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Abstract: In this article, we study the analytical solution of timedtional Navier-Stokes equation based on the combinafinataral
transform (NTM) and homotopy perturbation method (HPM)e Emalytical scheme gives a series solutions which conseagedly
within few iterations. The efficiency and simplicity of theheme is clearly demonstrated, and the solutions obtairedampared
with the solutions of the existing techniques.
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1 Introduction

In recent years, fractional calculus applications are Widpplied in many areas of engineering and physical science
processes]],2,3,4,5,6,7,8,9,10]. Recently, partial differential equations with fractadrorder derivative are successfully
applied to many mathematical models in mathematical biglagrodynamics, control theory, fluid mechanic, analytica
chemistry and so on. Fractional partial differential egprag has been solved using many analytical and numerical
methods such as homotopy analysis methid, [Adomian decomposition method?,13,14,15,16,17,18], homotopy
perturbation method1p,20,21,22,23,24,25,26], generalized differential transform metho@7[1,2,3,28], Laplace
decomposition metho®p, 30], natural homotopy perturbation methail[32,33,34,35], natural decomposition method
[36,37], fractional variational iteration metho®8,39], to mentioned few. Navier-Stokes equations which desctiite
motion of viscous fluid was first named after George Gabriek& and Claude-Louis Navier. Those equations are used
to model flow in pipe, air flow around a wing, weather, ocearnrser, and so on. It is also applied in the design of cars,
air craft, power stations, and in the study of magnetohyyinadhics if coupled with Max-wells equations. The standard
Navier-Stokes equations with time fractional derivativétten in operator form as30,40]:

DAvV(r,t) =Q+n <Dr2v+%Drv) , 0<a<i, (1)

where the parametar describes the order of the time fractional derivatives. $pecial case of Eq1] whena =1
reduces to the standard Navier-Stokes equation of the form:

1
Div(r,t) =Q+n <D3v+ ?D'V) , O<a <1, (2)

whereQ = %, t is the time,n is the kinematics viscosity is the pressure, amalis the density.

The current development in fractional calculus have givepdtus to research on fractional partial differential dipuzs
which deals with derivatives and integrals of arbitraryeysd We recall that J. H. He firstly proposed a semi-anallytica
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technique called the homotopy perturbation techniquechviis a coupling of classical perturbation technique and
homotopy a concept in topology. Homotopy perturbation mége gained a considerable popularity due to its high
accuracy and simplicity, and the crucial aspect of the homotperturbation technique is employment of the He's
polynomials for computing the nonlinear term22]. Golmankhaneh et al. discussed the comparison of analytic
solution of nonlinear Navier-Stokes equations, Sturmdlitte and Burgers and using iterative method§d][ Recently,

Xu et al. studied the numerical solution of the space fractidNavier-Stokes equations by replacing Laplacian operat
in Navier-Stokes equations by Riesz fractional derivatij&?]. Rashidi and Shahmohamadi discussed the analytical
study of three-dimensional viscous flow near an infinitetintpdisk using the variational iteration method (VIM), and
the Pade approximart§].

In this paper, we apply the natural transform method (NTMJ &ime homotopy perturbation method (HPM) called
natural homotopy perturbation method (NHPM) to solved timaetional Navier-Stokes equation with initial conditio
The proposed analytical scheme is applied directly to tiraetional Navier-Stokes equation without taking any
restrictive assumptions, discretization of variablesgdirization, or transformation. It reduces the computatio
difficulties, avoids round off errors, and required a smafhputational size. The natural homotopy perturbation weth
is successfully applied to time-fractional Navier-Stolkemiations, and the results obtained are in excellent agneem
with the results of the existing methods.

The outline of the paper is as follows. In Section 2, we revimgic definitions of fractional calculus and natural
transform. In Section 3, we provide a basic analysis of therahhomotopy perturbation method, to show its efficiency
and high accuracy. The results of the application of the @sed method are given in Section 4. The work is concluded in
Section 5.

2 Fractional Calculus and Natural Transform

Definition 1. The natural transform of the functiat) > 0 is defined over the set of functions,
1 .

A=<v(t):IM, 11, 12> 0, |v(t)] <Me' | if t € (—1)! x [0,00)},

by the following integral 44,45,46):

0

N* [V(t)] = V(s u) = é/o e v(t)dt; s> 0, u> 0. 3)

Definition 2. A function f (t), t > 0 is said to be in the spa@¥, nc N U{0}, if {(" € Cq.

