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Abstract: In the present paper, the authors have derived the alternative definition of q-analogue of Aleph-Function, introduced by
Dutta et. al.[13], by using q-Gamma function, which is an q-extension of the generalized H-function and I-function earlier defined by
Saxena [4] and some transformation formulae are also derived. The basic analogue for this function provides elegant generalizations of
the various results given by Saxena in connection with q- calculus. Some special cases have also been discussed.
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1 Introduction

The q-calculus is the extension of the ordinary calculus. The subject deals with the investigations of q-integrals and
q-derivatives of arbitrary order, and has gained importance due to its various applications in the areas like ordinary
calculus, solution of the q-differential and q-integral equations, q-transform analysis [3,16,17,18]. Motivated by these
avenues of applications, a number of workers have made use ofthese operators to evaluate q-calculus, basic analogue of
H-function, basic analogue of I-function, general class ofq-polynomials etc. Here in the present paper we too make use
of these operators on new basic hypergeometric function (Aleph-Function) which is an q-extension of the generalized
H-function and I-function earlier defined by Saxena [2,4].
We present some usual notions and notations used in the q-calculus see [8]. Throughout this paper, we assume q to be a
fixed number satisfying 0< q < 1. The q-calculus begins with the definition of the q-analoguedq f (x) of the differential
of functions,

dq f (x) = f (qx)− f (x).

Having said this, we immediately get the q-analogue of the derivative of f (x), called its q-derivative and is given by [15]
as:

(Dq f )(x) =
(dq f (x))
(dqx)

=
f (x)− f (qx)
(1− q)x

, i f x 6= 0, (1)

(Dq f )(0) = f
′
(0), providedf

′
(0) exists. If f is differentiable, then(Dq f )(x) tends tof

′
(0) asq tends to 1.

We have

Dn
x,qxµ =

Γq(µ +1)
Γq(µ − n+1)

xµ−n
,Re(µ)+1> 0. (2)
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Theq-analogue ofx and∞ is defined by

[x] =
1− qx

1− q
,and[∞] =

1
1− q

. (3)

Sdland et. al. [14] studied the generalized fractional drift-less Fokker-Planck equation with power law coefficient. As a
result, a special function was found, which is a particular case of the Aleph-function. The Aleph function is defined by
means of Mellin-Barnes type integral (Mathai and Saxena, 1978) in the following manner [1,9]:

ℵ(z) = ℵm,n
pi,qi,τi;r

[(

z

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

=
1

2πω

∫

L

Ω m,n
pi,qi,τi;r(s)z

−sds (4)

wherez 6= 0,ω =
√
−1 and

Ω m,n
pi,qi,τi;r(s) =

m
∏
j=1

Γ (b j +B js)
n
∏
j=1

Γ (1− a j −A js)

∑r
i=1 τi[

qi

∏
j=m+1

Γ (1− b ji−B jis)
pi

∏
j=n+1

Γ (a ji +A jis)]

The integration pathL = Lωγ∞,γ ∈ R, extends fromγ −ω∞ to γ +ω∞ , and is such that the poles, assumed to be simple, of
Γ (1−a j−A js), j = 1,...,n do not coincide with the poles ofΓ (b j +B js), j= 1,...,m. The parameterspi, qi are non-negative
integers satisfying 0≤ n ≤ pi, 1≤ m ≤ qi, τi > 0 for i =1,2,3,...,r. The parametersA j, B j , A ji, B ji > 0 anda j, b j, a ji,
b ji ∈C. The empty product is interpreted as unity. The existence conditions for the defining integral (4) are given below:

ϕl > 0, |arg(z)|< π
2

ϕl andR(ζl)+1< 0, l = 1,2,3, ...,r

where

ϕl =
m

∑
j=1

b j −
n

∑
j=1

a j + τi(
qi

∑
j=m+1

b ji −
pi

∑
j=n+1

a ji)

ζl =
n

∑
j=1

A j +
m

∑
j=1

B j − τi(
pi

∑
j=n+1

A ji +
qi

∑
j=m+1

B ji)+
1
2
(pi − qi), l = 1,2,3, ...,r.

