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Abstract: A new analytical method called the local fractional naturalhomotopy perturbation method (LFNHPM) for solving partial
differential equations with local fractional derivative is introduced. The proposed analytical method is a combination of the local
fractional homotopy perturbation method (LFHPM) and the local fractional natural transform (LFNTM). In this analytical method, the
fractional derivative operators are computed in local fractional sense, and the nonlinear terms are calculated using He’s polynomial.
Some applications are given to illustrate the simplicity, efficiency, and high accuracy of the proposed method.
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1 Introduction, Motivation and Preliminaries

The theory and applications of fractional calculus have a long history in pure and applied mathematics, and were first
introduced by Leibniz and L’H ˆopital in the year 1695. During the last few decades, fractional calculus was successfully
applied in many areas of physical science and engineering such as plasma physics, quantum mechanics, astrophysics,
fracture mechanics, chaotic dynamics, optics, and so on. Fractional partial differential equations have been solved using
many numerical and analytical methods [1,2,3,4,5,6].
Recently, local fractional derivative and calculus which described the non-differentiable function defined on Cantorsets
arising in mathematical physics were discussed [7,8] . The solution of wave equation on Cantor sets using the local
fractional variational iteration and decomposition methods was presented [9]. In 2013, the approximate solutions of
diffusion equations on Cantor sets were studied [10]. Based on local fractional Sumudu transform, the solutionof IVPs
on Cantor sets was proposed in 2014 [11]. The local fractional homotopy perturbation method for solving fractional
partial differential equations arising in mathematical physics was presented in 2015 [12]. Recently, in the year 2017, a
hybrid computational approach for solving Klein-Gordon equations on Cantor sets was introduced [13]. More detail
about the local fractional derivatives are referred to [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28].
In this article, we investigate the solutions of local fractional partial differential equations based on local fractional
homotopy perturbation and natural transform. The local fractional natural homotopy perturbation method is a coupling
of the homotopy perturbation method [29,30] with natural transform method [31,32,33], and this gives series solutions
which converge rapidly within few iterations. In Table 1 we present some important properties of local fractional
calculus.

The organization of our manuscript is given below. In Section 2 we discuss the local fractional derivative and local
fractional natural transform. Section 3 deals with the local fractional natural homotopy perturbation method. In Section 4
we explain the results of our applications. Section 5 contains our conclusion.
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2 Local Fractional Derivative and Local Fractional Natural Transform

The local fractional natural transform of the functionv(t) of orderα is defined by the following integral:

LFNα [v(t)] =Vα(s,u) =
1

Γ (1+α)

∫ ∞

0
Eα

(
−sα tα

uα

)
v(t)
uα (dt)α ; 0< α ≤ 1. (1)

And the inverse local fractional natural transform is defined by:

LFN−1
α [Vα(s,u)] = v(t) =

1
(2π i)α

∫ γ+i∞

γ−i∞
Eα

(
sα tα

uα

)

Vα(s,u)(ds)α
, 0< α ≤ 1, (2)

wheresα anduα are the local natural transform variables, andγ is a real constant and the integral in Eq. (2) which is
taken alongsα = γ in the complex planesα = xα + iαyα .

Some properties of the local fractional natural transform method are given below.

Proposition 1.: Local fractional natural transform of local fractional derivative is defined by:

LFNα

[

v(nα)(t)
]

=
snα

unα Vα(s,u)−
n−1

∑
k=0

s(n−k−1)α

u(n−k)α v(kα)(0). (3)

When n=1, 2, and 3, we obtained the following results:

LFNα

[

v(α)(t)
]

=
sα

uα Vα(s,u)−
1

uα v(0),

LFNα

[

v(2α)(t)
]

=
s2α

u2α Vα(s,u)−
sα

u2α v(0)−
1

uα v(α)(0),

LFNα

[

v(3α)(t)
]

=
s3α

u3α Vα(s,u)−
s2α

u3α v(0)−
sα

u2α v(α)(0)−
1

uα v(2α)(0).

