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Abstract: For aT-variate density function, the present paper defines datenetry, quasi double symmetry of ordeg< T) and
marginal double symmetry of ord&r and gives the theorem that the density functiom-gariate double symmetry if and only if it is
quasi double symmetry and marginal double symmetry of dtd€he theorem is also illustrated for the multivariate dgnfsinctions.
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1 Introduction

For square contingency tables, it is known that the symmatgel holds if and only if both the quasi symmetry and
marginal homogeneity models hold (for example, see Caussit965; Tomizawa and Tahata, 2007). For multi-way
contingency tables, Bhapkar and Darroch (1990) defineddhmptete symmetry, quasi symmetry and marginal symmetry
models, and showed that the complete symmetry model holdadfonly if both the quasi symmetry and marginal
symmetry models hold. Tomizawa et al. (1996) gave a simiéaodhposition for the bivariate density function instead of
cell probabilities (see also Tong, 1990, p. 104). Iki et 2012) extended the decompaosition into multivariate case.

On the other hand, for multi-way contingency tables, Walll &ienert (1976) defined the point symmetry model
for the cell probabilities. Tomizawa (1985a) proposed tbapsymmetry, quasi point symmetry and marginal point
symmetry models for rectangular contingency tables, and tfze theorem that the point symmetry model holds if and
only if both the quasi point symmetry and marginal point systmypmodels hold. Also, for multi-way contingency tables,
Tahata and Tomizawa (2008) defined the quasi point symmathyraarginal point symmetry models, and showed that
the point symmetry model holds if and only if both the quashpeymmetry and marginal point symmetry models hold.
Tomizawa and Konuma (1998) gave a similar decompositioth@bivariate density function. Iki and Tomizawa (2014)
extended the decomposition into multivariate case.

Moreover, for square contingency tables, Tomizawa (198&tposed the double symmetry, quasi double symmetry
and marginal double symmetry models, and showed that thielelesymmetry model holds if and only if both the quasi
double symmetry and marginal double symmetry models haldntulti-way contingency tables, Yamamoto et al. (2012)
defined the double symmetry, quasi double symmetry and melrdgouble symmetry models, and showed that the double
symmetry model holds if and only if both the quasi double syetrgnand marginal double symmetry models hold.

For symmetry of a multivariate distribution, there are vas kinds of symmetry; see Kotz et al. (2006, pp.5338-
5341), Fang et al. (1990, Ch. 2), Fang and Zhang (1990, CmdbMaiirhead (2005, pp. 32-34). Now, we are interested
in considering the double symmetry for multivariate dgnfiinction. Moreover, we consider the structures of double
symmetry having weaker restriction, and the decomposiaifdhe double symmetry. The decomposition may be useful
for knowing the reason, i.e., when the density function isdouble symmetry, what structure of double symmetry having
weaker restriction is lacking.

In the present paper, we define the double symmetry, quasl@symmetry and marginal double symmetry for the
multivariate density function, and decompose the doubtarsgtry into quasi double symmetry and marginal double
symmetry. Section 2 defines the three kinds of double synyfmtbivariate density function. Section 3 extends the¢hre
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kinds of double symmetry to multivariate case. Section dshdecomposition of double symmetry for the multivariate
density function. Section 5 illustrates our decomposifarsome distributions.

2 Double symmetry for bivariate density function

Let X; andX; be two continuous random variables with a density funcfipq, x,), where
f(Xl,Xz) >0 for (Xl,Xz) S D2,
f(x1,%) =0 for (x,x) ¢ D,
with
D?={(x1,%) |a<x <b;i=1,2},

and wherea = —o andb = +, oraandb are finite. Let €1, ;) denote a given point in domaid?, wherec; = (a+b)/2
if a andb are finite. Letx’ = 2¢; —x whenX; = x for i = 1,2. For example, whed; = 10 with c; = 3, then 10 =
2x3—10= —4. Note that (i)x" is the symmetrical value of with respect toc;, (i) (X)* = % and (iii) ¢ = ¢;, for
i=12.

We shall define the double symmetry (denoted)$7) of density function with respect to the poifty, c,) by
fix1,x2) = f(x2,x1) = £(31,%) = F0xz,X1),

for every(x;,xp) € D?.
Let fx, (x1) andfx,(x2) be the marginal density functionsXf andX,, respectively. For the density functidiix;, o),
we shall define the marginal double symmetry (denoteMB&?) by

fx (%) = B (%) = Fx (X7) = i, (X),

for everyx € (a,b).
We can express the density function as

f(x1,%2) = pa(x1) B (%) y(X1, %2), (1)
where(x,x2) € D?, and
a(cy) = B(C2) = y(C1,X2) = Y(X1,C2) = 1.