Saxena et. al.[12] introduced the following basic analogue of I-Function in terms of the Mellin-Barnes type basic contour
integral as:

I(z) = Im,n
Ai,Bi;r

[(

z;q

∣

∣

∣

∣

(a j,α j)1,n;(a ji,α ji)n+1,Ai

(b j,β j)1,m;(b ji,β ji)m+1,qi

)]

= 1
2πω

∫

L

m
∏
j=1

G(q(b j−β j s)
)

n
∏
j=1

G(q(1−a j+α j s)
)

∑r
i=1[

Bi
∏

j=m+1
G(q(1−b ji+β ji s)

)
Ai
∏

j=n+1
G(q(a ji−α ji s)

)G(qs)G(q1−s)sinπs]

πzsds

(5)

whereα j ,β j,α ji,β ji are real and positive,a j,b j,a ji,b ji are complex numbers and

G(qα) =
∞

∏
n=0

(1− qα+n)−1 =
1

(qα ;q)∞

wherez 6= 0,0< |q|< 1andω =
√
−1

where L is contour of integration running from−ω∞ toω∞ in such a manner so that all poles ofG(q(b j−β js));1≤ j ≤ m
are to right of the path and those ofG(q(1−a j+α js));1 ≤ j ≤ n,are to left. The integral converges if
Re[slog(x)− logsinπs]< 0, for large values of|s| on the contour L. Settingr = 1,Ai = A,Bi = B, in equation (5) we get
q-analogue of H-Function defined by Saxena et.al.[12] as follows:

Hm,n
A,B

[(

z;q

∣

∣

∣

∣

(a j,α j)1,A
(b j,β j)1,m

)]

=
1

2πω

∫

L

m
∏
j=1

G(q(b j−β js))
n
∏
j=1

G(q(1−a j+α js))

B
∏

j=m+1
G(q(1−b j+β js))

A
∏

j=n+1
G(q(a j−α js))G(qs)G(q1−s)sinπs

πzsds (6)
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Further if we putα j = β j = 1, equation (6) reduces to the basic analogue of Meijer’s G-Function given by Saxena et.
al.[12].

Gm,n
A,B

[(

z;q

∣

∣

∣

∣

(a1,a2, ...,aA)
(b1,b2, ...,bB)

)]

=
1

2πω

∫

L

m
∏
j=1

G(q(b j−s))
n
∏
j=1

G(q(1−a j+s))

B
∏

j=m+1
G(q(1−b j+s))

A
∏

j=n+1
G(q(a j−s))G(qs)G(q1−s)sinπs

πzsds (7)

Dutta et. al.[13] defined the q-analogue of Aleph-Function in term of Mellin-Barnes type contour integral in the following
manner:

ℵm,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

=
1

2πω

∫

L

m
∏
j=1

G(q(b j−B js))
n
∏
j=1

G(q(1−a j−A js))

∑r
i=1 τi[

qi

∏
j=m+1

G(q(1−b ji+B jis))
pi

∏
j=n+1

G(q(a ji−A jis))G(qs)G(q1−s)sinπs]
πzsds (8)

wherez 6= 0,0< |q|< 1andω =
√
−1

The parameterspi,qi are non-negative integers satisfying the inequality 0≤ n ≤ pi,0≤ m ≤ qi andτi > 0;i = 1,2,3, ,r
is finite andA j,B j,A ji,B ji are positive real numbers anda j,b j,a ji,b ji are complex numbers. TheC =Cωγ∞ is a suitable
contour of Mellin-Barnes type in the complex s-plane, whichruns fromγ −ω∞ to γ +ω∞ with γ ∈C, in such a manner
so that all poles ofG(q(b j−B js));1 ≤ j ≤ m, separating from those ofG(q(1−a j+A js)); 1 ≤ j ≤ n. All the poles of the
integrand (8) are assumed to be simple and empty products areinterpreted as unity. The integral converges ifRe[slog(z)−
logsinπs]< 0, for large values of|s| on the contour L, that is if|(arg(z)−w2w−1

1 log|z|)|< π , where 0< |q|< 1, logq =
−w =−(w1+ iw2),w,w1,w2 are definite quantities,w1,w2 being real. If we takeτi = 1 in (8), then (5) is recovered and if
we set r=1 in (5), then we get (6). If we setAi = B j = 1 for all i and j in (6), then it reduces to (7).
If we setn = 0,m = B in (7), then it reduces to the basic analogue of MacRobert’s E-function given below:

GB,0
A,B

[(

z;q

∣

∣

∣

∣

(a1,a2, ...,aA)
(b1,b2, ...,bB)

)]

= Eq[B;b j : A;a j : z]

2 Main Results

In this section, the authors have defined the alternative definition of q-analogue of Aleph-Function by using q-Gamma
function and have derived some of its transformation formulae in connection with q-calculus.

