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Abstract: In the present paper, the authors have derived the alteendéifinition of g-analogue of Aleph-Function, introduced b
Dutta et. al.L3], by using g-Gamma function, which is an g-extension of theegalized H-function and I-function earlier defined by
Saxena4] and some transformation formulae are also derived. Thie baslogue for this function provides elegant generatratof
the various results given by Saxena in connection with ggutas. Some special cases have also been discussed.
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1 Introduction

The g-calculus is the extension of the ordinary calculue $hbject deals with the investigations of g-integrals and
g-derivatives of arbitrary order, and has gained impomatige to its various applications in the areas like ordinary
calculus, solution of the g-differential and g-integraliations, g-transform analysi8,[L6,17,18]. Motivated by these
avenues of applications, a number of workers have made ubesd operators to evaluate g-calculus, basic analogue of
H-function, basic analogue of I-function, general clasg-@olynomials etc. Here in the present paper we too make use
of these operators on new basic hypergeometric functioapgiFunction) which is an g-extension of the generalized
H-function and I-function earlier defined by Saxe@g].

We present some usual notions and notations used in theeghesisee §]. Throughout this paper, we assume g to be a
fixed number satisfying & q < 1. The g-calculus begins with the definition of the g-anatdyf (x) of the differential

of functions,

dqf(x) = (qx) — F(X).

Having said this, we immediately get the g-analogue of thevdgve of f(x), called its g-derivative and is given by4
as:

_ (dgf)) _ F0) —flax) .
(Dgf)(x) = (qdqx) =~ ox JifX#£0, (1)

(Dgf)(0) = f'(0), providedf’(0) exists. If f is differentiable, theDqf)(x) tends tof'(0) asq tends to 1.
We have

lq(u+1)

= - H—n
l'q(u—n+1)x ,Re(p)+1>0. 2

Dqu“
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Theg-analogue ok and is defined by
1-q’ 1-q

Sdland et. al. 14] studied the generalized fractional drift-less Fokkeaiek equation with power law coefficient. As a
result, a special function was found, which is a particusecof the Aleph-function. The Aleph function is defined by
means of Mellin-Barnes type integral (Mathai and Saxen@8}1#h the following mannerl] 9

(x| = (3)

_ mn (@, Awn - [T(@jiAj)]ntap V| _
0(2) = Opig.nr {( (bjj’ J) . [Ti(bjji,B;i)] +11:>} an/ pi, q| nir(8)Z °ds (4)
wherez+# 0,w = +/—1 and
M7 (b, +Bs) [1 7 (1—a,—As)
J=1 J=1

Qg::gﬂi?f(s) = G Di
Yie1Gl [1 F(1=bji—Bjis) [T T (aji+Ajs)]
j=m+1 j=n+1
The integration path = L,ye,y € R, extends frony — weo to y+ weo , and is such that the poles, assumed to be simple, of
I(1-aj—A;s),j=1,...,ndo notcoincide with the polesb{b; + Bjs), j=1,...,m. The parameteps, g; are non-negative

integers satisfying & n < p;, 1 <m< ¢, 1y > 0 fori =1,2,3,...,r. The parametefg, B; , Aj;, Bji > 0 anda;, bj, ajj,
bji € C. The empty product is interpreted as unity. The existenoelitions for the defining integral (4) are given below:

¢ > 0,|arg(2)] < ’—2T¢| andR({)+1<0,1 =1,2,3,...r

where
m n di Pi
=ybi—>a+u( Y bi— 3 aj)
=1 =1 j=m+1 j=n+1
n m pi i 1
4= Z Aj+ Z Bj —Ti(__z Aji + ._Z Bji) +5(p—a).l=123...r.
=1 =1 j=n+1 j=m+1

Saxena et. allfZ] introduced the following basic analogue of I-Functionénms of the Mellin-Barnes type basic contour
integral as:

(@j,aj)1n (@i, Aji )n+ 1A
(bj, Bj)1m: (Bji, Bji)m+ 1.g

=Ly _— n2ds
it n G< LRy 7 G(q@i%iY)6(08)G(glS)sinms)

j=n+1

)} H 6(a® A1) 1 G *tad)

1(2) = Izlgi;r [(Z;q
()

whereaj, B;, aji, Bji are real and positive,;, bj, a;i, bj; are complex numbers and

8
[iny

oy _ _qa+tm-1_

wherez# 0,0 < |q| < landw = +/—1

where L is contour of integration running fromweo toweo in such a manner so that all poles®@fq®i —5i S>); 1<j<m
are to right of the path and those oB(ql~2t%9);1 < j < nare to left. The integral converges if
Re[dog(x) — logsinm) < O, for large values ofs| on the contour L. Setting= 1,A; = A, B; = B, in equation (5) we get
g-analogue of H-Function defined by Saxena ef.d].4s follows:

