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Abstract: In this article, we establish recurrence relations for single and product moments for the generalized power function
distribution. Moreover we use the relation between the probability density function and distribution function and recurrence relations
to characterize the generalized power function distribution based on general progressively Type-II right censored order statistics.

Keywords: Characterization; General Progressively Type-II Right Censored Order Statistics; Generalized Power Function
Distribution; Recurrence Relations.

1 Introduction

In failure data analysis, it is common that some individualscannot be observed for the full failure times. general
progressively Type-II right censored order statistics (GPTIIRCOS) is a useful and more general scheme in which a
specific fraction of individuals at risk may be removed from the study at each of several ordered failure times.
Progressively censored samples have been considered, among others, by Davis and Feldstein (1979), Balakrishnan et al.
(2001), and Guilbaud (2001). This scheme of censoring was generalized by Balakrishnan and Sandhu (1996) as follows:
at timeX0 ≡ 0, n units are placed on test; the firstk failure times,X1, . . . , Xk, are not observed; at timeXi +0, whereXi
is the ith ordered failure time (i = k+1, . . . , m−1), Ri units are removed from the test randomly, so prior to the
(i + 1)th failure there areni = n −− i − ∑i

j=k+1R j units on test; finally, at the time of themth failure, Xm, the
experiment is terminated, i.e., the remainingRm units are removed from the test. TheRi’s, m and r are prespecified
integers which must satisfy the conditions: 0≤ k < m ≤ n, 0≤ Ri ≤ ni−1 f or i = k+1, . . . , m−1 with nk = n− k and
Rm = nm−1−1.
If the failure times are based on an absolutely continuous distribution function (cdf)F with probability density function
(pdf) f , the joint probability density function of the general progressively Type II censored failure times
Xk+1:m:,n, . . . ,Xm:m:,n , is given by

fXk+1:m:,n,...,Xm:m:,n(xk+1, . . . ,xm) =K(n,m−1)[F (xk+1,θ )]k
m

∏
i=k+1

f (xi,θ ) [1−F (xi,θ )]Ri , xk+1<xk+2< · · ·< xm, (1)

where,

K(n,m−1) =
n!

k! (n− k−1)!

(

m

∏
j=k+2

n−
j−1

∑
i=k+1

Ri − j+1

)

.
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Aggrawala and Balakrishnan (1996) derived recurrence relations for single and product moments of progressively
Type-II right censored order statistics from exponential,Pareto and power function distributions and their truncated forms.
Imtiyaz et al. (2015) derived translation, contraction anddilation of dual generalized order statistics. Mohie El-Din et al.
(2017a,b) derived characterization for Gompertz and linear failure rate distributions using recurrence relations ofsingle
and product moments based on general progressively Type-IIright censored order statistics.
In this paper, we shall introduce recurrence relations among single and product moments based on GPTIIRCOS.
Characterization for generalized power function distribution (GPFD) using recurrence relations are obtained.

Let X
(Rk+1,Rk+2,...,Rm)
k+1:m:n < · · ·< X

(Rk+1,Rk+2,...,Rm)
m:m:n be them−k ordered observed failure times in a sample of size(n−k) under

general progressively Type-II right censoring scheme fromthe GPFD with pdf is given by (see Imtiyaz et al. (2015))

f (x) = αxα−1[1− (m+1)xα]
−m
m+1 , m >−1, α > 0 , 0≤x < (m+1)

1
α , (2)

and cdf is given by

F (x) = 1− [1− (m+1)xα]
1

m+1 . (3)

It may be noted that from (2) and (3) the relation between pdf and cdf is given by,

[1− (m+1)xα] f (x) = αxα−1 [1−F (x)] . (4)

For any continuous distribution, we shall denote theith single moment based on GPTIIRCOS in view of Eq. (1) as

µ (Rk+1,Rk+2,...,Rm)
(i)

q:m:n = E
[

X
(Rk+1,Rk+2,...,Rm)
q:m:n

]i

= K(n,m−1)

∫∫

...

∫

0<xk+1<···<xm<∞
xi

q[F (xk+1)]
k f (xk+1) [1−F (xk+1)]

Rk+1×

f (xk+2) [1−F (xk+2)]
Rk+2 . . . f (xm) [1−F (xm)]

Rmdxk+1 . . .dxm,

(5)

and theith and jth product moments as

µ (Rk+1,Rk+2,...,Rm)
(i, j)

q,s:m:n =K(n,m−1)

∫∫

...

