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Abstract: We consider anelastic media governed by constitutive equations with memory behavior, which depend on the physical
properties of the medium itself. In this note we use a model ofelasto-plastic media with two unspecified memory formalisms, which
are determined by performing a single virtual experiment ona sample of the medium. As an application, using a mathematical memory
formally mimicking the Caputo-Fabrizio fractional derivative, we show that, when the applied stress is asymptotically vanishing, then
a shorter memory in the constitutive equation and/or a slower decay of the applied stress, generate larger asymptotic plastic residual
strain. In the last part of the paper, we present a non-linearstress-strain constitutive equation, which is suitable for describing hysteresis
loops with discontinuity in the first derivative of the cycle.
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1 Introduction

The fractional derivative is a memory formalism which takesinto account how the internal structure of the medium
considered changed during the experiments. The fractionalderivative spread in the world of applications through a variety
of constitutive equations also for generic speculations through thousands of articles in scientific journals and dozens of
books, sometime as a geometric tool.

The fields considered for the applications of the fractionalderivatives could be a market of the economy or an
anelastic material or a generic mathematical tool as for instance the Hamilton Jacobi equations and the relativity theory
in order to take into account the second law of thermodynamic, which had insufficient attention by contemporary
research and considered mostly by engineers. When considering all these applications, then it comes naturally to doubt
that the single memory formalism may be able to represent allthe phenomena for instance concerning the anelastic
properties of materials. It could be acceptable that it be the same memory formalism, when the Second Principle of
Thermodynamics is involved, but then one asks [1] why should this formalism be a fractional derivative, and specifically
the Caputo derivative, and not a generic similar mathematical memory formalism.

Elasto-plastic media have the property that, because of stress relaxation, part of the strains induced in these media will
remain even when the stress will vanish. The mathematical study of these media goes back at least to Volterra and later to
Graffi, who however did not succeed in producing a satisfactory mathematical model for them.

Satisfactory models were introduced later inserting in theconstitutive equations the mathematical generic memory
formalism [2] and fractional derivatives [3], [4]. But is clear that a single mathematical formalism cannot model all
memory phenomena of nature. So that, there is the possibility to observe strains to which however we cannot associate a
stress unless we know the history of the stress variations and the mathematical memory formalism of the medium.

This phenomenon is of great interest in the studies concerning earthquake predictions, an emblematic case is the
monitoring of the soil deformations in the region of Pozzuoli [5] , where dramatic uplifts and horizontal deformations
were observed in the recent decades [6], which generated great concern since similar uplifts preceded the formation of the
volcano Monte Nuovo in 1538.
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Because of the supposed plasticity of the Earth crust a question arises concerning the deformations observed in the
Phlegrean Fields: may we assume, without additional studies, the stresses associated to the subsequent deformations
observed during the last decades without taking into account that the stresses generating them may have substantially
decreased or even disappeared in the time interval during the observations, while the associated deformations have not
disappeared.

The present note is structured in the following way: first areintroduced, in the time and the Laplace Transform
domains, the constitutive equations for plastic media which include generic memory formalisms, then the problem of
retrieving the mathematical form of memory from appropriate laboratory experiments is considered and solved, follows
an application is made for the theoretical case when the laboratory experiments give deformations constant or linearly
changing. Finally the effects of a memory formalism mimicking the Caputo-Fabrizio fractional derivative are studied.

In the last section we present a non-linear model able to describe hysteresis cycles, which show a discontinuous
first derivative, when the direction of the strain is reversed. For these phenomena is convenient to represent the problem
through a non-linear model. Therefore, for this purpose, westudy in this last section a non-linear stress-strain constitutive
equation.

2 The Modeling of Plastic Media

Most literature on applied fractional calculus shows that the successful use of the presently available fractional derivatives
is a proof of the presence of memory in many scientific phenomena; however this is a first order approximation in taking
account the memory phenomenon which is needed mostly, but not only, for implying the second law of thermodynamics
in the constitutive equations of elasticity.

The literature of the constitutive equations for the mathematical modeling of plastic phenomena is vast beginning with
Volterra [7], who modeled the phenomenon using hereditary mathematical tools and whose dislocation theory is the base
of a new branch of plasticity studies [8] where the phenomenon of plasticity is considered as due to the migration of
dislocations.