Definition 3. A real functionf (t), t > 0 is said to be in the spa€®, a € R if there exist a real numbegy (> a) such
that f (t) = tPfy(t) wherefy(t) € C[0, ). ClearlyCy C Cgif B < a.

Definition 4. The left sided Riemann-Liouville fractional integral optar of ordera > 0, of a functionf(t) € Cy, and
Uy > —1is defined as3q].

1 t a—1
= [(t—T f(r)dt, a>0,t>0,
f(t), a=0.
For the Riemann-Liouville fractional integral, we have:
ry+1)
19t = ——= oY, 5
ry+a-+1) ®)
Definition 5.The Natural transforri{™ [I ?v(t)] of the Riemann-Liouville fractional integral is defined as:
NT[19(t)] = lj.{—;,V(s, u). (6)

Definition 6. The fractional derivative of the functiof{t) in Caputo sense fractional derivatifef € C"; , ne NU{0},
is defined as47,48§].

n
|n-a {%ﬁt)}, n—1l<a<n neN,

oth »

()

a=n.
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Note that L4, 15]:

(i) 19 (t) = ﬁfé(tidt, u>0t>0,

_S)l—a

(i) DY f (x,t) = [1~C [";{S)} n-l<a<n

Definition 7. The Caputo fractional derivative of natural transform ifired as B1,32:
o n-1ga—(k+1)
N*IDPVD] = GGV(S = 5 =W 04), (8)

n-1<a<l1.

3 Mathematical Presentation of the Analytical Scheme

The basic analysis of the natural homotopy perturbatiorhotefs clearly illustrated, to show its efficiency and high
accuracy by considering the general time-fractional Na8i®kes equation of the form:

1
Dt"v(r,t):Q+r]<vrr+er), O<a<l1, (9)
with the initial condition
v(r,0) = f(r), (10)
whereQ = %, t is the time, px is the pressurep is the densityy) is the kinematics viscosity, aridf = gt—?, is the

Caputo fractional derivative.

Operating the natural transform in E§)(we get:

f(r u? 1
V(r,s,u) = %4—%4—?1\1* {nvraner]. (12)

Computing the inverse natural transform of EbL)( we get:
qfu 1
v(r,t) =G(r,t)+ N ?N NVir + novel|- (12)
Based on homotopy perturbation method, we get:
v(r,t) =Y pvn(rt). (13)
20
Substituting Eq13) into Eq.(L2), we get:

a
U_N+

iop”vn(r,t) =G(rt)+p (Nl

n nZO P Varr + g nZD annr‘| ‘| ) . (14)

Equating the coefficients of like powers of p in E@4), we get the following results:
pO: VO(rat) = G(rat)a

1. g U 1
privi(rt)=N yN nVOrr‘FrIFVOr )
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a

u 1
p2: Vo(r,t) = N1 |:§N+ [nvlrr + nFVlr]] )

a

u 1
p3: V3(r7t) = N_l [§N+ [UVer + nFVZr]]

and so on.
Thus, the analytical solutions of E@){(10) is given by:

N

v(r,t) = '\Ilim Zovn(r,t). (15)

—00

4 Solved Applications

Applications of the analytical scheme to time-fractionaMir-Stokes equation is clearly presented in this section

Example 1Consider the following time-fractional Navier-Stokes &tipn of the form:

1
D{’v(r,t):Q+vrr+er, O<a<1l, (16)
with initial condition
v(r,0) =1—r2. 17)
Computing the natural transform in EdL§), we get:
1-r> Q u 1
V(r,s,u) = S +@+§N+ {vrﬁ-er} . (18)

Operating the inverse natural transform on both sides of(&§), we get:

g2, Qt S [UT 1
vint)=1-r +I’(a+1)+N [SO’N vr,+rvr . (29)
Based on homotopy perturbation scheme, we get:
v(rt) = 3 pYa(rt). (20)
n=0
Substituting Eq.Z0) into Eq. (L9), we get:
oon __ZQita 71£+mn }mn
nZOp Vn(rt)=1-r +I'(a+1)+p<N S"N n;p Vnrr+rn;p Vir . (21)