∫

0<xk+1<···<xm<∞
xi

qx j
s [F (xk+1)]

k f (xk+1)×

[1−F (xk+1)]
Rk+1 f (xk+2) [1−F (xk+2)]

Rk+2 . . . f (xm) [1−F (xm)]
Rmdxk+1 . . .dxm.

(6)

2 Recurrence Relations of Single and Product Moments

In this section, we introduce the recurrence relations for single and product moments based on GPTIIRCOS.
In the next theorem we introduce the recurrence relation forsingle moments based on GPTIIRCOS.

Theorem 1.For k+2≤ r ≤ m−1, m ≤ n and i ≥ 0,

µ (Rk+1,Rk+2,...,Rm)
(i)

r:m:n − (m+1)µ (Rk+1,...,Rm)
(i+α)

r:m:n = α
(

Rr +1
i+α

)

µ (Rk+1,...,Rm)
(i+α)

r:m:n

− (n−Rk+1−·· ·−Rr−1− r+1)

[

α
(i+α)

µ(Rk+1,Rk+2,...,Rr−2,(Rr−1+Rr+1),Rr+1,...,Rm)
(i+α)

r−1:m−1:n

]

+(n−Rk+1−·· ·−Rr − r)

[

α
(i+α)

µ (Rk+1,Rk+2,...,Rr−1,(Rr+Rr+1+1),Rr+2,...,Rm)
(i+α)

r:m−1:n

]

.

(7)

Proof.From Eq. (4) and Eq. (5), we get

µ (Rk+1,Rk+2,...,Rm)
(i)

r:m:n − (m+1)µ (Rk+1,...,Rm)
(i+α)

r:m:n =

α K(n,m−1)

∫∫

. . .

∫

0<xk+1<···<xr−1<xr+1<···<xm<∞
[F (xk+1)]

kY 1 (xr−1,xr+1) · · ·×

f (xk+1) [1−F (xk+1)]
Rk+1 . . . f (xr−1) [1−F (xr−1)]

Rr−1 f (xr+1) [1−F (xr+1)]
Rr+1 · · ·×

f (xm) [1−F (xm)]
Rmdxk+1dxk+2 . . .dxr−1dxr+1 . . .dxm,

(8)
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where

Y1 (xr−1,xr+1)=

∫ xr+1

xr−1

xi+α−1
r [1−F (xr)]

Rr+1 dxr. (9)

Now, integrating by parts gives

Y1 (xr−1,xr+1)=
xi+α

r+1 [1−F (xr+1)]
Rr+1

− xi+α
r−1[1−F (xr−1)]

Rr+1

i+α
+

(

Rr +1
i+α

)

∫ xr+1

xr−1

xi+α
r f (xr) [1−F (xr)]

Rr dxr (10)

Now substituting for the resultant expression ofY1 (xr−1,xr+1) from Eq. (10) in Eq. (8) and simplifying, yields Eq.
(7).

This completes the proof.

In the next two theorems, we shall introduce recurrence relations for product moments based on GPTIIRCOS.

Theorem 2.For k+1≤ r < s ≤ m−1, m ≤ n and i, j ≥ 0,

µ (Rk+1,...,Rm)
(i, j)

r,s:m:n − (m+1)µ (Rk+1,...,Rm)
(i+α, j)

r,s:m:n = α
(

Rr +1
i+α

)

µ (Rk+1,...,Rm)
(i+α, j)

r,s:m:n

− (n−Rk+1−·· ·−Rr−1− r+1)

[

α
(i+α)

µ(
Rk+1,...,Rr−2,(Rr−1+Rr+1),Rr+1,...,Rm)

(i+α, j)

r−1,s−1:m−1:n

]

+(n−Rk+1−·· ·−Rr − r)

[

α
(i+α)

µ (Rk+1,...,Rr−1,(Rr+Rr+1+1),Rr+2,...,Rm)
(i+α, j)

r,s−1:m−1:n

]

.

(11)

Proof.Similarly as proved in theorem 1.

