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Abstract: The nontrivial component of the intersection form of nonsmooth four-manifolds is proportional to the Cartan matrix of
E8. Since the background geometry of all elementary particle field theories is a smooth four-manifold, this intersection form will be
introduced through the embedding of an infinite-genus surface with a nonsmooth structure in the neighbourhood of the ideal boundary.
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1 Introduction

The classification of diffeomorphism structures on
four-manifolds includes the intersection form of the
homology basis. While the conventional form is
proportional to a symplectic matrix, there exists
manifolds such that it is equal to

k

[

0 I
I 0

]

+ ℓE8

A nonsmooth structure is required of the manifold and
the signature must equal 8(mod16). The Euclidean path
integral in quantum gravity is defined over a space of
connected, smooth Riemannian spaces with a boundary,
representing the hypersurface at a given time of
experimental measurement. The existence of a nonsmooth
structure would prevent the analytic formulation of the
action in the weighting factor and affect integration near
the extrema.

A method for introducing this class of manifolds
within the domain of integration of a path integral is
apparent in string theory. The expansion of the scattering
matrix is defined conventionally over the set of Riemann
surfaces of finite genus. It may be extended to surfaces
with Dirichlet boundaries and effectively closed surfaces
of infinite genus. The ends of these surfaces may be
nonplanar and, furthermore, the structure is not
necessarily smooth. The embedding of the an
infinite-genus surface in a four-manifold would be

sufficient to cause the intersection matrix to have the
exotic form.

The relation between the intersection form and the
subsequent symmetries of a field theory defined on
manifolds in this class will be elaborated. It will be
demonstrated that a consistency condition on the gauge
transformation arises in the neighbourhood of the end of
an infinite-genus surface related to theE8 intersection
form. A connection with the phenomenology of gauge
theories in four dimensions is established.

2 Metric Structures on Surfaces of Infinite
Genus

Infinite-genus surfaces are noncompact, and the structure
of the ends differs from that of a finite-genus surface with
an extended boundary. It may be proven, for example, that
there is no smooth bijection from the end of an infinite-
genus surface to a region in the complex plane.
Lemma 1. Infinite-genus surfaces have nonplanar ends.
Proof. A vanishing first homotopy group of the one-point
compactification of the end is sufficient for planarity. This
characteristic is valid, for example, when the ends are
semi-infinite cylinders attached to a finite-genus surface,
which can be mapped conformally to a punctured disk.
The structure of an end of an infinite-genus surface is
considerably more complex. When the handles are
compactified such that there is an accumulation point in a
finite region in an embedding space, any neighbourhood
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of non-zero radius in the i intrinsic metric contains a
region of the surface that consists of an arbitrary number
of handles.

The restriction of an analytic, bounded functionf of
an endE representing an ideal boundary point toE ′ ⊂ E is
a proper map fromE ′ to a neighbourhood inC. There is no
differentiable bijective mapping fromE ′ to a planar region
if the degree of the function is greater than or equal to 2 in
this neighbourhood of a point on the ideal boundary.

It has been proven that functions on the ideal
boundary of an infinite-genus surface must equal the
same value a minimum of two times. By a theorem on
algebraic functions on the complex plane, it follows that
the lower bound for the degree of this function on the end
is 2. Therefore, the end of an infinite-genus surface is
nonplanar.
Lemma 2. The metric structure of the infinite-genus
surface is smooth if it belongs toOG and not smooth
when the capacity of the ideal boundary is nonvanishing.
Proof. The effectively closed infinite-genus surfaces are
the class that represent a direct limit of the set of closed
finite-genus surfaces, since the boundary is null. The
metric structure is defined within a conformal equivalence
class. Under a conformal transformation, the
accumulating handles may be mapped to a sequence that
is equally spaced. The smoothness of the metric would be
valid on anynth order approximationEn with ∂En ⊂ Σ
andlimn→∞∂En = β , whereβ is the ideal boundary.

When the capacity of the ideal boundary is
nonvanishing, the Cantor set of ends would have non-zero
Hausdorff dimension. Suppose that the ends are arranged
to be located on the equator of the sphere. The cardinality
of the set of ends will be 2ℵ0, which is equal to that of the
continuum of the real line. It follow that the set of
accumuulation points of the handles on the would be
dense in the equator. There would be no neighbourhood
of a point on this circle that that can be mapped
diffeomorphically to a simply connected region in the
complex plane. Therefore, the metric structure would not
be smooth in this neighbourhood.

The embedding of infinite-genus surfaces in
four-dimensional manifolds depends initially on the
representation as a boundary of the quotient of a
three-dimensional hyperbolic space. The uniformizing
Fuchsian group may be embedded inPSL(3;Z). Although
the embedding is not differentiable, it is continuous. The
hyperbolic manifold then may be immersed in a
four-dimensional space.