It is to be noted also the rich book of Argon [9], which appeared before the quick diffusion of fractional calculus, with
the presentation and discussion of a variety cases. Concerning hereditary phenomena are also of interest the volume of
Graffi [10] and particularly the notes of Fichera [11], [12].

The applications of fractional calculus to plasticity and hysteresis was considered also in the notes of [2] , [13], [14],
[1] who studied the rheological properties of polycrystalline halite, appearing in nature in large thick deposits, whichwere
considered for the disposal of radioactive waste and whose anelastic properties had been studied experimentally [15] and
[16].

In order to find which could be the most appropriate model for the memory of an elasto-plastic medium let us consider
the set of constitutive equation of rheological media already studied by [17], [2] and by [18] [14],[3], [4], which may be
written in simplified form with the undefined memory kernelsh(t) andm(t)

2.1 Body Math

h(t)⋆D (1)τi j + µ(τi j −
1
3δi jτrr)

= µ(δi jλ εrr +2m(t)⋆D (1)εi j),
(1)

whereλ is Lame’s coefficient,µ the shear modulus. While⋆ denotes the convolution andτi j andεi j the stress and strain
tensors, whose Laplace Transform (LT) with variablep is

pH(p)Ti j + µ(Ti j −
1
3

δi jTrr) = µ [δi jλ Err +2pM(p)Ei j] (2)

providedεi j(0) = τi j(0) = 0. Capital letters indicate LT of the function with equal lower letter,D(1) means classic
derivative of first order, whileu is the order of the memory operatorsh(u, t) andm(u, t) areL1 and have dimension of
stress. Moreover, they are monotonically decreasing with

h(u,∞) = 0, h(0, t) = 1, m(u,∞) = 0, m(0, t) = 1.

The latter conditions, would imply that the application of the operatorsh(0, t)∗D (1), m(0, t)∗D (1) to a function reproduce
the function itself as for the memory operators presently used many research. The ranges ofu andv respectively depend
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on the problem considered. All the functions concerning thephysical conditions of the medium modeled by equations (1)
and (2) are assumed to be initially zero that is the medium to be initially at rest.

Examples of generic functionsh(u, t) andm(u, t) are

h(t) = exp(−ut) (3)

or

h(t) =
1

log(e+ ut)
, (4)

where, withu = 0, follows h(0, t) = 1, which imply that the operator of order zero reproduces thefunction, that are
monotonically decreasing and satisfy the conditionsh(∞, t) = 0. The same is valid form(u, t).

When u = 1 the operators are not necessarily representing the first order derivative of the functionexp(−ut) and
1

log(e+ut) are not necessarily kernels of fractional derivatives of orderu.

Obviously the functionsh(u, t), m(u, t) would not define an operator with the all properties of the classical fractional
derivative, but are simple, hopefully useful, memory formalisms which reproduce the function when the operator has order
u = 0.

Classic examples of functionh(u, t) ∗D (1), m(u, t) ∗D (1) are considered in Caputo and Caputo-Fabrizio fractional
derivative without singularity [14].

3 The Experimental Retrieval of the Memory of a Medium

In order to find the memory of the medium we assume that an experiment is made on a cylindrical sample applying to it
the constant stressesτ22 = τ33 andτ11, observing the corresponding strains and, in order to find the operatorsH andM
obtain from equation (2)

pH(p)T11+ µ(T11−
1
3

Trr) = µ [λ Err +2pM(p)E11] ,

pH(p)T22+ µ(T22−
1
3

Trr) = µ [λ Err +2pM(p)E22] , (5)

pH(p)T33+ µ(T33−
1
3

Trr) = µ [λ Err +2pM(p)E33] .

Summing equations (5) we find

H(p)Trr = µ(
3λ
p

+2M)Err. (6)

SubstitutingTrr in equations (5) we obtain

(pH − µ)T11= 2µ pME11+2pME11+ µ
[

λ +
µ

3H
(
3λ
p

+2M)

]

Eii,

(pH − µ)T22= 2µ pME22+2pME22+ µ
[

λ +
µ

3H
(
3λ
p

+2M)

]

Eii, (7)

(pH − µ)33= 2µ pME33+2pME33+ µ
[

λ +
µ

3H
(
3λ
p

+2M)

]

Eii.