2.1. q-analogue of Aleph function:

We shall make use ofℵ(z;q) notation for q-analogue of Aleph-Function and the same is defined as:
Theorem 1: Let the parameterspi,qi are non-negative integers satisfying the inequality 0≤ n ≤ pi,0 ≤ m ≤ qiandτi >

0;i = 1,2,3, ,r is finite andA j,B j,A ji,B ji are positive real numbers anda j,b j,a ji,b ji are complex numbers, then

[(1− q)∑n
t=1at−∑m

t=1bt+m+n−1+∑r
i=1τi[∑

pi
t=n+1ati−∑

qi
t=m+1 bti−Ai]G(q)∑r

i=1 pi+qi−2(m+n−1)]×

ℵm,n
pi,qi,τi;r

[(

z(1− q)∑m
t=1Bt−∑n

t=1At+∑r
i=1 τi[∑

qi
t=m+1Bti−∑

pi
t=n+1Ati];q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi(1,1)

)]

= ℵm,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

(9)
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wherez 6= 0,0< |q|< 1andω =
√
−1

Proof: To prove (9) we consider the expression

ℵm,n
pi,qi,τi;r

[(

z(1− q)∑m
t=1Bt−∑n

t=1At+∑r
i=1 τi[∑

qi
t=m+1Bti−∑

pi
t=n+1Ati];q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi(1,1)

)]

=
1

2πω

∫

L

m
∏
j=1

G(q(b j−B js))
n
∏
j=1

G(q(1−a j−A js))πzs(1− q)s[∑m
t=1 Bt−∑n

t=1At+∑r
i=1τi[∑

qi
t=m+1Bti−∑

pi
t=n+1Ati]]

∑r
i=1τi[

qi

∏
j=m+1

G(q(1−b ji+B jis))
pi

∏
j=n+1

G(q(a ji−A jis))G(qs)G(q1−s)sinπs]
ds (10)

On multiplying (10) by

[(1− q)∑n
t=1 at−∑m

t=1 bt+m+n−1+∑r
i=1 τi[∑

pi
t=n+1ati−∑

qi
t=m+1bti−Ai]G(q)∑r

i=1 pi+qi−2(m+n−1)]

And making use of the identity given by Askey [5]

Γq(x) =
G(qx)

(1− q)x−1G(q)
; |q|< 1,

we get (9) as follows:

=
1

2πω

∫

L

m
∏
j=1

Γq(b j −B js)
n
∏
j=1

Γq(1− a j −A js)πzs

∑r
i=1 τi[

qi

∏
j=m+1

Γq(1− b ji+B jis)
pi

∏
j=n+1

Γq(a ji −A jis)Γq(s)Γq(1− s)sinπs]
ds

= ℵm,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

where L is contour of integration running from−ω∞ to +ω∞ in such a manner so that all poles
ofΓq(b j + B js);1 ≤ j ≤ m are to right of the path and those ofΓq(1− a j − A js);1 ≤ j ≤ n,are to left. The integral
converges ifRe[slog(z)− logsinπs]< 0, for large values of|s| on the contour L, that is if|(arg(z)−w2w−1

1 log|z|)| < π ,
where 0< |q|< 1, logq =−w =−(w1+ iw2),w,w1,w2 are definite quantities,w1,w2being real.

Remark: By settingτi = 1 in (9), we get well known result for basic analogue of I-function as reported in [4] which
is as follows:

Im,n
pi,qi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n;(a ji,A ji)n+1,Ai

(b j,B j)1,m;(b ji,B ji)m+1,qi

)]

= 1
2πω

∫

L

m
∏
j=1

Γq(b j−B js)
n
∏
j=1

Γq(1−a j+A js)

∑r
i=1[

qi
∏

j=m+1
Γq(1−b ji+B jis)

pi
∏

j=n+1
Γq(a ji−A jis)Γq(s)Γq(1−s)sinπs]

πzsds

(11)