Property 2: Linearity property of the local fractional natural transform is defined by:
LFNα [γ f (t)±β g(t)] = γLFNα [ f (t)]±β LFNα [g(t)] = γFα(s,u)±βGα(s,u),
where,Fα(s,u) andGα(s,u) are the local fractional natural transforms of the functions f (t) andg(t), respectively. More
properties are presented in table 1.

Definition 2: The local fractional derivative of the functionv(t) of orderα at t = t0 is defined by [7,8]:

v(α)(t) =
dαv
dtα

|t=t0 =
∆ α(v(t)− v(t0))

(t − t0)α , (4)

where,
∆ α (v(t)− v(t0))∼= Γ (1+α) [v(t)− v(t0)] . (5)

Moreover, the local fractional derivatives of higher orderare defined as [7,8]:

D(nα)
t (t) = v(nα)(t) =

n times
︷ ︸︸ ︷

D(α)
t · · ·D(α)

t v(t), (6)

∂ nαv(t,x)
∂ tnα =

n times
︷ ︸︸ ︷

∂ α

∂ tα · · ·
∂ α

∂ tα v(t,x) . (7)

Definition 3: The local fractional integral of the functionv(t) of orderα in the interval[γ,β ] is defined by [7,8]:

γ I (α)
β =

1
Γ (1+α)

∫ β

γ
v(τ)(dτ)α =

1
Γ (1+α)

lim
∆→0

N−1

∑
i=0

v(τi)(∆τ )
α
, (8)
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where∆τ i = τi+1− τi, ∆τ = max∆τ0,∆τ1,∆τ2, · · · [τi ,τi+1], τ0 = γ, τN = β is a partition of the interval[γ,β ].

Table 1. Some useful results

LFNα [tα ] = uα

s2α
LFNα [sinα(tα)] = uα

s2α+u2α
LFNα [cosα(tα)] = sα

s2α+u2α
LFNα [coshα(tα)] = sα

s2α−u2α

0I (α)
t

tnα

Γ (1+nα) =
t(n+1)α

Γ (1+(n+1)α)
dα

dtα
tnα

Γ (1+nα) =
t(n−1)α

Γ (1+(n−1)α)

Eα(tα) = ∑+∞
n=0

tnα

Γ (1+nα) , 0< α ≤ 1 dα

dtα Eα(tα) = Eα(tα)

sinα(tα) = ∑+∞
n=0(−1)n t2nα

Γ (1+(2n+1)α) , 0< α ≤ 1 dα

dtα sinα(tα) = cosα(tα)

cosα(tα) = ∑+∞
n=0(−1)n t(2n+1)α

Γ (1+(2n+1)α)
, 0< α ≤ 1 dα

dtα cosα(tα) =−sinα(tα)

3 Local Fractional Natural Homotopy Perturbation Method

Let us consider the following nonlinear operator with localfractional derivative of the form:

Lαv(x, t)+Fα(v(x, t))+Mα(v(x, t)) = gα(x, t), (9)

where,Lα = ∂ 2α

∂ t2α denotes the linear local fractional differential operator, Fα denotes linear fractional derivative operator
of order less thanLα , Mα (v(x, t)) denotes the nonlinear operator, andgα(x, t) is the non-differentiable source term.

Applying the local fractional natural transform (denoted in this paper byLFNα ) on both sides of Eq. (9), we get:

LFNα [Lαv(x, t)]+LFNα [Fα(v(x, t))+Mα(v(x, t))] =
LFNα [gα(x, t)] . (10)

Using the derivative of the local fractional Natural transform on Eq. (10), we get:

Vα(x,s,u) =
1
sα v(x,0)+

uα

s2α v(x,0)+
u2α

s2α
(LFNα [gα(x, t)]

)
−

u2α

s2α
(LFNα [Fα(v(x, t))+Mα(v(x, t))]

)
. (11)

Taking the inverse local fractional natural transform of Eq. (11), we obtain:

v(x, t) = Gα(x, t)−
LFN−1

α

[
u2α

s2α
(LFNα [Fα(v(x, t))+Mα(v(x, t))]

]
]

, (12)

where,

Gα(x, t) = v(x,0)+
tα

Γ (1+α)
v(α)(x,0)+LFN−1

α

[
u2α

s2α
(LFNα [g(x, t)]

)
]

.

