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Abstract: We propose a numerical scheme for solving the one- and twemkional fractional optimal control problems (FOCPs).
The suggested scheme is established by using the opetatiatréx (OM) of the Riemann-Liouville fractional integréRLFI) of the
shifted Gegenbauer polynomials (SGPs). These polynoméisralize the shifted Legendre and shifted Chebyshewnpoiials, and
are special cases of the Jacobi polynomials. By employiagthposed technique, the FOCP is converted into a varatmoblem.
The Gegenbauer- Gauss quadrature method (GGQM) and theigfaRitz method (RRM) are implemented to convert the oletghi
variational problem into a system of algebraic equationSg)§Awhich is easy to solve. Numerical results of some exasriplduding
the one- and two-dimensional FOCPs are shown to prove tidityadf the investigated technique.

Keywords: Riemann-Liouville fractional integral operator, fracted optimal control problems, operational matrix, shifted
Gegenbauer polynomials, Rayleigh-Ritz method.

1 Introduction

Recently, numerous applications in diverse areas scieatifias of engineering and science have been expressed in the
form of fractional differential equations (FDESs) or framtial functional equations (FFEs). This is the reason why the
fractional derivatives give more precise performance eséhapplicationsl|2,3,4].

The optimal control (OC) theory is a mathematical brancholiiias been under progress for years, however the FOC
theory is a novel subject. The FOCPs are those optimal dgrtwblems with constraints expressed by FDEs. FOCPs are
specified according to the used fractional derivatives sEHamiliar fractional derivatives are the Riemann-LidieWiRL)
and Caputo fractional derivatives. FOCPs have also regd@iensive consideration in various applications. Matenivith
memory and hereditary effects, dynamical processes econtggas diffusion, and heat conduction in fractal poroudiame
are sufficiently displayed by fractional-order models thagrinteger-order model$]. Other applications of FOCPs are
given in Refs. §,7,8]. Several numerical schemes have been established totbelse problems because most of these
problems don’t have exact solutions.

FOCPs with RL fractional derivatives were first presenteRéf. [9] by using the fractional variational principle and
the Lagrange multiplier technique; while the FOCPs wereesged by the Caputo fractional derivativég [L1]. Also the
polynomial and rational approximations were utilized ttvesuch problemsl2, 13]. The optimal solutions for multiple
control problems of Sobolev type with nonlocal nonlineadsDvere investigated in Refl4]. The existence of OCs for
linear time-invariant neutral control systems with di#fat fractional orders is discussed in R

Direct numerical techniques based on the OMs of fractiom&gral of various orthogonal polynomials have been
derived and applied to solve different kinds of FDEs; suchlasobi polynomials16], shifted orthonormal Jacobi
polynomials [L7], Legendre polynomialsl|g, 19|, Laguerre polynomialsq0], Bernstein polynomialsZ1], and Bernoulli
polynomials R2]. Gegenbauer polynomials have many useful propertiey, dchieve rapid rates of convergence for
small ranges of the spectral expansion terms. Therefor studé@s are interested in using these polynomials for sglvi
various kinds of DEs (more details are found in Re28 P4, 25,26,27]). To the best of our knowledge, little studies deal
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with the application of GPs in handling FDE&g29]. This encourages us for using such kind of polynomials imigho
employ them in numerous practical applications. Anothetivaton is that the Chebyshev and Legendre polynomials
can be considered as special cases of the GPs. During thés, papinvestigate a new OM of the RL fractional integral
of the SGPs and utilize it to solve numerically the followiR@CPs with the RL fractional derivative

Min.J = /Ot F(t,x(t), u(t))dt, )
under the constraint,
DY)x(t) = g(t, x(t)) + b(t)u(t), )
with the initial condition,
DUx(0)=x, i=0,1,....,m—1,

wherem—1 < v <mandb(t) # 0.
The proposed technique can be briefed in the subsequent step

1.Using the SGPs in approximating” (x)" with unidentified coefficients.

2.Using the OM of fractional integrals and couple the resulequation of dynamic constrai®) fvith the performance
index (1) to create a new variational problem.

3.Using SGQM to approximate the integration in the obtaiwesiational problem, which may be not easy to compute.