3 Exceptional Group Symmetries on the
Four-Manifold

A four-manifold would have a nonsmooth metric
structure in the neighbourhood of an ideal boundary of an
infinite-genus surface with non-zero capacity and a
signature satisfying the congruence condition

σ ≡ 8 (mod 16) [2]. The signature is an integral over the
entire space. If it is a smooth manifold except in the
vicinity of the infinite-genus surface, the contribution to
this integral would satisfy the conventional congruence.
Consider then the the remaining part of the integral for
the signature.
Theorem 1.The equality of the integral of the product of
the Riemann curvature tensor and its dual divided byk
with the required signature yields a condition on the ideal
boundary of a surface of infinite genus embedded in a
four-dimensional manifold with a nonsmooth structure.
Proof. The Riemann curvature tensor has one
independent component equal to the Ricci scalar in two
dimensions. On a hyperbolic surface,R may be set equal
to −1 except on the ideal boundary. At each element of
the Cantor set, it tends to a delta function and the integral
is transformed to a sum over the this set. Since the area
element tends to zero on this boundary, the contribution
of the sum is finite. The integral over the three dimensions
in the four-manifold normal to the ideal boundary would
equal Vol(S3) = 4π2. Furthermore, it would be
determined by the harmonic measure of the ideal
boundary.

The harmonic measure is the solution to the problem
△w = 0 with w|α = 0 andw|β = 1, whereα is the interior
boundary of an end E andβ is the ideal boundary. The area
of the end would be

∫

E
dw∧∗dw =

∫

E
[d(w∧∗dw)−w∧d ∗ dw]. (3.1)

Sincew is harmonic,d ∗ dw = 0, and
∫

E
d(w∧∗dw) =−

∫

α
w∧∗dw+

∫

β
w∧∗dw. (3.2)

when the α is a clockwise contour andβ is a
counterclockwise contour. This integral equals

∫

β
∗dw, (3.3)

which can be non-zero based on the normal derivative of
w at the ideal boundary. Finiteness of the sum over the
elements of the Cantor set would occur if there is a
cancellation of the phase of the normal derivative. Then,
the condition derived from the signature would be

4π2

k

∫

β
∗dw ≡ 8 (mod 16). (3.4)

Then the four-manifold would be anE8 homology
manifold.

Since the intersection form of the manifold is equal to
the Cartan matrix ofE8, any gauge group symmetry,
viewed in terms of the induced change in the potential
from a passive transformation of the coordinates, must
keep invariant this characteristic of the manifold. It
follows that an E8 group invariance is induced.
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Intersection theory on the moduli space of a Riemann
surface also provides a formulation of topological
two-dimensional gravity with closed string observables
being identified with powers of the first Chern class of a
line bundle [3]. This symmetry is larger than that allowed
by a natural bundle on a four-manifold. The product of
the tangent bundle of three-manifold and the time
coordinate admits aG2 structure [4]. Similarly, the
product of the tangent bundle of a four-manifold and the
normal coordinate would admit anSO(9) structure. This
dimension is not large enough to include the several of
the exceptional groups.

With an inducedE8 symmetry, the invariances of the
theory may be reduced toE6. The E6 grand unified
theories are known to have several theoretical predictions
that coincide closely with experiment. The value of the
Weinberg angle in the derived electroweak Lagrangian is
accurate to a higher degree of precision [5] than other
models.

The group E6 does arise as a symmetry of the
heterotic string effective action after compactification
over a space with SU(3) holonomy [6]. A supergravity
action may be constructed from vertex operators of the
ten-dimensional string theory such that anE6 invariant
charges remain after fixing several of the lattice group
parameters [7]. This technique therefore makes essential
use of the fundamental string theory for the formulation
of the field theory in four dimensions. It corroborates the
existence of an exceptional group symmetry under these
conditions.

4 Conclusion

The distinction between the two types of infinite-genus
surfaces is essential to the embedding in a
four-dimensional manifold. It is found that a surface a
parabolic surface would have a differentiable metric,
while it is not possible to define a smooth metric on
surface with an ideal boundary of non-zero capacity. The
absence of a smooth structure at the end of the surface
requires an embedding a four-manifold that is not smooth.
The intersection forms of the four-manifold that do not
have a globally smooth structure include the Cartan
matrix of E8. More generally, the intersection form is

k

[

0 I
I 0

]

+ ℓE8

The condition on the signature ofE8 manifolds that
can be translated to a restriction on the integral of a
curvature combination to a neighbourhood of the ideal
boundary. Given the constancy of the curvature on a
Riemann surface with a Poincare metric, the integral
would be reduced to a line integral over the ideal
boundary. The embedding of the infinite-genus surface in
an E8 homology manifold then would yield a condition
on the harmonic measure of the ideal boundary.

The symmetry of the field theory formulated on the
space-time then must be compatible with the intersection
form. The phenomenology of exceptional groups in grand
unified theories is especially successful for the theoretical
explanation of certain parameters in the theory of
elementary particle interactions [5]. It would be expected
that the exceptional groupG2 and the classical Lie groups
in would govern the phenomenology of physically
realistic gauge field theories. Therefore, the reduction of
the group symmetry fromE8 to these subgroups in the
neighbourhood of the ideal boundary of an infinite-genus
in addition to the complement in the four-dimensional
manifold.

The relation of the classical groups to rational
singularities can be interpreted in terms of the group
invariances allowed by the ends of a surface of infinite
genus [8]. The accumulation point of the handles at the
end of aOG surface would define a rational singularity
which is known to have an intersection form of a classical
group [9]. Consequently, group invariances in the
neighbourhood of the ideal boundaries of surfaces in the
classOG would be classical while the symmetries in the
neighbourhood of the ideal boundary of surfaces with
non-zero capacity can include exceptional groups.
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