The existence conditions for the integral in (11) are the same as for q-analogue of Aleph-function withτi = 1, i = 1,2, ,r.
Moreover taking r=1 in (11) we get well known result as in [4] as:

Hm,n
P,Q

[(

z;q

∣

∣

∣

∣

(a j,A j)1,P
(b j,B j)1,Q

)]

=
1

2πω

∫

L

m
∏
j=1

Γq(b j −B js)
n
∏
j=1

Γq(1− a j +A js)

Q
∏

j=m+1
Γq(1− b j +B js)

P
∏

j=n+1
Γq(a j −A js)Γq(s)Γq(1− s)sinπs]

πzsds (12)

The existence conditions for the integral in (12) are the same as for q-analogue of I-Function with r = 1.
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2.2. Some transformation formulae of ℵ(z;q) Function

(I) Let the parameterspi,qi are non-negative integers satisfying the inequality 0≤ n ≤ pi,0≤ m ≤ qiandτi > 0;i =
1,2,3, ,r is finite andA j,B j,A ji,B ji are positive real numbers anda j,b j,a ji,b ji are complex numbers, then

ℵ(z;q) = ℵm,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a,0)(a j,A j)2,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

= Γq(1− a)ℵm,n−1
pi−1,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)2,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

(13)

wherez 6= 0,0< |q|< 1andω =
√
−1.

Proof: By definition ofℵ(z;q)-function, we get L.H.S.

=
1

2πω

∫

L

m
∏
j=1

Γq(b j +B js)Γq(1− a−0.s)
n
∏
j=2

Γq(1− a j −A js)πz−s

∑r
i=1 τi[

qi

∏
j=m+1

Γq(1− b ji−B jis)
pi

∏
j=n+1

Γq(a ji +A jis)Γq(s)Γq(1− s)sinπs]
ds

= Γq(1− a)× 1
2πω

∫

L

m
∏
j=1

Γq(b j −B js)
n
∏
j=2

Γq(1− a j +A js)πzs

∑r
i=1 τi[

qi

∏
j=m+1

Γq(1− b ji+B jis)
pi

∏
j=n+1

Γq(a ji −A jis)Γq(s)Γq(1− s)sinπs]
ds

= Γq(1− a)ℵm,n−1
pi−1,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)2,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

= R.H.S. This proves the theorem.
In the same manner we can prove the following results.
(II)

ℵ(z;q) = ℵm,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi−1(a,0)
(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

=
1

Γq(a)
ℵm,n

pi−1,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)2,n . . . [τi(a ji,A ji)]n+1,pi−1
(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

(14)

(III)

ℵ(z;q) = ℵm,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b,0)(b j,B j)2,m . . . [τi(b ji,B ji)]m+1,qi

)]

= Γq(b)ℵm−1,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)2,m . . . [τi(b ji,B ji)]m+1,qi

)]

(15)

(IV)

ℵ(z;q) = ℵm,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b,0)(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi−1(b,0)

)]

=
1

Γq(1− b)
ℵm,n

pi,qi−1,τi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi−1

)]

(16)

Special Cases:
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(i) By settingτi= 1 in (13), we get well known result for basic analogue of I-function as reported in [3,4] which is as
follows:

Im,n
pi,qi;r

[(

z;q

∣

∣

∣

∣

(a,0)(a j,A j)2,n;(a ji,A ji)n+1,pi

(b j,B j)1,m;(b ji,B ji)m+1,qi

)]

= Γq(1− a)Im,n−1
pi−1,qi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)2,n;(a ji,A ji)n+1,pi

(b j,B j)1,m;(b ji,B ji)m+1,qi

)]

(17)

Moreover taking r = 1 in (17) we get well known result as in [4]as:

Hm,n
P,Q

[(

z;q

∣

∣

∣

∣

(a,0)(a j,A j)2,P
(b j,B j)1,Q

)]

= Γq(1− a)Hm,n−1
P−1,Q

[(

z;q

∣

∣

∣

∣

(a j,A j)2,P−1
(b j,B j)1,Q

)]

(18)

(ii) Taking τi= 1 in (14), we get well known formula for basic analogue of I-function as reported in [3,4] as:

Im,n
pi,qi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n;(a ji,A ji)n+1,pi−1(a,0)
(b j,B j)1,m;(b ji,B ji)m+1,qi

)]