11,60 #%) [ 6(a )

Hoo Kz;q (ay,0) 1A>} = mcds  (6)
AB (b, Bj)1m 27‘[00/ qL-bi+Bi9) |é| G(q@~99)G(g)G(qL—S)sinTTs
j=n+1
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Further if we puta; = B; = 1, equation (6) reduces to the basic analogue of Meijer'suGefion given by Saxena et.

al.[12.
e

Dutta et. al.L3] defined the g-analogue of Aleph-Function in term of MelBarnes type contour integral in the following
manner:
gmn qu @, Aj)n - [Ti(ajiﬂAji)]n+l,pi)]
Pt (bj, Bj)rm - [1i(0i, Bji)]mi 1
M1 G(a®~%%) ] G(qt--A1)
j=1 j=1

Pi
L YTl G(qtPitBi%) [ G(qi~Ai¥)G(g%)G(qt®)sinrs|
:m+1 j=n+1

G(a®19) ] G(g+-a+9)
(a1,ay, ..., =1 j=1

by, b EA)H 5 /

5 g ey B i

(by, by B) 27'[00L M G(qL-bi+9) G(q®~9)G(0F)G(ql-5)sinms
j=m+1

j=n+1

113

?ds (7

wherez# 0,0 < |g| < landw= /-1

The parameterp;,q; are non-negative integers satisfying the inequality 0< p;,0 < m< g andr, > 0;i=1,2,3,,r

is finite andAj, Bj, Aji, Bjj are positive real numbers aagl b, a;i, bjj are complex numbers. Tlg= C,,« is a suitable
contour of Mellin-Barnes type in the complex s-plane, whighs fromy — we to y+ we with y € C, in such a manner
so that all poles of5(q®i~Bi®);1 < j < m, separating from those @B(q1~2+Ai%); 1 < j < n. All the poles of the
integrand (8) are assumed to be simple and empty produdtstarpreted as unity. The integral convergeRefsl og(z) —
logsinrts| < O, for large values ofs| on the contour L, that is if(arg(z) — wow; Hog|z|)| < 11, where 0< |q| < 1,l0gq =
—w=—(wy +iwp),w,wy, W, are definite quantitiesy;, w, being real. If we taka; = 1 in (8), then (5) is recovered and if
we set r=11in (5), then we get (6). If we s§t=B; = 1 for all i and j in (6), then it reduces to (7).

If we setn =0,m= B in (7), then it reduces to the basic analogue of MacRobeffisrEtion given below:

a’a’ v . C A .
G qu Ebiabz, 2@3)] =Eqy[B;bj 1 Ajaj : 7

2 Main Results

In this section, the authors have defined the alternativaitiefi of g-analogue of Aleph-Function by using g-Gamma
function and have derived some of its transformation foamuh connection with g-calculus.

2.1. g-analogue of Aleph function:

We shall make use df (z q) notation for g-analogue of Aleph-Function and the samefisiee as:
Theorem 1: Let the parameterp;, i are non-negative integers satisfying the inequality 8 < p;,0 < m < giandt; >
0;i=1,2,3,,r is finite andAj, Bj, Aji, Bji are positive real numbers aagl b;, aji, bji are complex numbers, then

(1 q)z{“:latfi{llbterJrnflJrZi':l TS 18— Yo g b —A] G(q)zi’:l Pi+Ci —2(m+n—1)] «

0 g}?]i T {(Z(l _ q)ZtnllBt_zpzlAH'Zir:l T [thi:mu Bti—thinHAti] iq

= Dg}fg]i,fi;r [(Z q

(ajaAj)Ln [Ti(ajiaAji)]n+Lpi )]
(bj,Bj)am - [Ti(0ji, Bji)Imr1q (1, 1)

(a ,A) .. [ri(a-i,A-i)]n 1.pi
(b B)im . [t i<bfi,Bfi>]mil,Zi)] ©)
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wherez# 0,0 < |q| < landw = +/—1

Proof: To prove (9) we consider the expression

mn . )2 By Aty TS By Al (@j,Aj)n - [T (@i, Aji)In+1,p
Dpu%ﬁ,r [(Z(l q) t=m+ t=n+ e ( jaBj)l,m [Ti(bji7Bji)]m+l,qi(171