4 By using the RRM, the new variational problem is transfedrinto a system of AEs which is easily solved.

The central importance of the suggested method is that Iog asfew numbers of GPs, acceptable results are attainted.

This paper is organized as follows. In Section 2, some pieénes of fractional calculus and GPs are given. In
Section 3, the SGOM of RLFI is derived. In Section 4, the cogeace of the suggested technique is discussed. In
Section 5, the proposed technique of applying SGOM of foacti integration for solving FOCPs is presented. In Section
6, some explanatory examples are shown. The last secti@viget to a conclusion.

2 Preliminaries and Used Formulae

2.1 Fractional calculus

Definition 1.
One of the popular definitions of fractional integral is thie, Rthich is determined as
1 t
IV E(t :—/ t— &)V Mf(E)dE, m—l<v<m meN, v>0 t>0,
0= 7 fp €7@ -
19F (t) = f(t).
The operatot? has properties, according to Re3(], we just recall the next property
rg+1)
IVt = — T~ VB, 4
rv+p+1 @
Definition 2.
DV is the RL fractional derivative of order which is given as
m
D"f(t):fw(l"‘*"f(t)), m—1l<v<m meN, VeR (5)
wheremis the smallest integer order greater than
Lemma 1.
Ifm—1<v<mmeN,then
DYIVE(t) = f(t),
m-1 ti
VDV f(t) = f(t) — Z) f<')(0+)i—|, t>0. (6)
e !

For more details see R480].
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2.2 Shifted ultraspherical (Gegenbauer) polynomials and their properties

The ultraspherical (Gegenbauer) polynom@]ﬁg) (t), of degreej € Z*, and associated with the parameter- ‘71 are
a sequence of real polynomials in the finite domaid, 1]. They are a set of orthogonal polynomials which have many
applicationd23].
Definition 3.
The GPs are the Jacobi polynomiﬂ%‘f”ﬁ), witha=8=a - % so that

@) — r(a+%)r(j+20’)P.(“_%7"‘%)(t) —01.2
Feayr(jratd) ’ he

o¢GPs have useful relations to the Chebyshev polynomialsefitht, second kind, and the Legendre polynomials as
follows

=) imaic@q. >
Tt =3lmac), j>1,
1, _ 1
and
Lit)=c'?
J()— i ()7
respectively.

eThe GPs can be created from the next recurrence equation

(j+20)C{?)(t) = 2(j + apc|¥ 1) — jC[Vy (1), j=1.2,...

with
cty =1, c@)=t.
eThe orthogonality relation of the GPs is given by the weighitmer product

1
(c”).c 1) = [ GO0 memd =24,
wherew(?) (x) is the weight function, it is an even function given from tieéation

W@ (t) = (1 t2)9-2,

and

21201 (j + 2a)
ji+o)r?(a)”’
is the normalization factor andj j is the Kronecker delta function.

eThese polynomials will be used in the intery@JL], so the SGPs are formed by replacing the variabldth % -1,
0<t <L, can be written as

1P =

A9 =|c!

J

(7)

2t
e =c”(T-1, =1 cFn=C-1
e¢The analytical form of the SGP is given by
j e T(a+dHr(j+k+2a)
clm =y (1) 2 . t,
£ r(k+a+3)r(2a)(j—k)KL ®)
@ (g) — (i LU +20)
Csj (0)=(=1) r2a)j!
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eThe orthogonal relation of SGPs is obtained from
L
(c&m.cglm) = [ e mel) mel md =18, ©)
wherewg’)(t) is the weight function, it is an even function given from tleéation

@ (1) = (L1372,

@ _ (LN @

eThis polynomial recovers the shifted Chebyshev polynorafahe first kindTsj(t) = C(Sc? (t), the shifted Legendre

and

1
polynomiallsj(t) = C(S"’j)(t), and the shifted Chebyshev polynomial of the second K]gﬁ{t) = jTllusj ().

eThe square integrable functigt) in [0,L] can be approximated by SGPs as:
N
g @)
y(t) = ¥iCq (1),
JZO I~sj

where the coefficientg; are obtained from

L
5= &) [Tyoel” ek O (10)
eThe approximation of functio(t) in the vector form is defined by
y(t) =YTo(t), (11)
whereYT = [Jo,¥1,.. ., 9n] is the shifted Gegenbauer coefficient vector, and
T
ot) = [C0).c ©).....C (12)

is the shifted Gegenbauer vector.
eTheqtimes repeated integration of Gegenbauer vector can bactatt from

199(t) ~ PYg(t), (13)
whereP( is called the OM of the integration afit).