Equating the coefficients of like powers of p in E2fL)( we get the following results:

a
p°: vo(r,t) =1—r2+ %,
pt: vi(rt) = Nt |:£N+ |:V0rr + }VOr:|:|
’ S r
4@
~FErD
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2:vo(rt) =Nt W v ey -
p=iva(r,t) = _Sa _1rr rlr_
= O’
. [u? [ 1 ]
p3: va(r,t) =N 1 _ENJr _V2rr + szr_
and so on.
Thus, the analytical solutions of E@®)-(17) is given by:
N
v(r,t) = Iim § vy(r,t)
N—)OOn:
= VO(r7t) +V1(r7t) +V2(r7t) +V3(rat) +ee
Qt® 4t
=1-r? — 0+0+---
ECE TS
— 4t
T i/l
T Traty

The solution of Eq1(6)-(17) in closed form is given by:

v(r,t) = lim %vn(r,t)
=0

00
N—>n

=vo(r,t) +va(r,t) + vo(r,t) +va(r,t) +---
=1-r24(Q—4t,

whena = 1.

Fig. 1: 3D and 2D surfaces of the analytical solution of BE§)¢(17) in the ranges-1<r < 1, and—2 <t < 2, when
t=2,a=1andQ=5

The result is in complete agreement wifty[30,40Q].
Example 2Consider the following time-fractional Navier-Stokes atipn of the form:

1
DAv(r,t) = vir + A O<a<1, (22)

with initial condition
v(r,0) =r. (23)
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Fig. 2: 3D and 2D surfaces of the analytical solution of BE&)¢(17) in the ranges-1<r < 1, and—2 <t < 2, when
t=2,a =235 andQ=>5.

Operating the natural transform in Eg2®), we get:
roud 1
V(r, S7 U) == g + ¥N+ |:Vn' + FVr:| . (24)
Computing the inverse natural transform on both sides of(E4), we get:
v(rit)=r+N1 YNt [y Y (25)
v e rr r r .
Based on the homotopy perturbation method, we get:
V(rvt) = p”vn(r,t). (26)
2
Substituting EqZ6) into Eq.@5), we get:

[ee] [ee] 1 [ee]
n o -1 n - n
n;p Vn(r,t) =r+p (N n;p Virr + p nZop Vnr‘| ]) . (27)

Equating the coefficients of like powers of p in E2j))( we get the following results:

uC{
—_NT
s

p% vo(rt) =T,

plivi(rt) =Nt

u 1
§N+ |:V0rr + FVOr:|:|

1 te

Crl(a+1)’

4 fu® 1
p2: V2(I’,t) =N7! |:§N+ |:Vlrr + FVlr:|:|
12 t2(1
BT 2a+1)

3 va(rt) =N"1 EN+ V. +}v
p: 3(;)— el 2rr I,2r

12><32 tBG
T 5 T(Ba+1)
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4 va(r,t) =N"1 ﬂNJr v }v
p-4(7)— < 3rr+r3r

_12x x5t
7 T(4a+1)

and so on.
Thus, the analytical solutions of EB2)-(23) is given by:

N
v(rt) = lim 3 va(r,t)

=Vo(r,t) +va(r,t) + va(r,t) +va(r,t) 4 ---

1 ta 12 t2a 12><32 t3a
=T — —
+rl'(cr4—1)+r3l'(2a+1)jL r° rBa+1

® 12x3¥x52...x(2n—3)2 tha
=r+ z T ( ) )

& r r(na+1)

The solution of Eq42)-(23) in closed form is given by:

N

V(rvt) = l\lllglo Vn(rvt)
n=

=vo(r,t) +va(r,t) +vo(r,t) +va(r,t) +---

X 12x3FPx52...x (2n—3)%t"

=r+ 21 A

n=1
whena = 1.
The result is in complete agreement wifltv[30,40].

5 Conclusion

In this article, an analytical scheme called natural hompptperturbation method (NHPM) is propose to solve
time-fractional Navier-Stokes equation. Based on the mehesolution in closed form of the time-fractional

Navier-Stokes equation was successfully obtained witewn iterations. The NHPM series solutions converges rapidly
with high accuracy. The fractional order derivatives arenpated in Caputo sense. Obviously, the computational
simplicity of the analytical method shows that it can be wssttidy many problems in physical science and engineering.
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