Now we apply the local fractional homotopy perturbation method of the form:

v(x, t) =
∞

∑
n=0

pnαvn(x, t). (13)

According to the local fractional homotopy perturbation method,p∈ [0,1] is an embedding small parameter.
The nonlinear termMα(v(x, t)) is written as:

Mα(v(x, t)) =
∞

∑
n=0

pnαHn(v). (14)
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whereHn(v) is the local fractional He’s polynomial and can be calculated using the following formula:

Hn(v1,v2, · · · ,vn) =
1

Γ (nα +1)
∂ nα

∂ pnα

[

Mα

(
n

∑
j=0

pα jv j

)]

p=0

,n= 0,1,2, · · ·

By substituting Eq. (13) and Eq. (14) into Eq. (12), we get:

∞

∑
n=0

pnαvn(x, t) = Gα(x, t)− pα

(

LFN−1
α

[

u2α

s2α

(

LFNα

[
∞

∑
n=0

pnαFα(vn(x, t))+
∞

∑
n=0

pnαHn(v)

])])

. (15)

Comparing the coefficients of like powers ofpα in Eq. (15), we have the following approximations:

p0α : v0(x, t) = Gα(x, t),

p1α : v1(x, t) =−LFN−1
α

[
u2α

s2α
(LFNα [Fα(v0(x, t))+H0(v)]

)
]

,

p2α : v2(x, t) =−LFN−1
α

[
u2α

s2α
(LFNα [Fα(v1(x, t))+H1(v)]

)
]

,

p3α : v3(x, t) =−LFN−1
α

[
u2α

s2α
(LFNα [Fα(v2(x, t))+H2(v)]

)
]

,

...

and so on.
Settingp andα to be equal to 1, the series solution of Eq. (9) is given by:

v(x, t) = lim
N→∞

N

∑
n=0

vn(x, t). (16)

Convergence of the series solutions:The series solutions in Eq. (16) converge in most cases. Since the proposed
method gives solution in iterative form, then the Banach’s fixed point theorem can be applied to study the convergence of
the series solutions. Presently, the proposed analytical method can only be applied to solve problems with initial
conditions. Thus, the case of problems with boundary conditions remains an open problem.

4 Applications

In this section, the applications of the local fractional natural homotopy perturbation method are clearly illustrated to show
its efficiency and high accuracy.

Example 1.Consider the following local fractional partial differential equation of the form [12]:

∂ αv(x, t)
∂ tα −

∂ 2αv(x, t)
∂x2α = 0, t > 0, x∈R, 0< α < 1, (17)

subject to the initial condition
v(x,0) = Eα(x

α). (18)

Applying the local fractional natural transform to Eq. (17) subject to the given initial condition, we get:

Vα(x,s,u) =
1
sα Eα(x

α)+
uα

sα

(

LFNα

[
∂ 2αv(x, t)

∂x2α

])

. (19)

Taking the inverse local fractional natural transform of Eq. (19), we deduce:

v(x, t) = Eα(x
α )+LFN−1

α

[
uα

sα

(

LFNα

[
∂ 2αv(x, t)

∂x2α

])]

. (20)
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Now we apply the local fractional homotopy perturbation method of the form:

v(x, t) =
∞

∑
n=0

pnαvn(x, t).