The termsa and 3 correspond to main effects of the variablgand Xy, respectivelyy to interaction effects oX; and
X2. We see

f(x1,C2) Bxo) = f(c1,%2) V(X0 X0) = f(x1,%)f(c1,C2)

f(Cl,Cz) ’ f(Cl,Cz)’ f(Xl,Cz)f(Cl,Xz) '

The termsa (x;) and3(x2) indicates the odds of density function with respecKievalues withX,; = ¢, andXp-values
with X3 = c1, respectively. Note that

f(X1,X2)) (f(CLXz))
X1,X2) =
)= (e )/ (fiea
_ (f(X17X2)> / (f(Xl,Cz))
f(c1,%) f(c1,¢2) )
Thus,y(x1,x2) indicates the odds-ratio of density function with respedd , X;)-values.
The density function i®S if and only if it is expressed as the form (1) with

{ a(xy) = B(x) = a(xq) = B(xp),

y(X1,%2) = Y(X2,X1) = Y(X1,X5) = Y(X3,X1)-

p=f(c,c), alx)=

We shall define the quasi double symmetry (denote@B’) by (1) with

y(X1,%2) = Y(X2,X1) = Y(X],X3) = Y(X3,X]).
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3 Double symmetry for multivariate density function

Let Xq,..., Xt be T continuous random variables with a density functifiixy,...,xt), where f(xi,...,xt) > 0 for
(X1,...,xr) € DT and DT is defined in a similar way td?. Let (ci,...,cr) denote a given point irD", where
¢ = (a+b)/2 if aandb are finite. Letx’ = 2¢i —x whenX; = x fori=1,...,T. Also, let (m,...,7) be each
permutation of(1,...,T). For the density functiorfi(xy,...,xr), we shall define the double symmetry (denoteds})
with respect to the poin(ty,...,cr) by
f(Xt,. . %7) = F(Xm, -, Xy )
= f(x],...,.X7),
for every(xy,...,xr) € D. Also, fork=1,..., T — 1, we shall define the marginal double symmetry of okd@enoted
by MDS[) by
Py (g0 %00) = B (o X )
= ijl"'xjk (Xila cee 7Xik)
= inl,..Xjk(Xj*l, cee ’Xi*k)’
forl<ip<---<ikx<Tand 1< ji<--- < jy <T, WherEfoil...xik is the marginal density function oK(,..., X ). We

note thatMDS, ; impliesMDS! (k=1,...,T —2).
We can express the density function as

ailiz(xi17xi2):| X

f(Xg,. ., X7) = u{ﬁlail(x‘-l)} {

1<ip<Ip<T

X [ |_| |_| ail,_,ipl()ql,...,mpl)} a1 17X, -, XT), (2)
1§i1<'~'<iT,1§T

where(xg,...,xr) € DT, and
{ai(c) = diyi,(Cig, Xip) = -~ = a1 7(X1,...,%7-1,C1) = 1}.
Then, the density functioh(xy,...,xr) beingDS' is also expressed as (2) with

Oligimg (Xig -+ > Xim) = Qi (X - X))
= Oy jm (Xigs -+ Xim)
= ail_,_im(xi*l, .. ,Xi*m),

form=1,...,T,1<i1<---<ipm<Tand 1< j1 < - < jm < T.
Fork=1,...,T — 1, we shall define the quasi double symmetry of okd@tenoted byQDS)) by (2) with

Oligimg (Xig -+ > Xim) = Qi (X -5 X))
= Oy (Xigs - Xim)
= ail,,,im(xi*l, e 7Xi*m),

form=k+1,...T,1<ii1 < <in<Tand 1< j; < -+ < jm < T. We note thatQDS] implies QDS ; (k =
1,...,T-2).

4 Decomposition of multivariate density function

For the multivariate density function, permutation symmétenotedS') is defined by Tong (1990, p. 104). For a fixed
(k=1,...,T —1), Iki etal. (2012) defined quasi symmetry of orét¢denoted byQS) and marginal symmetry of order
k (denoted bWIS[[). Also, Iki and Tomizawa (2014) defined the point symmetmr(oted byPS"), quasi point symmetry
of orderk (denoted b)QPSI), and marginal point symmetry of ordie{denoted bym PS[). We see that (iPS' indicates
the structure of botl8" andPS', (ii) QDS! indicates the structure of bo®S] andQPS, and (i) MDS! indicates the
structure of bottMS! andMPS]. Then, we obtain obviously following lemmas.

