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Abstract: We consider anelastic media governed by constitutive @nsatvith memory behavior, which depend on the physical
properties of the medium itself. In this note we use a modelas$to-plastic media with two unspecified memory formasismhich
are determined by performing a single virtual experimena sample of the medium. As an application, using a matheatatiemory
formally mimicking the Caputo-Fabrizio fractional deriivee, we show that, when the applied stress is asymptofiealhishing, then

a shorter memory in the constitutive equation and/or a slalegeay of the applied stress, generate larger asymptatstiplresidual
strain. In the last part of the paper, we present a non-lisieass-strain constitutive equation, which is suitabielfscribing hysteresis
loops with discontinuity in the first derivative of the cycle
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1 Introduction

The fractional derivative is a memory formalism which take® account how the internal structure of the medium
considered changed during the experiments. The fractamralative spread in the world of applications through aetgr

of constitutive equations also for generic speculationsubh thousands of articles in scientific journals and dezsn
books, sometime as a geometric tool.

The fields considered for the applications of the fracticsedivatives could be a market of the economy or an
anelastic material or a generic mathematical tool as faant® the Hamilton Jacobi equations and the relativityriheo
in order to take into account the second law of thermodynamiich had insufficient attention by contemporary
research and considered mostly by engineers. When coimgjdat these applications, then it comes naturally to doubt
that the single memory formalism may be able to represerthallphenomena for instance concerning the anelastic
properties of materials. It could be acceptable that it lresgme memory formalism, when the Second Principle of
Thermodynamics is involved, but then one asisifhy should this formalism be a fractional derivative, apeifically
the Caputo derivative, and not a generic similar mathemlatiemory formalism.

Elasto-plastic media have the property that, becauseesfstelaxation, part of the strains induced in these medlia wi
remain even when the stress will vanish. The mathematigdysif these media goes back at least to Volterra and later to
Graffi, who however did not succeed in producing a satisfgattathematical model for them.

Satisfactory models were introduced later inserting indbistitutive equations the mathematical generic memory
formalism 2] and fractional derivatives3], [4]. But is clear that a single mathematical formalism cannodet all
memory phenomena of nature. So that, there is the posgitulitbserve strains to which however we cannot associate a
stress unless we know the history of the stress variatiotishenmathematical memory formalism of the medium.

This phenomenon is of great interest in the studies comgrearthquake predictions, an emblematic case is the
monitoring of the soil deformations in the region of Pozzli6] , where dramatic uplifts and horizontal deformations
were observed in the recent decadgiswhich generated great concern since similar uplifts @ded the formation of the
volcano Monte Nuovo in 1538.
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Because of the supposed plasticity of the Earth crust a ignestises concerning the deformations observed in the
Phlegrean Fields: may we assume, without additional studiee stresses associated to the subsequent deformations
observed during the last decades without taking into adcthat the stresses generating them may have substantially
decreased or even disappeared in the time interval durmgliservations, while the associated deformations have not
disappeared.

The present note is structured in the following way: first mrteoduced, in the time and the Laplace Transform
domains, the constitutive equations for plastic media Whnclude generic memory formalisms, then the problem of
retrieving the mathematical form of memory from approgriatoratory experiments is considered and solved, follows
an application is made for the theoretical case when therdtwy experiments give deformations constant or linearly
changing. Finally the effects of a memory formalism mimigkihe Caputo-Fabrizio fractional derivative are studied.

In the last section we present a non-linear model able toribesbysteresis cycles, which show a discontinuous
first derivative, when the direction of the strain is revelrdeor these phenomena is convenient to represent the proble
through a non-linear model. Therefore, for this purposestudy in this last section a non-linear stress-strain donise
equation.

2 The Modeling of Plastic Media

Most literature on applied fractional calculus shows thatguccessful use of the presently available fractionalatares

is a proof of the presence of memory in many scientific phema@nleowever this is a first order approximation in taking
account the memory phenomenon which is needed mostly, bwinhg for implying the second law of thermodynamics
in the constitutive equations of elasticity.

The literature of the constitutive equations for the mathgcal modeling of plastic phenomena is vast beginning with
\olterra [7], who modeled the phenomenon using hereditary mathenh&dma and whose dislocation theory is the base
of a new branch of plasticity studie8][where the phenomenon of plasticity is considered as dub&artigration of
dislocations.