Then Eq. (20) becomes:

∞

∑
n=0

pnαvn(x, t) = Eα(x
α )+ pα

(

LFN−1
α

[

uα

sα

(

LFNα

[
∞

∑
n=0

pnα ∂ 2αvn(x, t)
∂x2α

])])

. (21)

Comparing the coefficients of like powers ofpα in Eq. (21), the following approximations are obtained:

p0α : v0(x, t) = Eα(x
α),

p1α : v1(x, t) =
LFN−1

α

[
uα

sα

(

LFNα

[
∂ 2αv0(x, t)

∂x2α

])]

=
tα

Γ (1+α)
Eα(x

α),

p2α : v2(x, t) =
LFN−1

α

[
uα

sα

(

LFNα

[
∂ 2αv1(x, t)

∂x2α

])]

=
t2α

Γ (1+2α)
Eα(x

α ),

p3α : v3(x, t) =
LFN−1

α

[
uα

sα

(

LFNα

[
∂ 2αv2(x, t)

∂x2α

])]

=
t3α

Γ (1+3α)
Eα(x

α ),

...

and so on.
Then the series solution of Eq. (17)-Eq. (18) is given by:

v(x, t) =
∞

∑
n=0

vn(x, t)

= v0(x, t)+ v1(x, t)+ v2(x, t)+ · · ·

= Eα(x
α)

(

1+
tα

Γ (1+α)
+

t2α

Γ (1+2α)
+

t3α

Γ (1+3α)
+ · · ·

)

= Eα(x
α)

∞

∑
n=0

tnα

Γ (1+nα)
= Eα(t

α)Eα(x
α).

Thus, the exact solution of Eq. (17)-Eq. (18) is given by:

v(x, t) = Eα(t
α)Eα(x

α ). (22)

The exact solution is in close agreement with the result obtained in [12].

Example 2.Consider the following local fractional partial differential equation of the form [27]:

∂ α v(x, t)
∂ tα +

∂ 2αv(x, t)
∂x2α − v(x, t) = 0, t > 0, x∈ R, 0< α < 1, (23)

subject to the initial condition
v(x,0) = sinα(x

α). (24)

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


224 S. Maitama: Local fractional natural homotopy perturbation

Applying the local fractional natural transform to Eq. (23) subject to the given initial condition, we get:

Vα(x,s,u) =
1
sα sinα(x

α )+
uα

sα

(

LFNα

[

v(x, t)−
∂ 2αv(x, t)

∂x2α

])

. (25)

Taking the inverse local fractional natural transform of Eq. (25), we have:

v(x, t) = sinα(x
α)+LFN−1

α

[
uα

sα

(

LFNα

[

v(x, t)−
∂ 2αv(x, t)

∂x2α

])]

. (26)

Now we apply the local fractional homotopy perturbation method of the form:

v(x, t) =
∞

∑
n=0

pnαvn(x, t). (27)

Then Eq. (26) becomes:

∞

∑
n=0

pnαvn(x, t) = sinα(x
α )+ pα

(

LFN−1
α

[

uα

sα

(

LFNα

[
∞

∑
n=0

pnαvn(x, t)−
∞

∑
n=0

pnα ∂ 2αvn(x, t)
∂x2α

])])

. (28)

Comparing the coefficient of like powers ofpα in Eq. (28), the following approximations are obtained:

p0α : v0(x, t) = sinα(x
α),

p1α : v1(x, t) =
LFN−1

α

[
uα

sα

(

LFNα

[

v0(x, t)−
∂ 2αv0(x, t)

∂x2α

])]

=
2tα

Γ (1+α)
sinα(x

α ),

p2α : v2(x, t) =
LFN−1

α

[
uα

sα

(

LFNα

[

v1(x, t)−
∂ 2αv1(x, t)

∂x2α

])]

=
4t2α

Γ (1+2α)
sinα(x

α),

p3α : v3(x, t) =
LFN−1

α

[
uα

sα

(

LFNα

[

v2(x, t)−
∂ 2αv2(x, t)

∂x2α

])]

=
8t3α

Γ (1+3α)
sinα(x

α),

...

and so on.
Then the series solution of Eq. (23)-Eq. (24) is given by:

v(x, t) =
∞

∑
n=0

vn(x, t)

= v0(x, t)+ v1(x, t)+ v2(x, t)+ · · ·

= sinα(x
α)

(

1+
2tα

Γ (1+α)
+

(2tα)2

Γ (1+2α)
+

(2tα)3

Γ (1+3α)
+ · · ·

)

= sinα(x
α)

∞

∑
n=0

(2tα)n

Γ (1+nα)
= sinα(x

α )Eα(2tα).

