential equation. From the first equation :

2.4 Stability discussion 1 (Fdy
Vo= \iar "W
Let ¢ be the exact solution ofl}, and denote by an ~ _ d¢p _ 1 (ﬁdzllh dyy drp 1) _1dip (ﬁ% . l.Ul)
approximate solution satisfying : dt ip \i dt? ot iZdt \idt P/
RaJ(t,2) B 1 Insert these 2 relations into the second equationlif (
- dt’ =Hpt,2¢(t, 20+ 0 (t—2> : Eliminate thusys, :
2 2 2 i
Setey = ( — . Then the quantitg, satisfies : hd%n  (R°dip rph)dys R1/ dip . drp
povy AHany T ae T\a 1) a T \Par P )V
hoey(t.2) Fdyy
o =Mt st 00, 1) ~iptn— {2 (T4 —roun)

d?y, Rdipdy, A1/ dip . dr )
wheren (t) stands for the? 1) function in the RHS of ~ « —f? dtzl ETFT:+TE ( P dtp —Ip dtp) Y= (I%Jrrﬁ) Y1
(10). Introduce the evolution operator | et s evaluate the quantity :

U(t,to,-) : C*> — C? of the linear homogeneous equation
(1), enabling us to write any solution in the form : ; dip L drp
(SRrraly
dt dt
w(tv):U(tat()a)qJ(tOv) . iz)P
_ Relt +i2)? pdIm(t +iz)P Im(t+iz)dee(t+lz)
This operatolJ (t,to,-) is a linear 1-parameter operator of dt dt

transformation, propagating the solution over time figm = p [Re(t +iz)PIm(t +iz)P ! — Re(t +iz)P tIm(t +iz)P]
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+o0
by using the fact tha% commutes with Re and Im. Note By expanding the actiois= z RS as a perturbation
that for any{ € C, the identity :

ReZPImZP1—ReZP 1im¢P oo e, Lt
:Zp+Z*pr‘1—Z*p_l ZP-1yz:P-lzp_z+P S:kzoﬁki (8= PSP+2Y S R'ss,.

series :

_ K=0 K=10<(<Tk/2)]
2 2i 2 2i
p-17%P_ 7pz+P-1 The LHS:
_ 4 4 ZIZ 4 _|Z|2(p—1)|mz
+0o
holds. Hence : z RS 1+ z PSSP +2y 5 RS
2 2 i g K=o K=10<(<Tk/2)]
0%y N dipdyy  -PZ > p-1
e ip dt dt 'ﬁip(t +2)7 —%% ZHkSL 1+ (2P iﬁip—z(t2+22)p‘1
—(+2)P " "
and we finally obtain the general form of the separatedylelds the necessary conditions :
ODEs for bothy; andys; : e order0:(§)?+ (12 +2)P=0 (13)
e orderl:
2 i .
P~ B [ 2) - IRE] 2+ 2P gs =0 %+2%Sl—1%% Pe2rico qg
(11) 1 di
and o order2:8] +(S))?+29S, - IpSl 0

R Rdipdey | 42 4 2y jRpz| (124 2)p-1y, = 0.
ditp dt [ 'p} (12)  Forthe nextodd powers in:
Note that the latter equationl®) is merely the , 1 dip
complex conjugate of 11). The system 1) is now 32k+2/ ;k l%Sn_EESZk:
solvable in terms of second-order linear differential A
equations, whose Wronskian has a simple expression, to

wit 1 dip

1 1
N p— St 2 (s;k———%k)
§ | 2
Wr(yn, g](t) = qudLIJZ ‘J—’zdw1 Oip . (fééékjll

For the even powers in:

3 WKB approximations of the Schrodinger S +(S2+2 S %Sm—id'p%k -

equation (11) b2k ‘
<<

While the exact solutions to the differential equation may

be analytic and thus valid everywhere @ the WKB ., g, 1 S S8t <g2k (92— 1 d'ngk 1)
solutionsyi+ are not and have very different properties D | sk

from the exact solutions (namely discontinuities, Ist<k

existence of Riemann cuts). Yet they are valid within the

Stokes sectors, far from the singularities. 3.2 Correction factoexpS;

3.1 Computing the action S By integration of (3), it is immediate that :

A convergent series solution at an essential singular point T /2t i
is impossible. In general, one finds that either the series % =+ /(t +22) dt=+iAp.

does not exist, or it is divergent for dlle C. We follow

the idea of Poincaré and attempt a solutionl) (of the ~ Let us improve this estimate. Frorh4), we deduce :