Itis to be noted also the rich book of Argo®{]which appeared before the quick diffusion of fractioralbtlus, with
the presentation and discussion of a variety cases. Cangenareditary phenomena are also of interest the volume of
Graffi [10] and particularly the notes of Ficheral], [12].

The applications of fractional calculus to plasticity andteresis was considered also in the note2bf [13], [14],

[1] who studied the rheological properties of polycrystalimalite, appearing in nature in large thick deposits, whiehe
considered for the disposal of radioactive waste and whoskastic properties had been studied experimentaiiydnd
[16].

In order to find which could be the most appropriate modelfemhemory of an elasto-plastic medium let us consider
the set of constitutive equation of rheological media ayestudied by 17], [2] and by [L8] [14],[3], [4], which may be
written in simplified form with the undefined memory kernk({s) andm(t)

2.1 Body Math

h(t)*@(l)nj —l—[J(Tij — %GJ‘T”)
= U(SjA & +2m(t)*@(1>£ij),

whereA is Lame’s coefficienty the shear modulus. Whiledenotes the convolution ang ande;j the stress and strain
tensors, whose Laplace Transform (LT) with variaplis

1)

pH (p)Tij + p(Tij — %djTrr) = U[&jAErr + 2pM(p)Eij] 2)

providedgj(0) = 1j(0) = 0. Capital letters indicate LT of the function with equal emletter,D(Y) means classic

derivative of first order, whiles is the order of the memory operatdi&u, t) andm(u,t) areL! and have dimension of
stress. Moreover, they are monotonically decreasing with

h(u,e) =0, h(0,t) =1, m(u,) =0, m(0,t) = 1.

The latter conditions, would imply that the applicationtoé bperatork(0,t) « 20, m(0,t)« 2V to a function reproduce
the function itself as for the memory operators presentgdusany research. The rangesiafndv respectively depend
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on the problem considered. All the functions concerningatimgsical conditions of the medium modeled by equatidps (
and @) are assumed to be initially zero that is the medium to bélhjtat rest.
Examples of generic functiogu,t) andm(u,t) are

h(t) = exp(—ut) 3)
or
1
h(t) = Tog(er )’ (4)

where, withu = 0, follows h(0,t) = 1, which imply that the operator of order zero reproducesftimetion, that are
monotonically decreasing and satisfy the conditibfes,t) = 0. The same is valid fam(u,t).

Whenu = 1 the operators are not necessarily representing the fistr aferivative of the functioexp(—ut) and
logtﬁ are not necessarily kernels of fractional derivatives dfou.

Obviously the function&(u,t), m(u,t) would not define an operator with the all properties of thegitzal fractional
derivative, but are simple, hopefully useful, memory folisras which reproduce the function when the operator hasrord
u=20.

Classic examples of function(u,t) « 21, m(u,t) + 2(Y are considered in Caputo and Caputo-Fabrizio fractional
derivative without singularity14].

3 The Experimental Retrieval of the Memory of a Medium

In order to find the memory of the medium we assume that an Empat is made on a cylindrical sample applying to it
the constant stresse&s, = 133 and 111, observing the corresponding strains and, in order to fiedbheratorsi andM
obtain from equation)

1
pH(p) 11+ p(T11— §Trr) = U[AEr +2pM(p)E1q],

1
PH (p)To2+ p(To2— §Trr) = U[AEr +2pM(p)E22], (5)

1
pH (p)Taz+ p(Tzz— §Trr) = U[AEr +2pM(p)Es3].

Summing equation$j we find

3A
H(p)Ter ZU(F‘FZM)EH- (6)
SubstitutingT;, in equations$) we obtain
U, 3A
(pH — u)T11 = 2upMEg1 + 2pMEg 1+ U [A + ﬁ(? +2M) | Ej,
U 3A
(PH — 1) Ta2 = 21 pME2+ 2pMEzo + A+3—H(?+2M) Eii, (7
Ho,3A
(pH — [J)33= 2UPMEs3+ 2pMEzz+ U |A + ﬁ(F —I—ZM) Ei;.