Thus, the exact solution of Eq. (23)-Eq. (24) is given by:

v(x, t) = sinα(x
α)Eα(2tα). (29)
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The exact solution is in close agreement with the result obtained in [27].

Example 3.Consider the following local fractional partial differential equation of the form [17,27]:

∂ 2αv(x, t)
∂ t2α −

∂ 2αv(x, t)
∂x2α = 0, t > 0, x∈ R, 0< α < 1, (30)

subject to the initial conditions

v(x,0) = 0,
∂ α v(x,0)

∂ tα = Eα(x
α). (31)

Applying the local fractional natural transform to Eq. (30) subject to the given initial conditions, we obtain:

Vα(x,s,u) =
uα

sα+1Eα(x
α)+

u2α

s2α

(

LFNα

[
∂ 2αv(x, t)

∂x2α

])

. (32)

Taking the inverse local fractional natural transform of Eq. (32), we get:

v(x, t) =
tα

Γ (1+α)
Eα(x

α)+LFN−1
α

[
u2α

s2α

(

LFNα

[
∂ 2αv(x, t)

∂x2α

])]

. (33)

Now we apply the local fractional homotopy perturbation method of the form:

v(x, t) =
∞

∑
n=0

pnαvn(x, t). (34)

Then Eq. (33) becomes:

∞

∑
n=0

pnαvn(x, t) =
tα

Γ (1+α)
Eα(x

α )+ pα

(

LFN−1
α

[

u2α

s2α

(

LFNα

[
∞

∑
n=0

pnα ∂ 2αvn(x, t)
∂x2α

])])

. (35)

Comparing the coefficients of like powers ofpα in Eq. (35), the following approximations are obtained:

p0α : v0(x, t) =
tα

Γ (1+α)
Eα(x

α),

p1α : v1(x, t) =
LFN−1

α

[
uα

sα

(

LFNα

[
∂ 2αv0(x, t)

∂x2α

])]

=
t3α

Γ (1+3α)
Eα(x

α ),

p2α : v2(x, t) =
LFN−1

α

[
u2α

s2α

(

LFNα

[
∂ 2αv1(x, t)

∂x2α

])]

=
t5α

Γ (1+5α)
Eα(x

α),

p3α : v3(x, t) =
LFN−1

α

[
u2α

s2α

(

LFNα

[
∂ 2αv2(x, t)

∂x2α

])]

=
t7α

Γ (1+7α)
Eα(x

α),

...
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and so on.
Then the series solution of Eq. (30)-Eq. (31) is given by:

v(x, t) =
∞

∑
n=0

vn(x, t)

= v0(x, t)+ v1(x, t)+ v2(x, t)+ · · ·

= Eα(x
α)

(
tα

Γ (1+α)
+

t3α

Γ (1+3α)
+

t5α

Γ (1+5α)
+

t7α

Γ (1+7α)
+ · · ·

)

= Eα(x
α)

∞

∑
n=0

t(2n+1)α

Γ (1+(2n+1)α)
= sinhα(t

α)Eα(x
α ).

Thus, the exact solution of Eq. (30)-Eq. (31) is given by:

v(x, t) = sinhα(t
α)Eα(x

α). (36)

The exact solution is in close agreement with the result obtained in [17,27].