In order to simplify the formulae without losing in generality we assumeτ22 = τ33, which impliesε22 = ε33. Then the
third and second equations (5) are identical, therefore we use only the first and the secondequation of the system (5), that
is the system

T11 =

{

2
µ pM

pH − µ

}

E11+ µ
[

λ +
µ

3H
(
3λ
p

+2M)

]

Eii

pH − µ
,

T22 =

{

2
µ pM

pH − µ

}

E22+ µ
[

λ +
µ

3H
(
3λ
p

+2M)

]

Eii

pH − µ
,
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then subtracting we obtain

T11−T22= 2
µ pM

pH − µ
(E11−E22) (8)

which is a relation betweenH andM, whereT22 = T33,E22 = E33, while T11 andE11 are known since we assume that the
strain are measured experimentally.

We have then two equations, (8) and (6), identifyingH andM, which we write as follows

(T11−T22)pH −2µ p(E11−E22) = µ(T11−T22) (9)

which,assuming
b = (T11−T22) , a = Trr

gives

M =−
b
2p

a−3λ Err

a(E11−E22)− bErr
, (10)

H =−
µ
p

3λ Err(E11−E22)−Errb
a(E11−E22)− bErr

. (11)

If the LT−1 of H andM exist the problem of identifying the memory formalism of themedium under examination is
solved. However we prove that is satisfied the necessary condition for the existence of the LT−1 based on the assumed
mathematical properties of the latter functions that are finite, continuous and monotonic. In fact sinceE22 andE11 are LT
of the observed deformations, which we assume finite,we have

lim
p→∞

Ei j = 0

and consequently from equations (10) and (11) we obtain

lim
p→∞

H = 0 , lim
p→∞

M = 0

which imply that the necessary condition for the of the existence of the LT−1 of M andH is satisfied.
We now verify the results obtained assuming that the strain resulting from the constant applied stress is constant. To

this purpose let as consider equations (10) and setEi j =
ei j
p ; we find

M =−
b
2p

ap−3λ err

a(e11− e22)− berr
, (12)

H =−
µ
p

3λ err(e11− e22)− errb
a(e11− e22)− berr

, (13)

which give

m(t) =−
b
2

aδ (t)−3λ err

a(e11− e22)− berr
,

h(t) = µ
berrδ (t)−3λ err(e11− e22)

a(e11− e22)− berr
.

4 The Behavior of the Strain Resulting from Constitutive Equations which Simulate
Caputo-Fabrizio Fractional Derivative

Now, we seek the values ofe22 ande11 to be expected, when the stressesT11 andT22 are applied and using the following
memory operators

h(t) = nu ∗ exp(−ut), m(t) = dv∗ exp(−vt) (14)

whose LT are

H(p) =
n
p
(p+ u), M(p) =

d
p
(p+ v). (15)
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that is the memory of the medium is represented by a fractional operators mimicking the fractional derivative in [14]
with different order of differentiation. The memory formalisms (15) , although mimicking the Caputo-Fabrizio fractional
derivative, have a different effect. In fact, they are nil att =0 and, asymptotically they reach the valuesn andd respectively,
while the Caputo and Caputo-Fabrizio derivatives are initially positive and asymptotically nil. Moreover while they act as
high pass filters, the memory formalism represented by equations (15) acts as a low pass filter.

This type of memory may seem difficult to figure in solid or liquid substances or human phenomena however a simple
example is the memory of elderly persons who remember betterfacts occurred in their remote past than the recent ones.

Using equations (10) and substituting the definitions equations (15) for h(t) andm(t) respectively, the result asymptotic
strain comes from the solution of the following system

d
p+ v

=
− b

2p(a−3λ (E11+2E22)

a(E11−E22)− b(E11+2E22)
, (16)

n
p+ u

=
−

µ
p 3λ Err(E11−E22)− b(E11+2E22)

a(E11−E22)− b(E11+2E22)
, (17)

setting

E11−E22= R,
E11+2E22= S, (18)

the system (15) gives
daR = dbS− b

2p(p+ v))(a−3λ S),
n(ar−bS)

p+u = µ
p (3λ R− b),

(19)

R =−
b

2pda
(p+ v)(a−3λ dS)+

dbS
da

, (20)

R =
bS
a

−
µ

pan
S(3λ R− b)(p+ u), (21)