S(t) - L
form g (t) = eXp—= Substitute and find : e 1 [i ~ Ldip __Bz(t2+22)l31:|
2|57 Tipdt i /
A2 S’+<§>Z 7E2%§+[(t2+22)7iﬁp—z](t2+zz)p’170 S DI
R\R i dt R i =
e g+©2-rtdeg, 2y 2P imnP 2 2t oo, S I plm(t“z)pil; pz (t24+2)P/21
ip dt ip 2 [t242 Im(t+iz)P Im(t +iz)P ’
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Ast — +oo: subdominancy / dominancy character.
Sit/ _1[p p-1_sgn P 1 Our previous work 2] shed a new perspective on how to
T2t T T t3 determine the transfer probabilities in a 2-state system,
 lxsg . 1 s whose elgienstates can be represented by
T t3)° (15) |i>:exp(iﬁ/\1) on the real line, and the Stokes
yielding a O-order correction (inFR) factor : phenomenon which affects the exponentials when joining
1 +00 to +0€™ . Given a differential equation involving
expS; ~ 1 3 according to the selected combination such exponentials, there exists an intrinsic link between

the transition probabilities and the underlying Stokes
of sign / endpoint, that happens to be independerg.of geometry.
Finally, the WKB forms associated 5 are defined as :

in o
_ i_p) = Rist) . (16
Y1 exp( = ) expS; I!:Lexp( ). s ,

1
— v, Au)% LBty =0

a2
r pulsation Q(t)

exact solutions eigenstates

and the Ansatz of Subsecti@®is somehow recovered.

'
WKB approximations
sub / dominant exponentials

4 WKB approximations of the SDE ]

Stokes geometry

power series solutions

Stokes constants

In [1], we have already encountered the SDE associate: |
to the Landau_Zener modqj] % 1) In the same Ve|n' the \——+ transition probabilities ~——————— connection formmilac
second-order differential equation :

propagation in a medinm joining +o00 to +ooet™
d2
ﬁzd—‘2”+(t2+z2)p<p= 0 17)
t Fig. 1 Diagrammatic correspondence between the transition

is called the SDE associated td).( The pulsation is probabilities and the connection formulae derived from the
actuallyA2. From the WKB perspective, it is immediate Stokes phenomenon.
to see that the functions :

1 i The partial Schrodinger equation1l) has two
Q= tﬁexp(iﬁ/\p> (18)  independent solutions which age and a twisteds (in
the sense that it is multiplied by an other function). In
are the approximate asymptotic solutions of the SDE.Subsectior2.2, we showed how to get the coefficients of
Observe that expressions @f are now symmetric at the the scattering matrix frong; (—t).

leading order inh - without the presence of a multiform o
exps,. Assume now (for the sake of simplicity) thate C(t).

Thenf is non sensitiye to the Stokes phenomenon : when
joining +c to 4e™ , there is "no change in the
5 Transition probabilities in the Hamiltonian coefficients” off. It follows that the connection formulae
H, case are identical for ex;{lﬁ/\p) and anyf(t)exp(lﬁ/\p -

In the cases we are interested in, the actionWith the trivial modificationsf(t) ~ f(—t). Try for an

t b/2 i moment a slight change of paradigm : we have two
Apl(t,2) :/ (s +2°)P/%ds always has a polynomial part gpdominant / dominant exponentials, and we seek a
(whose degree is greater than 2) in the variablhen the  second-order linear differential equation admitting them
continuation through the complex plane of the as solutions. Them, or a product by a function that is
i unaffected by the Stokes phenomenon. The SDE is thus a

. i . .
exponentials ex iﬁ/\p gives rise to Stokes and perfect candidate.

anti-Stokes lines, attached to singularities. For a generi
point in C, crossing a Stokes line implies a rapid jump in
the multiplier of the subdominant exponential, whilst
hidden behind the dominant one. The correction in the
vicinity of a Stokes line is provided by the Stokes
constant. Crossing an anti-Stokes line swaps their
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Under these considerations, we can prescribe a set of
rules:

Rule 1 (Schiodinger)Starting with a single eigenstate
Y1+ (+w) = |+) of (11). In order to determine the
transition probabilities in the S-matrix :

in
ea(2)* is read as the factor befomp(%)

ehb(z) is equal to (_p£z> times the factor before

e

in the asymptotic expression g (t) when t— —co.

Rule 2 (SDEStarting with a single eigenstate

1
(p+(+°0):tm|+> of the SDE (7). In order to
determine the transition probabilities :

ea(2)* is the factor befor@xp(%)

eh(z) is the factor beforexp(— '%’)

in the asymptotic expression @ft) when t— —co.

The relevancy of the phase-integral methods has been
tested in B]. We did retrieve perfectly the Landau-Zener
effect, i.e. its description in terms of transition
probabilities in a conical intersection.
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