3 Fractional Shifted Gegenbauer Operational Matrix (SGOM) of Integration
At this section, SGOM of RL fractional integral is proved.

Theorem(1)
Let ¢(t) be the shifted Gegenbauer vector and 0 then

IVo(t) ~ PV g(t), (14)

wheret € [0,1] andP(") is called OM of fractional integration of orderin the RL sense, it is a square matrix of order
(N+1) x (N+1) is written as follows:

0 0 0
2|i=ofo,o,k Z;izofom ce Elizo EoNk
Sk=081,0k Yk=0é11k - - - Yik=0S1NK

ZL:().ELQk Eikzo'si,l,k ZLZO'Ei,Mk (15)

SN 0 ENOK SR 0ENLK - - - ShioéNNK
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whereé; j « is given by:

éijk==XY,
where
_ '( L F(a+3Hr+k+2a)
__kZO I (k+oa+3)ra)r (k+v+1)(i—k!’
v jIi+a)r2(@)r2(a+HrEa+j+H)rv+k+f+a+i) (16)
Z 201~ 40’>nl‘(20:+1) (o) (a+f+3)(j— OIFIr(v+k+f+2a+1)
Proof
From relation 8) and by using Eqs3) and @), we can write
i i Fa+3ri+k+2
”Csf(t)zﬁo(—l)'*" (a+21) O+ i o) V(tY), telo,1]
f & I (k+a+35)r (2a)(i —k)!k!
F(a+3)r(i+k+2
= (a+2) (',+ +20) t“*v i=0,1,2,...,N. (17)
rk+a+s )I'(20{)(|—k)!l'(v+k+1)
The functiont“tV can be written as a seriesNf+ 1 terms of Gegenbauer polynomials,
v _ < al@)
v =Y §C (), (18)
J;J Sj
Where _
J : jHi+a)r2(@)r2(a+HrEa+j+H)rv+k+f+a+i) (19)

=5 (-1 :
J ZO( ) 2049 (2a + ) (a+ f+3)(j— HIF (2a)r (v+k+ f+2a+1)
Now, by employing equationd.{)- (19) we obtain:

v N I‘(a+%)l’(i+k+20)
CS' kzozo F(k+a+3)r@a)i—krv+k+1)’

N i
JZO <k; a ) >
whereé; j ¢ is obtained from Eq.16).

Writing the last equation in a vector form gives

vCSI l%cﬂom EOEI 1ks- k;fi,N,k] ), i=0,1,...,N, (21)

e,

which ends our proof.

4 Error Estimation and Convergence Analysis

4.1 Error estimation

In the following theorem, the error estimation for the apqimmated functions is obtained in terms of Gram determinant
[31].
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Theorem(2):
For the Hilbert spaceH = L2?[0,1], suppose that Y be a closed subspace of H such that

Y = Span{Cé?(t),Cé?(t),..., éa,j(t)}. Let y(t) be an arbitrary element of H ang(t) be the unique best
approximation ofy(t) out ofY, then

Iy(t) =y () |>= (22)
Gram(CL (1), CLY (1), Cx (1)
whereGram(y(t),Cg3 (t),CSY (1),... .CER (1)
YOO > <y),Co ) > <y(),CE (1) >
<c{ .yt > <ciyt).ciy ) > <c{m.cim >
| < e ).yt > <cdm),cy ) > <cm.cim >
<c@t),yt)> <c@w) 'c<">(t) > <c@w),cl ) >
SN\ SN\t)»~50 SN\')s SN
4.2 Convergence analysis
Suppose that the errdgv of the integration OM in RL sense as
Ev =P'®(t) - 1VO(t),
where -
Ev=[Evo.Evi, . Evn]
is an error vector. From Eq1{), we had approximatef” asz’j\‘zofjcgj (t). From above theorem we have
N Gram(t+V,c(1),c&)(1).....CE 1)) \ 2
- 3 Cs0) = @ (1) c @ @3)
i= 2 Gram(Cgq (t),Cgy (1), ---,Can (1))
From Eq. 0), we obtain the upper bound of the integration OM as follows
N /i @
IEvill, = ||[1VCEi(t) — &ik|Cs/()),i=0,....,N, (24)
1vill2 Csi JZO k; i, S j
1
. F(a+3)r(i+k+2a) Gram(t<Y, LY (t),CY (1), ...CER (1)) 2 -
- k; F(k+a+3)r(2a)(i -k (v+k+1) Gram(Cgl (t),C&Y (t).....CER (1)