G(qPi~Bis )ﬁ G(qLa A1) ri5(1 — g)SEa B T A3 TS g B 3 s A

:21 / =1 . 5 ds  (10)
ey Yio1 Tl I'I G(q™PitEi%) ] G(qi~AiY)G(qf)G(qtS)sinT
j=m+1 j=n+1
On multiplying (10) by

[(1— q)zp:1&72t11 bermen—1+357 6y ai-3i L bi—Al G(q)Zir:l Pi+Gi —2<m+n—1>]

And making use of the identity given by Askesj[

__ 6@ .
I_Q(X) - (1_ q)X,]_G(q) ' |q| <1,
we get (9) as follows:
) 1 / j|;|ll'( BJS)D q(1—aj— A .
M) st nl [ Fal—bi+Bis) 11 Taas— Aus)q(9)a(1—)sinTs
j=m+l j=n+1

= Dg}%m;r {(Z q

where L is contour of integration running from-weo to +wo in such a manner so that all poles
off4(bj + Bjs);1 < j < m are to right of the path and those Bf(1— a; — Ajs);1 < j < n,are to left. The integral
converges iRRe[slog(z) — logsinmts] < 0, for large values ofs| on the contour L, that is if(arg(z) — wowy Hlog|z))| < m,
where 0< |g| < 1,logg = —w = — (W + IWz), W, w1, W, are definite quantitiesy;, wpbeing real.

(@j,A)1n - [Ti(ajivAji)]n+l7pi>:|

(b}, Bj)1m ~~-[Ti(bjiaBji)m+1,qi

Remark: By settingt; = 1 in (9), we get well known result for basic analogue of I-ftio as reported in [4] which
is as follows:

A Ma(bi—Bis) [] fq(1-ai+A;
|g1,3..r [(Z'q (@j,Aj)1n: (@ji, Aji)nt1A )] — 1 - le q(b; Jsl))'le q(1-aj+Ajs) sds
o (0, Bj)1.m: (bji, Bji)m-+1. ey Zirzl[j:ﬂququ(l_in-FBiiS)jzlj+qu(aji—Aiis)FQ(S)FQ(l_S)Sin"S]

(11)

The existence conditions for the integral in (11) are theesamfor g-analogue of Aleph-function with=1,i = 1,2, ,r.
Moreover taking r=1 in (11) we get well known result as4i4s:

g | (2o

The existence conditions for the integral in (12) are theesamfor g-analogue of I-Function with r =1

|‘| [q(bj —Bjs) D q(l—aj+As)

(aj,Aj)1p
(bj,Bj)1.0 27Tw/ P ) nzds  (12)
[q(1—bj+Bjs) ] 1rq(aj —AjS)4(s)lq(1 - s)sinr]

j=n+

Jm+1
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2.2. Sometransformation formulae of [I(z;q) Function

() Let the parameterp;, g are non-negative integers satisfying the inequality 0 < p;,0 < m < giandt; > 0;i =
1,2,3,,ris finite andAj, Bj, Aji, Bji are positive real numbers aagl b;, aji, bji are complex numbers, then

O(zq) = Dg}%i,ri;r [(Z;q

(05, Bj)1m

(a, O)(aj,Aj)zvn

7 (@i Aji)In+1,p )]

T (i, Bji ) Im+ 1,

(1 amr-l (@), Aj)zn - [Ti(@ji Aji) s
=Ta(1 =)0 g nr {(Zq (05,Bj)1m --- [Ti(0ji, Bji)]mtL; (13)
wherez+ 0,0 < |g| < landw = v/—1.
Proof: By definition of I (z;q)-function, we get L.H.S.
[4(bj+Bjs)[4(1—a—0.s) |‘| q(1—aj—Ajs)nz®
27'[00/ i — ds
i 1TI ﬂ ’_q(l bji —Bjis) [] 1rq(aji+Aji3)rq(3)rq(1—5)5i”"5]
j=n+
m n
M Ta(b = Bjs) [ To(1 -3 +Aj)m
—y(1-a)x Zm/ — . ds
Yi- 1TI[ |_| 1rq(1—bji+Bji5)_ M 1l'q(aji—Ajis)l'q(s)l'q(l—s)sinns]
j=n+
Cn gmned (@), Aj)zn - [Ti(@ji Aji)nsap
=l =ap g qu (b.B;)1m ... [1i(0}i.Bji)mi 1.
=R.H.S. This proves the theorem.
In the same manner we can prove the following results.
(1)
. ‘ Ain - [T(@5i5Aji)Int1p—-1(a0
0 _gmn (@, A ji> Aji)In+1,p-1(a.0)
0 =R | (20l ghin e
_ 1 _mn sql@iAi)zn - [Ti(@jiAji)]nt1p-1
—rq<a>Dpilvqi’“”K 9 (b B)am .. [5005.Bj)mi v 4
()
mn (aj,Aj)1n - [t (@i, Aji)InsLp
H(za) =Upa.nr K“" b,0)(b;.B;)2m - [1i(bji, Bji)lm: 1.
gm-1n aJ’AJ : [Ti(ajivAji)]nH,pi
IO|Q| Tr {( 17 J Ti(bji,Bji)]erl,qi (15)
(V)
. , JA)) o [m(@gi, Aji) e p
0 —gmn (@), Aj)1n i A i
29 =Onans KZ q’(b 0)(b;.Bj)1m - [1i(Bji. Bji)lmi1.6-160
__ 1 omn ol @ADL - [T(@ A
Fq(1—b) Pra-Lar [(Z’q (05,Bj)1m --- [Ti(bji,Bji)Im+1g-1 (16)
Special Cases:
(@© 2017 NSP
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(i) By settingti=1 in (13), we get well known result for basic analogue ofidtion as reported ir3[4] which is as
follows:

| or i KZ;Q

Moreover taking r = 1 in (17) we get well known result as4iels:
m,n . |(@,0)(aj,Aj)2p _ mn—1 .
(i) Taking 1i= 1 in (14), we get well known formula for basic analogue ofiirétion as reported ir8[4] as:
imn | (2 (@, Aj)1ni (@ji,Ajiniip-10) || _ 1 mn zq (aj, Aj)1n; (i, Aji)n+1,pi—1 (19)
Pigisr ’ (bj,Bj)1m; (bji;Bji)erl,qi [q(a) pi—L.0ir ' (bjaBj)Lm;(bjiiji)m+1,Qi
Again, taking r = 1 in (19) we get well known formula of Fox’sdi@analogue of H-function as:
) i,Aj)1p-1(a,0) 1 . mn @A) 1P
HI [ (| (@i A)LP- )}:—H N ol (zg|\ G0 20
FQ [( 94 " (b,Bj)o fa@ P12 \*9] (b,Bj)1o (20)
(iii) Taking 7i=1 in (15), we get well known formula for basic analogue ofiiétion as reported ir8[4] as:
mn . (aj 7Aj)l,n; (aji 7Aji)n+1,pi _ m-1,n . (aj 7Aj)l,n; (aji 7Aji)n+1,pifl 21
oiair {(Z'q‘(b,O)(bj,Bj)z,m; (0i,Bji)my1g /| Fa(b)lpqir | {24 (bj. Bj)z2.m: (bji, Bji)m+1 ()
Again, taking r = 1 in (21) we get well known formula of Fox’sdi@analogue of H-function as:
mn | (. (aj,Aj)Lp _ mn 1 (@)A1

(bj,Bj)2q
(iv) Taking 1i= 1 in (16), we get well known formula for basic analogue ofihétion as reported ir8[4] as:

imn | (zq|, (@A) (@i Aji)neLp _ 1 mn zq| [BiADLn (@i Ajincap (23)
PLaisrt |\ =7 (by, Bj)1,ms (Bji, Bji)m+-1,6—1(0, 0) Fq(1—b) Peai=Lr A =7 (b, Bj)1m; (Dji, Bji)mr1g-1

(a,0)(aj,Aj)2n; (aji7Aji)n+l,pi - _yymn-1 .
(bj. Bj)1,m: (bji, Bji )m+ 1 = la(t=a)lp 1y | |2

(aj,A)2n; (ji, AjiIn+1.p
(bjjv BJJ)Lm; (bjiv Bji)mj_lzi >} 17)

(aj,Aj)2p-1
(617'131)1@ )} (18)

Again, taking r = 1 in (23) we get well known formula of Fox’sdi@analogue of H-function as:

mn | (.. (@j,Aj)Lp _ 1 pmn gl (@,A)1p 24
e [(Z'q ‘ (bj;Bj)1q-1(b,0) ra@—b) Pt [\ %%(b;,B))1-1 @Y
(2.3) In this section, we will evaluate the g-derivative operamoplving g-analogue of Aleph-Function.