Theorem 3.For k+1≤ r < s ≤ m−1, m ≤ n and i, j ≥ 0,

µ (Rk+1,...,Rm)
(i, j)

r,s:m:n −(m+1)µ (Rk+1,...,Rm)
(i, j+α)

r,s:m:n = α
(

Rs +1
j+α

)

µ (Rk+1,...,Rm)
(i, j+α)

r,s:m:n

− (n−Rk+1−·· ·−Rs−1− s+1)

[

α
( j+α)

µ(Rk+1,...,Rs−2,(Rs−1+Rs+1),Rs+1,...,Rm)
(i, j+α)

r,s−1:m−1:n

]

+(n−Rk+1−·· ·−Rs− s)

[

α
( j+α)

µ (Rk+1,...,Rs−1,(Rs+Rs+1+1),Rs+2,...,Rm)
(i, j+α)

r,s−1:m−1:n

]

.

(12)

Proof.Similarly as proved in theorem 1.

3 The Characterization

In this section we introduce the characterization of GPFD using the relation between pdf and cdf and using recurrence
relations for single and product moments based on GPTIIRCOS.

In the next theorem we introduce the characterization of theGPFD using relation between pdf and cdf.

Theorem 4.Let X be a continuous random variable with pdf f (•), cdf F (•) and survival function [1−F(•)]. Then X
GPFD iff

[1− (m+1)xα] f (x) = αxα−1 [1−F (x)] . (13)

Proof.Necessity:From Eq. (2) and Eq. (3) we can easily obtain Eq. (13).
Sufficiency:Suppose thatX is a continuous random variable with pdff (•) and cdfF(•). Suppose, also, that Eq. (13)

is true. Then we have:

−d [1−F (x)]
1−F (x)

=
αxα−1

1− (m+1)xα dx.

On integrating, we get
(m+1) ln|1−F (x) |= ln|1− (m+1)xα|+C,

whereC is an arbitrary constant.
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Now, since[1−F (0)] = 1, then puttingx = 0 in this equation, we getC = 0.
Therefore,

F (x) = 1− [1− (m+1)xα ]
1

m+1 .

That is the distribution function of GPFD. This completes the proof.

In the next theorem, we introduce the characterization of the GPFD using recurrence relation for single moments
based on GPTIIRCOS.

Theorem 5.Let X be a continuous random variable with pdf f (•), cdf F (•) and survival function [1−F(•)]. Let Xk+1:n
≤ . . .≤ Xn:n be the order statistics of a random sample of size (n−k). Then X has GPFD iff, for k+2≤ r ≤ m−1, m ≤ n
and i ≥ 0,

µ (Rk+1,Rk+2,...,Rm)
(i)

r:m:n − (m+1)µ (Rk+1,...,Rm)
(i+α)

r:m:n = α
(

Rr +1
i+α

)

µ (Rk+1,...,Rm)
(i+α)

r:m:n

− (n−Rk+1−·· ·−Rr−1− r+1)

[

α
(i+α)

µ(
Rk+1,Rk+2,...,Rr−2,(Rr−1+Rr+1),Rr+1,...,Rm)

(i+α)

r−1:m−1:n

]

+(n−Rk+1−·· ·−Rr − r)

[

α
(i+α)

µ (Rk+1,Rk+2,...,Rr−1,(Rr+Rr+1+1),Rr+2,...,Rm)
(i+α)

r:m−1:n

]

.

(14)

Proof.Necessity:Theorem 1 proved the necessary part of this theorem.
Sufficiency:Suppose thatX is a continuous random variable with pdff (•) and cdfF(•). Assuming that equation (14)

holds and from Eq. (5), we get then we have:

µ (Rk+1,...,Rm)
(i+α)

r:m:n =K(n,m−1)

∫∫

...

∫

0<xk+1<···<xr−1<xr+1<···<xm<∞
[F (xk+1)]

kY 2 (xr−1,xr+1)×

f (xk+1) [1−F (xk+1)]
Rk+1 . . . f (xr−1) [1−F (xr−1)]

Rr−1 f (xr+1) [1−F (xr+1)]
Rr+1 · · ·×

f (xm) [1−F (xm)]
Rmdxk+1 . . .dxr−1dxr+1 . . .dxm,

(15)

where

Y2 (xr−1,xr+1) =

∫ xr+1

xr−1

xi+α
r f (xr) [1−F (xr)]

Rr dxr. (16)

Using, integrating by parts ofY2 (xr−1,xr+1) and by substituting in Eq. (15), we get

µ (Rk+1,Rk+2,...,Rm)
(i)

r:m:n − (m+1)µ (Rk+1,...,Rm)
(i+α)

r:m:n = αK(n,m−1)

∫∫

...