=
1

Γq(a)
Im,n

pi−1,qi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n;(a ji,A ji)n+1,pi−1
(b j,B j)1,m;(b ji,B ji)m+1,qi

)]

(19)

Again, taking r = 1 in (19) we get well known formula of Fox’s basic analogue of H-function as:

Hm,n
P,Q

[(

z;q

∣

∣

∣

∣

(a j,A j)1,P−1(a,0)
(b j,B j)1,Q

)]

=
1

Γq(a)
Hm,n

P−1,Q

[(

z;q

∣

∣

∣

∣

(a j,A j)1,P−1
(b j,B j)1,Q

)]

(20)

(iii) Taking τi= 1 in (15), we get well known formula for basic analogue of I-function as reported in [3,4] as:

Im,n
pi,qi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n;(a ji,A ji)n+1,pi

(b,0)(b j,B j)2,m;(b ji,B ji)m+1,qi

)]

= Γq(b)I
m−1,n
pi,qi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n;(a ji,A ji)n+1,pi−1
(b j,B j)2,m;(b ji,B ji)m+1,qi

)]

(21)

Again, taking r = 1 in (21) we get well known formula of Fox’s basic analogue of H-function as:

Hm,n
P,Q

[(

z;q

∣

∣

∣

∣

(a j,A j)1,P
(b,0)(b j,B j)2,Q

)]

= Γq(b)H
m,n
P,Q−1

[(

z;q

∣

∣

∣

∣

(a j,A j)1,P
(b j,B j)2,Q

)]

(22)

(iv) Taking τi= 1 in (16), we get well known formula for basic analogue of I-function as reported in [3,4] as:

Im,n
pi,qi;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n;(a ji,A ji)n+1,pi

(b j,B j)1,m;(b ji,B ji)m+1,qi−1(b,0)

)]

=
1

Γq(1− b)
Im,n

pi,qi−1;r

[(

z;q

∣

∣

∣

∣

(a j,A j)1,n;(a ji,A ji)n+1,pi

(b j,B j)1,m;(b ji,B ji)m+1,qi−1

)]

(23)

Again, taking r = 1 in (23) we get well known formula of Fox’s basic analogue of H-function as:

Hm,n
P,Q

[(

z;q

∣

∣

∣

∣

(a j,A j)1,P
(b j,B j)1,Q−1(b,0)

)]

=
1

Γq(1− b)
Hm,n

P,Q−1

[(

z;q

∣

∣

∣

∣

(a j,A j)1,P
(b j,B j)1,Q−1

)]

(24)

(2.3) In this section, we will evaluate the q-derivative operatorinvolving q-analogue of Aleph-Function.

Theorem 2: Let the parameterspi,qi are non-negative integers satisfying the inequality 0≤ n ≤ pi,0 ≤ m ≤ qi and
τi > 0;i = 1,2,3, ,r is finite andA j,B j,A ji,B ji are positive real numbers anda j,b j,a ji,b ji are complex numbers, then

zDz,q[z
1−a1ℵm,n

pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,1)1,n . . . [τi(a ji,1)]n+1,pi

(b j,1)1,m . . . [τi(b ji,1)]m+1,qi

)]

]

= z1−a1ℵm,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a1−1,1)(a j,1)2,n . . . [τi(a ji,1)]n+1,pi

(b j,1)1,m . . . [τi(b ji,1)]m+1,qi

)]

(25)

wherez 6= 0,0< |q|< 1andω =
√
−1.
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Proof: To prove theorem (25) whena1 ≥ 0, we apply equation (2)

L.H.S.= zDz,q[z
1−a1

1
2πω

∫

L

m
∏
j=1

Γq(b j − s)
n
∏
j=1

Γq(1− a j + s)πzs

∑r
i=1 τi[

qi

∏
j=m+1

Γq(1− b ji+ s)
pi

∏
j=n+1

Γq(a ji − s)Γq(s)Γq(1− s)sinπs]
ds]

= z
1

2πω

∫

L

m
∏
j=1

Γq(b j − s)
n
∏
j=1

Γq(1− a j + s)πDz,q[z1−a1+s]

∑r
i=1 τi[

qi

∏
j=m+1

Γq(1− b ji+ s)
pi

∏
j=n+1

Γq(a ji − s)Γq(s)Γq(1− s)sinπs]
ds

=
1

2πω

∫

L

m
∏
j=1

Γq(b j − s)
n
∏
j=1

Γq(1− a j + s)π [1− a1+ s]q[z1−a1+s]