The following theorem illustrates that with increasing thanber of Gegenbauer polynomials the error tend to zero.

Theorem (3):
Assume that functiog(t) € L?[0,1] is estimated bgy(t) as follows

On(t) = HoCSo(t) + HaC8a (t) + ...+ UNCSN (1),

where
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Consider
s = [0 -,

then we have
lim su(y) =0.

N—00

For the proof see Ref32].

5 Application of SGOM of Fractional Integration for FOCPs

In this section, we use SGOM of integration to solve probl&mw(th the dynamic constraingf as in the following.

5.1 Shifted Gegenbauer approximation

Firstly, approximatindVx(t) by SGPSC(Si)(t), as
DYX(t) = X" g(t), (26)

whereX is an unknown coefficients matrix which takes the form

Xo
X1
n
By using 6),we have
m-1 i
1VDVX(t) = X(t) — Z}x@(o*)i, (27)
. i!
=
From Eq.(4) together with EqZ6), we get
IVDVx(t) ~ XTPV (1), (28)
From Eq.28) and Eq. 27), we obtain
m-1 i
KO = XTP g + 3 4 O (29)
& !

Using the Eqgs.Z6)- (29), the dynamic constraing] takes the form
m-1 ti
XTo(t) =g | t,XTP a(t) + > xU(0) | +b(tu(t),
& !

m-1 i
u(t) = Tlt) <XT(p(t) -g (t,XTP"qo(t) + Zo x<'>(0)%>> : (30)

By using the Egs.29) and 30), the performance indexX) takes the form

m-1 i m-1 i
IN[Ro, K, ..., XN] = /0t f (t,prv(p(t)+ i; x<'>(0);[—!, Wlt) <XT(p(t) -g (t,prv(p(t)+ i; x('>(0):—!>>> dt  (31)
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5.2 Gegenbauer-Gauss quadrature

Secondly, the integral in Eq3Q) is more difficult to compute, so the Gegenbauer- Gauss qua@rformula is used for
approximating it as:

In[Xo, wa {9y 0<j<N (32)

Wherefj(a) are the zeros of Gegenbauer- Gauss quadrature in the inf@/i/p and

(2a)
~@a) _ (L (a)
s-(5)"

is the Christoffel numbers, whemf“) is obtained from the relation

where)\é‘” calculated from the Eq7].
The necessary optimality conditions of E§2) are attained by applying RRM as

O 0w o

=R = =0 (33)

By using Newton iterative method, this system of AEs can Ilixesbfor the unknown coefficients of the vector X.

5.3 Approximation of our problem

Here, the set of Gegenbauer polynomiﬁlgN( ) is used for a basis form the spabg[0,1] = {y .y is continuously

differentiable on interval0, 1] }, with uniform norm

[YI=IIY e+ ¥ llo - Let us consideMn = 8oCZ(t) + 61CZ, (t) + ... + B,CE,(t), whereMy is the n-dimensional
subspace 0D;[0,1] and 8y, 64, ..., 6, are arbitrary real numbers. If we choo8g 6, ...,6, in such a way thaMp
minimizesJ, denoting the minimum by,. Then, we should haviél, C My 1, this impliesa, > gp 1.

Theorem (4):
Consider the functional then limh—,.. 0n = 0 whereo = infyp, 0,17 J-
(Check B3], [34] for the proof).