∫

0<xk+1<···<xm<∞
xi

r

(

xα−1
r

)

[F (xk+1)]
k [1−F (xr)]

Rr+1
f (xk+1) [1−F (xk+1)]

Rk+1 . . . f (xr−1)×

[1−F (xr−1)]
Rr−1 f (xr+1) [1−F (xr+1)]

Rr+1 . . . f (xm) [1−F (xm)]
Rmdxk+1 . . .dxm.

(17)

We get

K(n,m−1)

∫∫

...

∫

0<xk+1<···<xm<∞
xi

r [1−F (xr)]
Rr
[F (xk+1)]

k
f (xk+1) [1−F (xk+1)]

Rk+1 · · ·×

f (xr−1) [1−F (xr−1)]
Rr−1 f (xr+1) [1−F (xr+1)]

Rr+1 . . . f (xm) [1−F (xm)]
Rm×

[

[1− (m+1)xα
r ] f (xr)−αxα−1

r [1−F (xr)]
]

dxk+1 . . .dxm = 0.

Using Muntz-Szasz theorem, [See, Hwang and Lin [6]], we get

[1− (m+1)xα
r ] f (xr) = αxα−1

r [1−F (xr)] .

Using Theorem 4, we get the distribution function

F (x) = 1− [1− (m+1)xα ]
1

m+1 .

This completes the proof.
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In the next two theorems, we introduce the characterizationof the GPFD using recurrence relation for product
moments based on GPTIIRCOS.

Theorem 6.Let X be a continuous random variable with pdf f (•), cdf F (•) and survival function [1−F(•)]. Let Xk+1:n
≤ . . . ≤ Xn:n be the order statistics of a random sample of size (n− k). Then X has GPFD iff, for k+1≤ r < s ≤ m−1,
m ≤ n and i, j ≥ 0,

µ (Rk+1,...,Rm)
(i, j)

r,s:m:n −(m+1)µ (Rk+1,...,Rm)
(i+α, j)

r,s:m:n = α
(

Rr +1
i+α

)

µ (Rk+1,...,Rm)
(i+α, j)

r,s:m:n

− (n−Rk+1−·· ·−Rr−1− r+1)

[

α
(i+α)

µ(
Rk+1,...,Rr−2,(Rr−1+Rr+1),Rr+1,...,Rm)

(i+α, j)

r−1,s−1:m−1:n

]

+(n−Rk+1−·· ·−Rr − r)

[

α
(i+α)

µ (Rk+1,...,Rr−1,(Rr+Rr+1+1),Rr+2,...,Rm)
(i+α, j)

r,s−1:m−1:n

]

.

(18)

Proof.Similarly as proved in theorem 5.

Theorem 7.Let X be a continuous random variable with pdf f (•), cdf F (•) and survival function [1−F(•)]. Let Xk+1:n
≤ . . . ≤ Xn:n be the order statistics of a random sample of size (n− k). Then X has GPFD iff, for k+1≤ r < s ≤ m−1,
m ≤ n and i, j ≥ 0,

µ (Rk+1,...,Rm)
(i, j)

r,s:m:n −(m+1)µ (Rk+1,...,Rm)
(i, j+α)

r,s:m:n = α
(

Rs +1
j+α

)

µ (Rk+1,...,Rm)
(i, j+α)

r,s:m:n

− (n−Rk+1−·· ·−Rs−1− s+1)

[

α
( j+α)

µ(
Rk+1,...,Rs−2,(Rs−1+Rs+1),Rs+1,...,Rm)

(i, j+α)

r,s−1:m−1:n

]

+(n−Rk+1−·· ·−Rs− s)

[

α
( j+α)

µ (Rk+1,...,Rs−1,(Rs+Rs+1+1),Rs+2,...,Rm)
(i,α+ j)

r,s−1:m−1:n

]

.

(19)

Proof.Similarly as proved in theorem 5.

4 Conclusions

Above investigations demonstrated that using the above relations, we can obtain all the single and product moments of all
GPTIIRCOS for all sample sizes and all censoring schemes in asimple recursive way. Since recurrence relations reduce
the amount of direct computation and hence the time, cost andlabour. Therefore the relations under consideration may be
useful in computing the moments of any order of GPTIIRCOS from GPFD.
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