Lemma 3.1. The multivariate density function(xy,...,xr) is DS' if and only if it is bothS™ andPS'.
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Lemma 3.2. For a fixedk (k=1,...,T — 1), the multivariate density functiof(xy,...,x7) is QDS_i(r if and only if itis
bothQS andQPY.
Lemma 3.3. For a fixedk (k= 1,..., T — 1), the multivariate density functiof(xy,...,xT) is MDS<r if and only if it is

bothMS] andMPS!.
Moreover, Iki et al. (2012) and Iki and Tomizawa (2014) gike temmas 3.4 and 3.5, respectively, as follows.

Lemma 3.4. For a fixedk (k= 1,..., T — 1), the multivariate density functiof(xy,...,x7) is S' if and only if it is both
QY andM§!.

Lemma 3.5. For a fixedk (k= 1,..., T — 1), the multivariate density function RS' if and only if it is bothQPS<r and
MPS].

From Lemmas 3.1 to 3.5, we obtain the following theorem.

Theorem 3.1. For a fixedk (k= 1,...,T — 1), the multivariate density functiofi(xy, ...,xr) is DS' if and only if it is
bothQDS! andMDS].

5 Double symmetry of somedistributions

Example 1. Consider &l -dimensional random vectoft = (Xi,...,Xr)" having a normal distribution with mean vector
U= (l,...,ur)" and covariance matriX. The density function is

1 1

f(xe,... xr) = —F—expl — S(x— )T (x—p) }. (3)
(22|52 12 )

DenoteZ 1 by A= (&) with &j = aji. Then the density function can be expressed as

f(Xg,...,XT) :Cexp{ —%H},

whereC is positive constant and

T T T
H=3 awdé+ ; s —2y ziastl-lsxb
s=1 t s=1t=

For an arbitrary given poirty, ..., cr), we sef = x — ¢ andp; = 1 — ¢ (i=1,...,T). Then noting thak; — 1 = % — [J;
(i=1,...,T), wesee

f(Xa,...,%T) :éexp{ —%ﬁ},

whereC is positive constant and
T T

;
H= Zassfé + ; sk —2y Zlastﬁs%.
S= t s=1t=

Thus
ai(x) = f(cy,...,Ci—1,%,Ciy1,...,Cr)
e f(Cl,...,CT)
1 G2 : ~ < .
=expy —5(@ix -2 asipisX) ¢ (i=1,...,T),
{-3@x-23 ai)]
alj (XI’XJ): f(Cla'..7CI717X|7CI+17-..7CJ717XJ,CJ+17...,CT)f(C]_,...,CT)

f(Cla"'7Ci717xiaci+la"'70T)f(cla"'7ijl7xjacj+17"'7CT)
1 _ S
= exp| — 5 XX] (i<j),

and form=3,.... T,
Gil,_,im(Xil,...,Xim) =1 (1 <ip< - <im< T).
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First, we shall consider abo(D_DS,I (k=1,...,T —1) of density function (3). Sincei, i, (Xi,-.-,Xin) =1 form=
3,...,Tand 1<i; < --- <in < T, the normal density function (3) 'QDS,I (k=2,...,T —1). Noting thatx’ = 2¢; — X;
(i=1,...,T), wesee

aij (6. ;) = exp{ — 2y (¢ )0 —¢;)}

1

= eXp{ =58 (6 —G)(x; _Cj)}

= aij (x,xj) (i <j).
Thus, the density functioh(xy, ...,x7) IS QDSI, namely
atij (X, X)) = ij (X}, %) = Qi (X, Xj) = atij (67, X]),
for1<i<j<Tand1l<k<I|<T,ifand only if {aj (= aji)} are constant (e.g., equal for all i < j; namely,> 1
has the form
S 1=D+weé, 4)

whereD is theT x T diagonal matrixgis theT x 1 vector of 1 elements, andis scalar. Although the detail is omitted,
thenX has the form

S =D !'4+dD leéD?,

whered is scalar. Therefore, the density functiorQE)SI if and only if > has the form
by--- 0 by

S=| .t |+d]| : |(by...,br). (5)
0--br br

LetV(X)=02(=1,...,T)and letpi; be the correlation coefficient 0§ andX; (i # j) with |pij| < 1. Assume that
() 02 =---= 0% (= 0% andpij = p (i < j). Then

S = 02(1—p)(E+ 1%ioeé),

whereE is theT x T identity matrix. This satisfies the form (5) af Therefore the density function (3) with condition (i)
is QDS].
Also, assume that (iyZ = - -- = 02 (= 0?). From (5), therQDS] holds if and only if

{gzzbi+dq2 i=1,...,T),
02pij=dhbj (i<j)7

hold, namelyj; = --- = by since|pjj| < 1. Therefore the density function with condition (ii) @DS] if and only if
pij = pforalli < j hold.
Assume that (iii)oj; = p ( 0) for alli < j. Then we see

oy - 0 oy - 0
s= |t | (@-pE+ped) | ;-
0. or 0 - or

Although the detail is omitted, we can see

-2
o. .. 0 o.
a1 : : 1
2= 1-p RPN R e il I
0 - o2 ot
wherem = —(1—p)/p — T. Therefore from (4), the density function (3) with conditi¢ii) is QDS if and only if
0f =--- = of holds.
1 T
Assume that (iv);; = 0 for alli < j. Then the density function (3) ®DS] becauseij (X, X;) = 1 with &; = 0 for
i <.