−
b

2pd
(p+ v)+ S

b
ad

{[

(
3λ
2p

(p+ v)+ d

]

−
µ

pan
(p+ u)b−

b
and

(1−
3λ µ
2p2 (p+ v)(p+ u)

}

+ (22)

+
3λ µb

2p2a2dn
(p+ u)

[

3λ
2p

(p+ v)+ d

]

S2 = 0,

multiplying now by a
b we finally obtain the following second degree algebraic equation in the unknownS

−
a(p+v)

2pd +
[

3λ S
2pd (p+ v)+1

]

−
µS
pn (p+ u)− S+

3µλ S(p+u)(p+v)
2p2nd

+ 3λ µS2(p+u)
padn

[

3λ
2µ (p+ v)+ d

]

= 0,
(23)

In order to findS we consider now the equation (23) and write it as follows

wS2+ gS+ z = 0, (24)

z =−
a

2pd
(p+ v), (25)

g =
3λ
2pd

[(p+ v)+1]−
µ
pn

(p+ u)−1+
3λ µ(p+ u)(p+ v)

2p2dn
, (26)

w =
3λ µ(p+ u)(p+ v)+2pd

2p2adn
, (27)

S =
(−g± (g2−4wz)0.5)

2w
. (28)
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The limit with p → 0 of the term g
2w is

lim
p→o

p

{

3λ
2pd

((p+ v)+1)−
µ
np

(p+ u)−1+
3λ µ

2p2nd
(p+ u)(p+ v

}

,

2p2adn
6λ µ(p+ u)(3λ (p+ v)+2pd/3λ

= (29)

lim
p→0

p
3λ p(p+ u)(p+ v)a

3λ (p+ u)(3λ (p+ v)+2d
= 0.

Also

lim
p→0

pz
w

= 0.

Follows then that the solutions (28) are asymptotically nil.
The extreme values theorem gives then

(e11(∞)+2e22(∞)) = 0.

Finally, from the first of equations (22) we have

lim
p→0

R(p) =−
vb
2d

and

e11− e22=−
bv
2d

, e11+2e22= 0, (30)

or e11
e22

=−1/2 that is, in terms of Poisson ratio, the rigidity is zero.
As an example we may consider the case when applied stresses are asymptotically vanishing which is of interest for

the studies of elasto-plastic media. For this case we assumethat

τ11 = 2rexp(−qt), τ22 = τ33 = r exp(−qt), Trr =
3r

(p+ q)
(31)

and the parameters have the following form

λ = µ , a = 4r/(p+ q), b = r/(p+ q), d = n,b/a = 1/3, u = v, (32)

then equation (22) is

lim
p→0

pR(p) =−
b

2vdq
(33)

giving

e11− e22=−
rv

2dr
; e11+2e22= 0, (34)

e22 =
rv

6dq
; e11 =−

rv
3dq

, (35)

the ratioe22
e11

=−1/2, again in terms of Poisson ratio, implies zero rigidity.
It is important to note that shorter memory (larger value ofv), slower decay of the applied stress (smaller value ofq)

and smaller effect of the memory (smaller amplitude of memory factor d) generate larger asymptotic residual strains.
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Non-Linear Elasto-Plasticity by a Fractional Model

The linear model allows to describe plastic materials with clear viscous effects, whereby the hysteresis loops are quite
smooth and stable. Other materials instead show a discontinuity in the first derivative of the cycle. In such a case it is
necessary to represent the phenomenon through a non-linearmodel. Therefore, for this purpose, we study in this session
a non-linear stress-strain constitutive equation.

So that, we leave from a mechanical system described by the differential system

ρ0(x)vi/t(x, t) = τi j/ j(x, t)+ρ0(x) fi(x, t), (36)

wherevi is the velocity,fi the external supply andτi j are the components of the stress tensorτ. Finally, ρ0 is the density,
which in the following we suppose constant and equal to 1.