6 lllustrative Problems

Problem (1)
Consider the following FOCP3H]

Min.J = %/Ol(xz(t) ()t
under the dynamic constraints
DYx(t) = —x(t) +u(t), 0<v<1
x(0) = 1.
The exact solution of this problem at= 1 is
X(t) = cosh(v/2t) + Bsinh(v'2t),
u(t) = (1+v2B) cosh(V2t) + (vV2+ B) sinh(v'2t),

where

_ cosh(v/2) + v2sinh(v2)
V2coshv/2) 4 sinh(v/2)
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Table 1: The absolute errors of the state variable x(t) for ppoblem (1) at different values of N.

t Absolute errors (N=3) Absolute errors (N=5) | Absolute errors (N=8) | Absolute errors (N=10)
0 1.25437x 103 6.25467x 10°° 6.26213x 1010 1.98861x 109
0.1 3.30159x 10 4 2.39179x 10 © 1.22351x 10 10 6.29444x 10 10
0.2 4.86069x 104 1.21248x 10°° 3.57127x 10 11 5.40695x 10 10
0.3 7.78748x 10°° 1.7249x 10°° 1.11152x 1010 2.81709x 1010
0.4 3.34676x 104 6.82411x 10/ 1.53137x 10 10 2.13957x 10 10
0.5 4.57932x 104 1.93055x 10 °© 6.82487x 10 12 5.58041x 10 10
0.6 2.30996x 104 3.10922x 10~/ 1.46338x 10 10 3.82721x 10 10
0.7 2.02962x 104 1.9004x 10~° 1.17524x 10710 1.53133x 1010
0.8 5.2129x 104 9.16645% 10/ 2.17553x 10 11 5.698x 10 10
0.9 2.42861x 104 2.49026x 10 ° 1.0693x 10 10 7.5132x 10 10
1 1.25411x 103 6.25466x 10°° 5.86238x 1010 2.68463x 10~ °
Table 2: The absolute errors of the control variable u(t) for problem (1) at different values of N.
t Absolute errors (N=3) Absolute errors (N=5) | Absolute errors (N=8) | Absolute errors (N=10)
0 3.77566x 104 1.88239x 10°© 3.27507x 1010 8.1688x 1011
0.1 1.09654x 104 7.0819x 10/ 6.36999x 10 11 2.70723x 10 11
0.2 1.42091x 10 * 3.9987x 10/ 1.83641x 10 11 1.54725x 10 11
0.3 8.61549x 10 ° 4.98381x 10/ 5.90761x 10 11 9.72683x 10 12
0.4 1.13021x 10 4 2.49281x 10/ 8.13922x 10 11 2.06191x 10 11
0.5 1.3787x 104 5.81012x 10/ 3.49132x 10 12 2.08388x 10 11
0.6 5.73272x 10°° 4.96686x 108 7.88284x 1011 1.56014x 10 11
0.7 7.57957x 10~° 5.92684x 10~/ 6.40287x 1011 3.26667x 1011
0.8 1.60967x 10 4 2.40909% 10~/ 1.19774x 10 11 8.78833x 10 11
0.9 6.26788x 10 ° 7.611x 107 5.92166x 10 11 1.10133x 10 11
1 3.77513x 104 1.88239x 10 °© 3.25376x 10 10 1.70672x 10 10

03r

08

(t
=
o

T

- —#—exact sol.

et

4 —F—v=085

4 —=v=075

v=0.85

03 04 05 06

07 08 09 1

Fig. 1: The behavior ofx(t) for N =5and v = 0.75,0.85,0.95, 1, with the exact solution for problem (1)
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|| —#—exact sol
ey
—5—y=095
—#—y=085

——y=075

Fig. 2: The behavior ofu(t) for N =5and v = 0.75,0.85,0.95, 1, with the exact solution for problem (1)

By applying our proposed technique to problem (1), the tastiinumerical results for the state and the control
variables are displayed through Figures 1 and 2, respéctte = 0.75,0.85,0.95, 1 with the exact solutions for N=5.
We noted that the obtained solutions cover the classicaltsewhen the value of the fractional order tends to unity. In
addition, as in Tables 1 and 2, the absolute errors of the g#aiable x(t) and the control variable u(t) for probleméé
calculated at different choices of N. It's observed thatdfficiency of our proposed method increases by increasing N.

Problem (2)
Consider the following FOCP9[34]

Min.J — %/Ol(xz(t) (),

under the constraints

DYx(t) =tx(t)+u(t), 0<v<1,
x(0) = 1.