(01‘1,...,0{1)>,
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Next, we shall consider abol\r‘tDS[<r (k=1,...,T —1) of density function (3). Obviously, the density functi®) is
MDS!, namely,
fx (i) = fx; (%) = . (4),
foralli < j,ifandonlyifyy =--- = pr =c1 =--- = cr, andof = --- = 02 hold. The density function (3) is1DS},
namely,
Fox; (6,%)) = Fxix; (X1,56) = Fxix (6, %)) = Fxix; (67, 5),

forl<i<j<Tandl<k<|<T,ifandonlyifpy=---=pr=ci=---=cr,0f=---=0? andp;j = p foralli < |
hold. Similarly, for eachk (k= 3,...,T —1),itisMDS ifand only if iy =--- = yr =¢; =--- =cr, 0¢ = --- = 0%, and
pij = p foralli < j hold.

Thus, from Theorem 3.1 we can see that the density functiogrwf®h 1y = - = yr = ¢ = --- = ¢r and
0?=-.-=02isDS' if and only if it is QDS]. Also, from Theorem 3.1, the density function (3)D§' if and only if
fp=--=Ur=c =-=Cr, 02 == 0% andp; = p foralli < j hold.

Example 2. We consider Sarmanov’s (1966) bivariate distributionfiwigta marginals. Let; andX; be bivariate random
variables with a density functiofi(x,x,), defined by

f (X1, %) = { (f)l(xﬂ fa(x2) {1+ w(Xqa— p1) (X2 — U2) } E)?hfamvéel;i =12), -
where
fil) = B(a-l, b.)x'ahl(1 )P (i=12),
@ _
Hi = aih (i=1,2),

14+ w(xg—p1) (X2 — H2) >0,

and whereB(a;, bj) is beta function and is a real value. Alsofy(x1) and fo(x2) are the marginal distributions o and
Xz, respectively. We shall consider about the double symnaétdgnsity function (6).
Using the form (1), the density function (6) is expressed as

f(X1,%2) = pa () B(%2) (X1, %2),
where

p = fi(c1) fa(co) {1+ w(cy — 1) (C2— 2) },

a(x) = fo(x) {1+ w(xa — k1) (C2— H2)}
fi(c1) {14 w(c1— 1) (C2— H2)}’

B(x) = fa(xe) {1+ w(c1 — 1) 2 — k)}
fa(C2) {1+ w(cy — p1) (C2— p2)}’

_ {1+ wka—p) e —p2)} {1+ w(Ci—pa) (C2— H2)}

{1+ w(xe— 1) (2 — o) {1+ w(cr — 1) (X2 — H2) }
Since the support ofi (x;) is (0,1) (i = 1,2), we set; = 1/2 (i = 1,2). Then, the density function (6) @DS’ if and only
if both a; = by anday = b, hold. The density function (6) 8IDS? if and only if a; = a, = by = by hold. Therefore, from
Theorem 3.1, we can see that the density function (B)S5if and only if a; = a» = by = b, hold.

y(X1,%2)

6 Concluding remarks

When a density functiotfi(xy,...,x7) is not double symmetry, Theorem 3.1 may be useful for knowliegreason, i.e.,
for a fixedk, which structure of quasi double symmetry of orleand marginal double symmetry of orders lacking.
Indeed, for a random vector having normal distribution, whs density function is nddS', it is caused by the lack of
the structure oM DS<r (k=2,...,T —1) because the normal density function is aIV\QEsS,I (k=2,...,T —1). Namely,

the reason why the normal density function is not double sgtrynis caused by the lack of double symmetry for second
(or more) order marginal distributions (see Example 1).
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7 Discussion
In Section 2, many readers may be interested in considdrengamairD? as such
D? = {(x1,Xz)[a< x < bji = 1,2},

wherea is finite andb = 4. However, it seems difficult to consider such dom@ Because for sucB?, we cannot
denote a adequate poift,c,). For example, wheliXy, Xp) = (10,10) with (c1,c;) = (3,3), (10%,10°) = (—4,—4) is
not in D2. Therefore, we cannot define the three kinds of the doublersstny.
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