The material is described by the constitutive equation in tensor form

τ(x, t) = AAA(x)ε(x, t)+PPP(x, t), (37)

whereAAA(x) is a fourth order tensor andPPP(x, t) the plastic tensor, which satisfies a non-linear differential equation between
ε, PPP given by

λ ε(t) = (γPPP2(t)+1)PPP(t)− δPPP(t)−C0D
α
t PPP(t), (38)

while λ ,γ,δ are positive scalars andC is a four order positive tensor, related with the constitutive properties of plastic
material. In the following, we supposeλ = 1. Moreover, the fractional derivative0Dα

t PPP(t) of orderα, will be defined
following the two view points considered in [14]. So, we have Caputo fractional model [19]

D
α
t PPP(t) =

1
Γ (1−α)

∫ ∞

0

PPP′(τ)
(t − τ)α dτ (39)

or the fractional derivative defined in [14]

D̂
α
t PPP(t) =

1
1−α

∫ ∞

0
e−

ᾱ
1−α (t−τ)PPP′(τ)dτ, (40)

where we supposePPP(t) = 0 for t ≤ 0.
For this non-linear problem (36), (37), (38) and (39) or (40), we study the coherence of this dynamic system with the

thermodynamic laws. Hence, if we denote withP i
m the mechanical power defined by

P
i
m(x, t) = τ(x, t)·ε̇(x, t). (41)

Then, we have (see [20])

4.1 The Dissipation Principle

There exists a state functionψ(x, t), called free energy, such that, for any thermodynamic process, we have

ψ̇(x, t)≤ P
i
m(x, t). (42)

Then, from the inequality (42) and the definition (41) of P i
m, we have

P
i
m(x, t) = τ(x, t)·ε̇(x, t) = (AAA(x)ε(x, t)+PPP(x, t)) · ε̇(x, t) =

= (
1
2

AAA(x)ε(x, t) · ε(x, t)+ ε(x, t) ·PPP(x, t))·− ṖPP(x, t)·((γPPP2(t)+1)PPP(x, t)−δPPP(t)− (43)

−C0Dα
t PPP(x, t)) = (

1
2

AAA(x)ε(x, t) · ε(x, t)+ ε(x, t) ·PPP(x, t))·+((
1
4
(γPPP2(t)+1)2)·−

−
δ
2
(PPP2(t))·−C0Dα

t PPP(x, t) · ṖPP(x, t)).
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Now we work on the last term of (43), when the fractional derivative is defined by (39) , i. e.

CD
α
t PPP(x, t) · ṖPP(x, t) =

C
Γ (1−α)

∫ ∞

0

PPP(x, t − s)
sα dτ · ṖPP(x, t) =

αC
Γ (1−α)

∫ ∞

0

PPP(x, t − s)−PPP(x, t)
(s)1+α ds · ṖPP(x, t).

So we denote withe1(x, t) the functional

e1(x, t) =
αC

2Γ (1−α)
(

∫ ∞

0

PPP(x, t − s)−PPP(x, t)
(s)1+α · (PPP(x, t − s)−PPP(x, t))dτ (44)

then

ė1(x, t) =
αC

Γ (1−α)

∫ ∞

0

PPP(x, t − s)−PPP(x, t)
(s)1+α ds · ṖPP(x, t) =

= (
αC

Γ (1−α)
(

∫ ∞

0

PPP(x, t − s)−PPP(x, t)
(s)1+α ·

d
dt
(PPP(x, t − s)−PPP(x, t))dτ+ (45)

∫ ∞

0

PPP(x, t − s)−PPP(x, t)
(s)1+α ·

d
ds

(PPP(x, t − s)−PPP(x, t))dτ).

Then, by (44) we obtain the identity

ė1(x, t) =
α

Γ (1−α)
(

∫ ∞

0

d
dt
(
(PPP(x, t − s)−PPP(x, t))

(s)1+α ·C(PPP(x, t − s)−PPP(x, t)))dτ− (46)

α(1+α)

2Γ (1−α)
(

∫ t

−∞
C

PPP(x, t)−PPP(x,τ)
(t − τ)2+α · (PPP(x, t)−PPP(x,τ))dτ)

because the tensorC is positive defined, then we conclude that the dissipationD(x, t)≥ 0 is defined by

D(x, t) =
α(1+α)

2Γ (1−α)
(

∫ t

−∞
C

PPP(x, t)−PPP(x,τ)
(t − τ)2+α · (PPP(x, t)−PPP(x,τ))dτ). (47)

Hence, from (45)-(47) we have

P
i
m(x, t) = (

1
2

AAA(x)ε(x, t) · ε(x, t)+ ε(x, t) ·PPP(x, t))·+((
1
4
(γPPP2(t)+1)2)·−

−
δ
2
(PPP2(t))·++ṖPP(x, t)) · (

αC
Γ (1−α)