Example 4.Consider the following nonlinear local fractional partialdifferential equation of the form:

∂ α v(x, t)
∂ tα −

∂ α v(x, t)
∂xα

∂ αv(x, t)
∂ tα − v(x, t) = 0, t > 0, x∈ R, 0< α < 1, (37)

subject to the initial condition
v(x,0) = cosα(x

α). (38)

Applying the local fractional natural transform to Eq. (37) subject to the given initial condition, we get:

Vα(x,s,u) =
1
sα cosα(x

α )+
uα

sα

(

LFNα

[

v(x, t)+
∂ αv(x, t)

∂xα
∂ α v(x, t)

∂ tα

])

. (39)

Taking the inverse local fractional natural transform of Eq. (39), we obtain:

v(x, t) = cosα(xα)+LFN−1
α

[
uα

sα

(

LFNα

[

v(x, t)+
∂ αv(x, t)

∂xα
∂ α v(x, t)

∂ tα

])]

. (40)

Now we apply the local fractional homotopy perturbation method of the form:

v(x, t) =
∞

∑
n=0

pnαvn(x, t). (41)

Then Eq. (40) becomes:

∞

∑
n=0

pnαvn(x, t) = cosα(x
α )+ pα

(

LFN−1
α

[

uα

sα

(

LFNα

[
∞

∑
n=0

pnαvn(x, t)+
∞

∑
n=0

pnαHn(v)

])])

, (42)

whereHn(v), is the local fractional He’s polynomials which represent the nonlinear terms∂ α v(x,t)
∂xα

∂ α v(x,t)
∂ tα .

Some few components of the nonlinear termsHn(v) are computed below:

H0(v) =
∂ α v0(x, t)

∂xα
∂ αv0(x, t)

∂ tα ,

H1(v) =
∂ α v1(x, t)

∂xα
∂ αv0(x, t)

∂ tα +
∂ αv0(x, t)

∂xα
∂ αv1(x, t)

∂ tα ,

H2(v) =
∂ α v0(x, t)

∂xα
∂ αv2(x, t)

∂ tα +
∂ αv1(x, t)

∂xα
∂ αv1(x, t)

∂ tα +
∂ αv2(x, t)

∂xα
∂ α v0(x, t)

∂ tα ,

...,
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and so on.
Comparing the coefficients of like powers ofpα in Eq. (42), the following approximations are obtained:

p0α : v0(x, t) = cosα(x
α),

p1α : v1(x, t) =
LFN−1

α

[
uα

sα
(LFNα [v0(x, t)+H0(v)]

)
]

=
2tα

Γ (1+α)
cosα(xα),

p2α : v2(x, t) =
LFN−1

α

[
uα

sα
(LFNα [v1(x, t)+H1(v)]

)
]

=
4t2α

Γ (1+2α)
cosα(xα),

p3α : v3(x, t) =
LFN−1

α

[
uα

sα
(LFNα [v2(x, t)+H2(v)]

)
]

=
8t3α

Γ (1+3α)
cosα(xα),

...

and so on.
Then the series solution of Eq. (37)-Eq. (38) is given by:

v(x, t) =
∞

∑
n=0

vn(x, t)

= v0(x, t)+ v1(x, t)+ v2(x, t)+ · · ·

= cosα(xα)

(

1+
2tα

Γ (1+α)
+

(2tα)2

Γ (1+2α)
+

(2tα)3

Γ (1+3α)
+ · · ·

)

= cosα(xα)
∞

∑
n=0

(2tα)n

Γ (1+nα)
= cosα(xα)Eα(2tα).

Thus, the exact solution of Eq. (37)-Eq. (38) is given by:

v(x, t) = cosα(xα)Eα(2tα). (43)

5 Conclusion

In this paper, partial differential equations involving local fractional derivatives are studied, using local fractional
homotopy perturbation method and local fractional naturaltransform. The analytical method called LFNHPM reduces
the computational size, and is applied directly to differential equations with local fractional operators without any
linearization, discretization of variables, transformation, or taking some restrictive assumptions. It gives series solutions
which converge rapidly within few iterations. The proposedanalytical method is successfully applied to differential
equations with local fractional derivatives, and proved tobe highly efficient and computational accurate.
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