Table 3: Approximate values of J at different values ofv and N=8 for problem (2)

1% Present method Method in [L7] Method in B5]
1 0.484268 0.48426 0.48427
0.99 0.483463 0.48346 0.48347
0.90 0.475883 0.47588 0.47605
0.80 0.466978 0.46697 0.46722
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—+—y=095

(L)

—=—y=085

——v=0.75

Fig. 3: The behavior ofx(t) for N =3 and v = 0.75,0.85,0.95, 1 for problem (2)

T—e—v=095

Lty

—F—v=085

—H =075

Fig. 4: The behavior ofu(t) for N=3and v = 0.75,0.85,0.95, 1 for problem (2)

In Figures 3 and 4, the approximated results of the variak{tgsandu(t) of problem (2) are plotted for different
values ofv. In Table 3, comparisons of our obtained results for the mimmvalues of J of problem (2) with different
values ofv at N=8 compared with results id]] and [35] are tabulated. Obviously, our estimated results coirscigi¢h

the results in17] and [35)].
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Problem (3)
Consider the following FOCRF3p]

2
1 9
. 2 20t 10
Mm.J:/ X(t) —t2) 4 u(t) +t4— —— dt,
) | (O=E) () +t' - 5o
subject to,
DVX(t) = t?x(t) +-u(t), 1<v<2
x(0) =x(0) =0.
Table 4: Approximate values of J at various choices of N ana = 1.1 for problem (3)

N Present method Method in B6]

4 2.23277x10°° 4.76932x 10°°

5 8.24619x 10~/ 1.47243x 10°°

6 3.56358x 10~/ 5.37825x 10~/

8 9.08978x 1078 1.06099x 10~/

9 5.12433x 10°° 5.44304x 1078

ik
045k
04t
ki1
k]S
Zuxp
02t
01sF
Dk
il
t
Fig. 5: The behavior ofx(t) for N =3 and v = 1.85,1.95,2 for problem (3)
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Lty

Fig. 6: The behavior ofu(t) for N =3 and v = 1.85,1.95, 2 for problem (3)

Figures 5 and 6 depict the behavidt) andu(t) of problem (3) aiN = 3 andv = 1.85,1.95 and 2. Table 4 lists the
obtained results for the minimum values of J of problem (3 e results in36] for various choices of N. It is noted
that the obtained results by using the suggested technayeshigh accuracy in comparison witBq|.

Problem (4)
Consider the following FOCS3[7]

Min.J = %/:(xi(t) (1) + UA(t) ),

subject to

D"xl t) = —xl(t) +Xo(t) +u(t),

(
(

This problem has exact solutionat= 1 as

3 —2t
x1(t) = 0.018352v2 + 2.4816% V2 — eT

Xa(t) =e 2,

u(t) = 0.04430%2 — 1.0279328 V2 +

(@© 2018 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

192 NS 2 H. F. Ahmed, M. B.Melad: A new approach for solving fractibna

T —F—exact sol.
coweyz]
—4—y=095

—#—y=0.85

(L

=075

T —e—v=05

04 | | | | | | | | |
0 ) } ! } }

—f—exact sol

Fig. 8: The behavior ofxx(t) for N=8and v = 0.5,0.75,0.85,0.95, 1, with the exact solution for problem (4)

Figures 7- 9 illustrate the behavior of state variabigs),x»(t) and control variable u(t), respectively filr= 8 and
v = 0.5,0.75,0.85,0.95 and 1 with the exact solutions. At Tables 5- 7, the absauters ofx; (t),x(t) and u(t) for
problem (4) are calculated at different values of N. Thishigm was treated in Ref3[] by a another technique. Our
estimated results, shown in Figures 7- 9 agree with the teesstablished in37]. But we obtained good estimates by
using at last 8 numbers of the SGP, whereas a number of appaitiaihs starting in 8 and increasing up to 128 are used in
Ref. [37]. So we can deduce that our numerical technique takes lespudational steps or power than that of R&f7][
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The behavior ofu(t) for N=8and v = 0.5,0.75,0.85,0.95, 1, with the exact solution for problem (4)