∫ t

−∞

PPP(x, t)−PPP(x,τ)
(t − τ)1+α dτ −D(x, t). (48)

Then, from (42)

ψ̇(x, t)≤ (
1
2

AAA(x)ε(x, t) · ε(x, t)+ ε(x, t) ·PPP(x, t))·+((
1
4
(γPPP2(t)+1)2)·−

δ
2
(PPP2(t))·+

+
α

Γ (1−α)
(

∫ ∞

0

d
dt
(
(PPP(x, t − s)−PPP(x, t))

(s)1+α ·C(PPP(x, t − s)−PPP(x, t)))dτ −D(x, t)

so that

ψ(t) = (
1
2

AAA(x)ε(x, t) · ε(x, t)+ ε(x, t) ·PPP(x, t))+ ((
1
4
(γPPP2(t)+1)2)−

δ
2
(P2(t))+

+
α

Γ (1−α)
(

∫ ∞

0

d
dt
(
(PPP(x, t − s)−PPP(x, t))

(s)1+α ·C(PPP(x, t − s)−PPP(x, t)))dτ.

Now, we study the system related with the constitutive equation (38), when we use the fractional derivatives (40) and
we compare the internal mechanical powerP i

m(x, t) with the new powerP̂ i
m(x, t) through the derivative (40). Then, we

have

P̂
i
m(x, t) = (

1
2

AAA(x)ε(x, t) · ε(x, t)+ ε(x, t) ·PPP(x, t))·− (49)
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−Ṗ(x, t)·((γPPP2(t)+1)PPP(x, t)−δPPP(t)−CD̂
α
t PPP(x, t)) · ṖPP(x, t).

Hence, if we define the functionale2 by
e2(x, t) = (50)

=
α

2(1−α)
(
∫ ∞

0
e−

ᾱ
1−α (t−τ)C2(x)(PPP(x, t − s)−PPP(x, t)) · (PPP(x, t − s)−PPP(x, t))dτ

then we obtain

ė2(x, t) =
α

Γ (1−α)
(
∫ ∞

0

d
dt
(
(PPP(x, t − s)−PPP(x, t))

(s)1+α ·C2(PPP(x, t − s)−PPP(x, t)))dτ− (51)

−
(1−α)

2α(1−α)
(
∫ ∞

0
e−

ᾱ
1−α (t−τ)C2(x)(PPP(x, t − s)−PPP(x, t)) · (PPP(x, t − s)−PPP(x, t))dτ,

finally the dissipationD̂(x, t) is given by

D̂(x, t) =
(1−α)

2α(1−α)
(
∫ ∞

0
e−

ᾱ
1−α (t−τ)C2(x)(PPP(x, t − s)−PPP(x, t)) · (PPP(x, t − s)−PPP(x, t))dτ. (52)

Hence, from [5] we have

P̂
i
m(x, t) = (

1
2

AAA(x)ε(x, t) · ε(x, t)+ ε(x, t) ·PPP(x, t))+ ((
1
4
(γPPP2(t)+1)2)−

−
δ
2
(PPP2(t)))·+

α
Γ (1−α)

d
dt
(
∫ ∞

0
(
(PPP(x, t − s)−PPP(x, t))

(s)1+α ·C2(PPP(x, t − s)− (53)

−PPP(x, t)))dτ − D̂(x, t).

5 Conclusion

Concerning the modeling of phenomena using constitutive equations with fractional derivatives the literature provesthe
presence of memory in many phenomena but this is often only a first order approximation in taking account of the
memory of the phenomenon since we may not rule out the exist other memory formalisms giving a better modeling
of the phenomenon and the fractional derivative is often needed, but not only, for accounting for the second law of
thermodynamics.

In order to distinguish the different types of memory, we note that whenei j andτi j are measured with the appropriate
experiment and the elastic parameters are known then the analytical expression of the memory operators of the medium
H(p) andM(p) are obtained from equations (3), (11) and (12). In other words one may infer the memory properties of
the medium directly from the experimental data even if the memory operators is not a fractional derivatives.

Finally, In the last section, for describing hysteresis loops with discontinuity in the first derivative of the processes,
we propose a non-linear stress-strain model, which is able to provide convenient hysteresis cycles.
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