In order to simplify the formulae without losing in genetglive assumey,, = 133, which impliese,, = €33. Then the
third and second equatiors) @re identical, therefore we use only the first and the seeguodtion of the systend), that
is the system

3H' p pH —

_f, upM M 32 Eii
TZZ_{ZpH—u}E22+“[)‘+3H( 0 +2M)] H

M 3A Ei
Tii= {Zpqu—u } Ei1+ U [)\ + 2 +2|v|)] !
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then subtracting we obtain

HpM
Ti1—Ta2=2
pH —
which is a relation betwedd andM, whereT,, = Ta3, Exo = E33, while T1; andE;; are known since we assume that the
strain are measured experimentally.
We have then two equation$)(@nd @), identifyingH andM, which we write as follows

(E11—E2) (8)

(Ti1—To2)pH — 2up(E1r — Ex2) = p(T11— To2) 9

which,assuming
b=(Tin—T), a=Tyx

gives
b a—3AEq
M= , 10
2p a(E11— E22) — bEy (10)
H 3AErr (E11— Ex) —Exb

~p a(Eq1— Ez) — bEy

If the LT of H andM exist the problem of identifying the memory formalism of thedium under examination is
solved. However we prove that is satisfied the necessaryitimmébr the existence of the LT based on the assumed
mathematical properties of the latter functions that ari¢éeficontinuous and monotonic. In fact sireg andE;; are LT
of the observed deformations, which we assume finite,we have

(11)

lIimEj=0

p—oo
and consequently from equatiorig)f and (L1) we obtain

ImH=0, ImM=0

p—e p—e

which imply that the necessary condition for the of the exise of the LT of M andH is satisfied.
We now verify the results obtained assuming that the stesnlting from the constant applied stress is constant. To

this purpose let as consider equatioh) (@and se€;; = a—p"; we find

b ap—3iey
) , 12
2palen — 6) — bey (12)
:_E3/\Q'r(ell—922)_errb’ (13)

p aleir—ex)—bey

which give
b ad(t)—3Aer

mit) = —= ,
O 2 a(e;1—ex) — bey
berr5(t) — 3Aerr(e11— e2)
a(er1 — exo) — ber

h(t) =

4 The Behavior of the Strain Resulting from Constitutive Equations which Simulate
Caputo-Fabrizio Fractional Derivative

Now, we seek the values e, ande;; to be expected, when the stres3gsandT,, are applied and using the following
memory operators

h(t) = nuxexp(—ut), m(t) =dvs*exp(—wvt) (14)
whose LT are

H(p)=%(p+ux M(p)=%(p+v). (15)
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that is the memory of the medium is represented by a fradtioperators mimicking the fractional derivative if4]
with different order of differentiation. The memory fornmsahs (L5) , although mimicking the Caputo-Fabrizio fractional
derivative, have a different effect. In fact, they are ntlat0 and, asymptotically they reach the valnesdd respectively,
while the Caputo and Caputo-Fabrizio derivatives aredljtipositive and asymptotically nil. Moreover while thegtas
high pass filters, the memory formalism represented by @qnsafl5) acts as a low pass filter.
This type of memory may seem difficult to figure in solid or lidsubstances or human phenomena however a simple
example is the memory of elderly persons who remember Hattes occurred in their remote past than the recent ones.
Using equationsl(0) and substituting the definitions equatiotS)(for h(t) andm(t) respectively, the result asymptotic
strain comes from the solution of the following system

d —%(3—3)‘(E11+2E22) (16)
p+Vv  a(Ei1— Eg) — b(Er1+ 2E2)’
no_ —%3)\ Err(E11— E22) — b(E11+ 2E22) a7
p+u  a(Eir— Ez) —b(E11+ 2E2))
setting
Ein—Ex=R
E11+2Ex»=S (18)
the system15) gives
daR=dbS— 2 (p+v))(a—3A9),
p
(ar—bs) (19)
e = 5(3AR-D),
b dbs
_bS u
R_g—ﬁSBAR—b)(p+u), (21)
b b 3A u b 3Au
P tsg{[Gevrd) - Aprup- a-TEeriprufs @@
3Aub 3A B
multiplying now by 2 we finally obtain the following second degree algebraic ¢éiquan the unknowrs
—a<zpng>+[§Lp§<p+v>+ — B (p+u) S+ 3
3uA S(Z;I)O;r:c)j(mv) L3 “pS:t(iﬁJrU) %(p—i—v) —|—d} —0,
In order to findSwe consider now the equatio®3) and write it as follows
WS, +gS+2z=0, (24)
a
Z__Z—;)ci(p+v)’ (25)
_ 3 u 3Ap(p+u)(p+v)
_ 3Au(p+u)(p+v)+2pd
W= 2p2adn ’ 27)
2w
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The limit with p — 0 of the term. is