∑r
i=1 τi[

qi

∏
j=m+1

Γq(1− b ji+ s)
pi

∏
j=n+1

Γq(a ji − s)Γq(s)Γq(1− s)sinπs]
ds

Since,

Γq(1+ a) =
1− qa

1− q
Γq(a) = [a]qΓq(a)

[a]qΓq(a) = Γq(1+ a)

Therefore[1− a1+ s]qΓq(1− a1+ s) = Γq(1− (a1−1)+ s)
Thus

L.H.S.=
1

2πω

∫

L

m
∏
j=1

Γq(b j − s)Γq(1− (a1−1)+ s)
n
∏
j=2

Γq(1− a j + s)πzsz1−a1

∑r
i=1 τi[

qi

∏
j=m+1

Γq(1− b ji+ s)
pi

∏
j=n+1

Γq(a ji − s)Γq(s)Γq(1− s)sinπs]
ds

Which implies,

zDz,q[z1−a1ℵm,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a j,1)1,n . . . [τi(a ji,1)]n+1,pi

(b j,1)1,m . . . [τi(b ji,1)]m+1,qi

)]

] = z1−a1ℵm,n
pi,qi,τi;r

[(

z;q

∣

∣

∣

∣

(a1−1,1)(a j,1)2,n . . . [τi(a ji,1)]n+1,pi

(b j,1)1,m . . . [τi(b ji,1)]m+1,qi

)]

Hence the result.
Theorem 3: Let the parameterspi,qi are non-negative integers satisfying the inequality 0≤ n ≤ pi,0 ≤ m ≤ qi and
τi > 0;i = 1,2,3, ,r is finite andA j,B j,A ji,B ji are positive real numbers anda j,b j,a ji,b ji are complex numbers, then

Dµ
z,q[ℵ

m,n
pi,qi,τi;r

[(

zλ ;q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

]

= z−µℵm,n+1
pi,qi+1,τi;r

[(

zλ ;q

∣

∣

∣

∣

(0,λ )(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi(µ ,λ )

)]

(26)

wherez 6= 0,0< |q|< 1andω =
√
−1.

Proof: To prove theorem (26) whenλ ≥ 0, we apply equation (2)

Dµ
z,q[ℵ

m,n
pi,qi,τi;r

[(

zλ ;q

∣

∣

∣

∣

(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi

)]

]
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=
1

2πω

∫

L

m
∏
j=1

Γq(b j −B js)
n
∏
j=1

Γq(1− a j +A js)πDµ
z,q[zλ s]

∑r
i=1 τi[

qi

∏
j=m+1

Γq(1− b ji+B jis)
pi

∏
j=n+1

Γq(a ji −A jis)Γq(s)Γq(1− s)sinπs]
ds

=
1

2πω

∫

L

m
∏
j=1

Γq(b j −B js)
n
∏
j=1

Γq(1− a j +A js)πΓq(λ s+1)[zλ s−µ]

∑r
i=1 τi[

qi

∏
j=m+1

Γq(1− b ji+B jis)
pi

∏
j=n+1

Γq(a ji −A jis)Γq(λ s− µ +1)Γq(s)Γq(1− s)sinπs]
ds

=
z−µ

2πω

∫

L

m
∏
j=1

Γq(b j −B js)
n
∏
j=1

Γq(1− a j +A js)Γq(1−0+λ s)π [zλ s]

∑r
i=1 τi[

qi

∏
j=m+1

Γq(1− b ji+B jis)Γq(1− µ +λ s)
pi

∏
j=n+1

Γq(a ji −A jis)Γq(s)Γq(1− s)sinπs]
ds

= z−µℵm,n+1
pi,qi+1,τi;r

[(

zλ ;q

∣

∣

∣

∣

(0,λ )(a j,A j)1,n . . . [τi(a ji,A ji)]n+1,pi

(b j,B j)1,m . . . [τi(b ji,B ji)]m+1,qi(µ ,λ )

)]

(27)

Hence the result.

Conclusion

The results proved in this paper give some contributions to the theory of the basic hypergeometric functions and are
believed to be a new to the theory of q- calculus and are likelyto find certain applications to the solution of the q-integral
equations involving various q-hypergeometric functions.
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