Table 5: The absolute errors ofxy (t) for problem (4) at different values of N

t Absolute errors (N=3) Absolute errors (N=5) | Absolute errors (N=7) | Absolute errors (N=8)
0 2.54299x 103 4.00336x 107> 2.41907x 10~/ 1.49311x 108
0.1 4.50984x 104 1.21716x 10 ° 1.65758x 10 ® 3.89009x 10 °
0.2 4.25396x 104 1.31491x 10> 6.98381x 108 3.84311x 1010
0.3 6.09729x 10 4 1.66176x 10 ° 3.52928x 10 © 6.76104x 10 10
0.4 1.46752x 10 ° 1.8063x 10 ° 3.37502x 10°© 5.84229x 10 °
0.5 1.63318x 103 4.72386x 10°° 1.02771x 107 1.79443x 109
0.6 1.09888x 10 ° 6.54949x 10 © 2.12302x 10°® 1.22336x 10 °
0.7 2.39567x 104 2.00603x 10~° 2.23335x 108 5.37209x 10~ °
0.8 2.85639x 10 4 1.2638x 10 ° 9.47197x 108 2.56206x 10 °
0.9 3.88259x 104 8.68881x 10 © 2.68914x 10 3.33488x 10 10
1 3.26993x 103 47211x 10°° 2.78275x 10~/ 1.28264x 108
Table 6: The absolute errors ofxx(t) for problem (4) at different values of N

t Absolute errors (N=3) Absolute errors (N=5) | Absolute errors (N=7) | Absolute errors (N=8)
0 2.77556x 10 17 1.11022x 10 16 2.60209x 10 18 1.01481x 10 16
0.1 4.13717x 103 4.42703x 10 ° 1.52144x 107 6.80051x 10?9
0.2 3.9441x 1073 1.72479x 10> 0.02464x 108 8.14885x 10 °
0.3 2.20723x 103 1.0479% 10°° 1.54371x 107 7.91399x 109
0.4 6.333x 104 2.1207x 107> 8.58013x 108 2.19109x 10°°
0.5 450871x 10°° 2.49134x 10 ° 1.84447x 108 4.34762x 102
0.6 5.41637x 104 1.23822x 10 ° 6.97336x 10 °© 5.89944x 10 °
0.7 1.62945x 103 2.28276x 10°° 0.38397x 108 4.64195x 1010
0.8 2.3299x 103 2.57998x 10 © 5.67684x 10 ° 1.98716x 10 °
0.9 1.26715x 103 2.09563x 10~° 3.89227x 108 3.69174x 10°°
1 3.25981x 10 3 3.20173x 10°° 1.62211x 10 7 1.24681x 10 8
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Table 7: The absolute errors ofu(t) for problem (4) at different values of N

t Absolute errors (N=3) | Absolute errors (N=5) Absolute errors (N=7) | Absolute errors (N=8)
0 1.22508x 103 1.70068x 10~ ° 9.90901x 108 5.79697x 109

0.1 1.60038x 104 1.19007x 10°® 2.01279x 1078 2.11329x 1077

0.2 7.66304x 10~° 6.57099x 10°° 3.47713x 1078 8.09481x 1010

0.3 3.4207x 104 7.21889x 10°© 3.4856x 109 3.08876x 1010

0.4 5.76103x 104 1.72718x 10°© 1.64181x 108 2.19585x 10~

0.5 5.97729x 104 1.09956x 10~° 3.67555x 108 7.44108x 1010

0.6 3.84806x 104 2.03656x 10 © 6.8909% 109 3.63189x 10 10

0.7 4.41158x 10~ 6.04497x 10°° 1.06384x 108 1.55692x 10~°

0.9 7.02178x 10°° 4.65966x 10°° 1.10424x 1010 5.89212x 1010

1 8.5567x 104 1.33851x 10> 8.0739x 108 4.72284x 1079

7 Conclusion

We derived a new numerical mechanism to find approximateisakiof the FOCPs, based on the SGOM of the RL
fractional integral. The SGOM of fractional integratiorduees the FOCP into an equivalent integral problem. The
properties of the SGPs together with the RRM are used toftranghe equivalent functional integral equation problem

to an algebraic system, which is easily solved. The applicataccuracy, and rapidity by using few terms of the SGPs
of the suggested mechanism are demonstrated by numeripitajons, including first- and second-dimensional

FOCPs.
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