3Au

. 3A u
lim p{—((p+V)+1)—n—p(p+U)—1+m

AMLP 2pd (p+u)(p+v},

2p2adn
B6AU(p+Uu)(3BA(p+V)+2pd/3A

= (29)

lim p 3Ap(p+u)(p+via
p—0 3A(p+u)(BA(p+v)+2d

Also

. Z
lim bz =0.
p—0 W

Follows then that the solution2&) are asymptotically nil.
The extreme values theorem gives then

(e11(%) 4 2e95(c0)) = 0.

Finally, from the first of equation2@) we have
vb
ImR(p)=——
AR = 5
and

bv
— 2e;;=0 30
5 @ 1t 2e2=0, (30)
or % = —1/2 thatis, in terms of Poisson ratio, the rigidity is zero.

As an example we may consider the case when applied stragsasyanptotically vanishing which is of interest for
the studies of elasto-plastic media. For this case we asthahe

€11—€pn=—

3r
T11 = 2rexp(—qt), Top=Taz="rexp(—qt), Tr = T (31)
and the parameters have the following form
A=uy,a=4r/(p+q),b=r/(p+qg),d=nb/a=1/3 u=y, (32)
then equation2) is
lim pR(p) = ——2_ (33)
p—)Op P)= 2qu
giving
=V et 2ep=0 (34)
€l1— €0 = “odr’ €11+ 2€2=1,
rv rv
922:%, 9112—%7 (35)

the ratio% = —1/2, again in terms of Poisson ratio, implies zero rigidity.
It is important to note that shorter memory (larger value@)ptlower decay of the applied stress (smaller valug)of
and smaller effect of the memory (smaller amplitude of menfiactor d) generate larger asymptotic residual strains.
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Non-Linear Elasto-Plasticity by a Fractional Model

The linear model allows to describe plastic materials wigacviscous effects, whereby the hysteresis loops are quit
smooth and stable. Other materials instead show a discatytim the first derivative of the cycle. In such a case it is
necessary to represent the phenomenon through a non+ireekal. Therefore, for this purpose, we study in this session
a non-linear stress-strain constitutive equation.

So that, we leave from a mechanical system described by ffeeaditial system

Po(X)Vi 1 (X,t) = Tjj/; (%) + po(X) fi (X, 1), (36)

wherey; is the velocity,fj the external supply and; are the components of the stress tersdfinally, po is the density,
which in the following we suppose constant and equalto 1
The material is described by the constitutive equationrisde form

T(x,t) = AX)e(X,t) + P(x,t), (37)

whereA(x) is a fourth order tensor ar(x,t) the plastic tensor, which satisfies a non-linear diffeedfuation between
¢, P given by

Ae(t) = (YP2(t) + 1P(t) — OP(t) ~CoZP(t), (38)

while Ay, d are positive scalars arfd is a four order positive tensor, related with the constiifiroperties of plastic
material. In the following, we suppose= 1. Moreover, the fractional derivativgZ? P(t) of ordera, will be defined
following the two view points considered ii4]. So, we have Caputo fractional mod&B]

apy_ L ® P(1)
AP = I'(l—a)/o (t—r)“dT (39)

or the fractional derivative defined id4]

IEP() = ﬁfow & 1 OP/(1)dr, (40)

where we suppode(t) =0 fort <O0.
For this non-linear problen8g), (37), (38) and @9) or (40), we study the coherence of this dynamic system with the
thermodynamic laws. Hence, if we denote wi#], the mechanical power defined by
PL(x,t) = T(x,1)-E(x,1). (41)

Then, we have (se&()])

4.1 The Dissipation Principle
There exists a state functiai(x,t), called free energy, such that, for any thermodynamic m®cge have
P(X,t) < Pp(x,1). (42)
Then, from the inequality4?) and the definition41) of |, we have

2L (x1) = T(x1)-£(x,t) = (AX)E(X,t) + P(x,1)) - £(x, 1) =

- (%A(X)s(x,t) (X 1) + £(x,1) - P(x 1)) — P(x,t)-((yP2(t) + 1)P(x,t)—SP(t)— (43)

~CoDf P 1)) = (FAX)E() - £0) +£(x) - PO + (5 (P2(0) + 1)) -

0

—~5(P(t)) — CoDf P(x,1) - P(x.1).
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Now we work on the last term o#@), when the fractional derivative is defined I88] , i. e.