Theorem 2: Let the parameterp;, i are non-negative integers satisfying the inequality < p;,0 < m< g; and
T > 0;i = 1,2,3,,r is finite andAj, Bj, Aji, Bji are positive real numbers aagl b;, aji, bji are complex numbers, then

—a;—mn (- i»Din - (6@, D)]nesp
i)z,q[zl Dphqim;r _(z,q ((gjjal))llm [[Ir.lggjjhl))]]mill:)}]
—a;—mn . —11)(aj,L)2n ... [Ti(&ji,1)]n+1p
=7 Dpi,qi,n;er,q (a1 (bj,igijm )2 [[ﬁ,fﬁj.ﬁ]]mﬂﬂ (25)

wherez# 0,0 < |q| < landw = v/ —1.
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Proof: To prove theorem (25) whem > 0, we apply equation (2)

ﬁqu(bj - )_E]qu(l—aj+s)nzs
LH.S = 2Dq[7- alznw/ — = ds|
Yi—aGl 1 Tq(1—bji+s) I4(aji — 9)lq(s)Mq(1— s)sinTs]
j=m+1 j=n+1
M, Fa(bj =) [T Fa(1—aj-+ mDzqlz 79
2nw/ ' — Pi ds
Yie 1T| Fq(1=bji+s) [T Tq(@ji—9)lq(s)lq(1l—s)sinms|
m+ j=n+1
1 Fa(by =) [ Fa(1— ) + )7l — ag + Sjgl2-
1 j=1 j=1
~ 2w . Gi b ] ds
L YieaTGl [ Ta(X—bji+s) 1 Tlq(@ji—9)q(s)q(1—9)sinm
j=m+1 j=n+1
Since,
1- @
Fa1+) = T o(@) = [dala(a)

[@qlq(a) =Tq(1+a)

Thereforgl—a; +9glq(1—a1+9) =g(1— (a1 —1)+59)

Thus
m n
M Mq(bj—S)Mq(1— (a1 —1)+9) [ Mq(1—aj+ )2t
1 j=1 j=2
LH.S — ZM/ . . ds
L Sie1 Gl M1 Fg(1—=Dji+s) [ Tq(aji—s)lq(s)l4q(1—s)sinms|
j=m+1 j=n+1
Which implies,

(an—1,1)(a5,)2n - -- [Ti(aji,l)]n+17pi )]

(b, Dim o 1051, Dmirg

(@j,1)1n --- [Ti(aji,l)}nﬂ.,pi)}] A-apmn [(z;q

l-agymn .
Dzglz*Up g, [(Z‘q (bj, D1 ... [T(bji, Dlmi1g

Hence the result.
Theorem 3: Let the parameterg;,q; are non-negative integers satisfying the inequalitg @ < p;,0 < m< g and
T > 0;i = 1,2,3,,r is finite andA|, Bj, Aji, Bj; are positive real numbers aagl b;, aj;, bj; are complex numbers, then

mn (a 7A) . [Ti(a'ivA'i)]n P
ng[Dpi,Qi,ri;r [(Z)\ q (bJJ,BJJ)lm [Ti(bjji,BjJi)]mill,ZJ}]

mn M) (@, A0 - [Ti(@i AL
i Kzl\’q‘ (bJaBJj)l,Jml [n(bji,éjiﬂ@,ﬁﬁ, )] (26)

wherez+#£ 0,0 < |q| < landw = v/—1.
Proof: To prove theorem (26) wheh > 0, we apply equation (2)

mn LA )1 T (@i, Aji) Inedpy
ng[DpiQQi,ri;r [(Z)\ q ((S:’BJJ)) im-.. [[;I((SJJI’BJJI))]m:iZJ}]

(@© 2017 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

574 NS 2 A. Ahmad et al.: g-Analogue of Aleph-Function ...

H Falby —Bjs) 11 Fal1—a +Aj) mDEo[2

't Fq(1—bji+Bjis) 1 [qaji—AiS)a(s)lq(1—s)sinm

J:m+1 j=n+1

[, Fa(by ~BjS) [1 Fa(1aj + A mig(As+ DI
j=

o/
~ 2nw g

ds

P .

i 1TI 1 1rq(1—bii+Bji5), M 1rq(aii_Ajis)rq()\S—H+1)rq(5)rq(1—5)5'n"5]
=m+ j=n+

n

M. Falbj — BjS) 1, MalL— aj + AjS)lg(1— 0+ As)mizS

zH j=1 j=1
— ds
27100 . . a o P _
L el [ Fq(1—bji+Bjislq(l—p+As) [ Tq(@ji—Ajis)lq(s)lq(1—s)sinms|
j=m+1 j=n+1
o upmnil O @A) - [Ti@i, Aj)nsLp
=7 Hpatar KZA 'q‘ (b.Bj)am .. [i(bji.Bji)lmerq (A @n

Hence the result.

Conclusion

The results proved in this paper give some contribution$iéotheory of the basic hypergeometric functions and are
believed to be a new to the theory of g- calculus and are liteefind certain applications to the solution of the g-intégra
equations involving various g-hypergeometric functions.
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