CATP(x.1) - P(x 1) = r(1c_ o /Ow P(X’Sta_s)dr-lb(x,t) -

aC  [*P(xt—9—P(xt) .
I'(l—a)/o (5)H+a ds-P(xt).

So we denote witle; (x,t) the functional

s e (Pixt -9 Plx e (44

er(x,t) =

then

. C  [POt-9-PXt) .
el(x,t)zl_(f_a)/ x (S)SLG Y 4. px.t) =

B aC /°° P(x,t —s)— P(th) d (P(x,t —s) — P(x,t))dT+ (45)

- (I'(l— a)( A (s)t+a dt
/"" P(xt—9) —P(xt) 9 Pt -9~ P(x.t))dr).
0 ds

(s)1+or

Then, by @4) we obtain the identity

&(x) 1 a) / dt Xt_31+_a (Xt)).C(P(X,t—s)—P(x,t)))dr— (46)

1 t P(xt)—P(x,
2ar(<1+—62> ([.c ()Ettz r>zf§ D (Px.t) ~ P(x.1))d1)

because the tens@ris positive defined, then we conclude that the dissipdlignt) > 0 is defined by

D(ut) = g | S (Poct) ~ P ). @

Hence, from 45)-(47) we have

Phixt) = (GARECCD) -0 +£0c8) PO + (5 (P2(0) + 1))~

o : aC U P(x,t) —P(x,T)
)/oo

—E(Pz(t))'++P(x,t))-(l_(l_a ENES dr —D(x,t). (48)

Then, from @2)

Bx1) < (GARIE() - 201) + E(x0) - POO) + (GO0 +12) — S (P2 +
e w e ePixt -9~ Pixy))dr - Dix)

so that 1 1 5
Y(t) = (EA(X)E(X t)-e(xt) +e(xt) - P(xt)) + ((Z(VPZ(t) +1)%) - E(Pz(t))+

ra ) w e cPixt -9 - Pix ).

Now, we study the system related with the constitutive 6qud88), when we use the fractional derivativedl and
we compare the internal mechanical pow,(x,t) with the new power??(x,t) through the derivativedQ). Then, we
have

P (xt) = (%A(x)s(x,t) g(x,t) +E(X1)-P(x,1)) — (49)
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—P(x,t)-(YP*(t) + L)P(x,1)=8P(t) —CZIP(x.1)) - P(x ).
Hence, if we define the functioned by

e(x,t) = (50)

= 72(1(1 ) (/0°° 67%(t7r>cz(x)(P(X,t —s5)—P(x,t))- (P(x,t —s) — P(x,t))dT
then we obtain o ; . 4 (Plot—g — D) o o y
) =gy @ gEeCaPlxt— 9~ Pl (51)

L) [ TIC Pkt - ) (POt 8 PlxE

finally the dissipatiorD(x,t) is given by

D(x,t) = %(/j e T TC,(x) (Pt —8) — P(x,1)) - (P(x,t — ) — P(x,1))dT. (52)

Hence, from p] we have

Phixt) = (GARECCD) -0 +£0c1)-POD) + (PP + 1)

o
_E(

Pz(t))) + ﬁ%(/ow( (P(X,t zS)SZJ;P(X,t)) . Cz(P(X,t _ S)— (53)

—P(x,1)))dT — D(x,1).

5 Conclusion

Concerning the modeling of phenomena using constitutivetogns with fractional derivatives the literature protes
presence of memory in many phenomena but this is often onlystadider approximation in taking account of the
memory of the phenomenon since we may not rule out the exigtr ahemory formalisms giving a better modeling
of the phenomenon and the fractional derivative is ofterdadgebut not only, for accounting for the second law of
thermodynamics.

In order to distinguish the different types of memory, weenihiat where j andt;; are measured with the appropriate
experiment and the elastic parameters are known then thgtiaabexpression of the memory operators of the medium
H(p) andM(p) are obtained from equations (3), (11) and (12). In other wange may infer the memory properties of
the medium directly from the experimental data even if thenmy operators is not a fractional derivatives.

Finally, In the last section, for describing hysteresig®avith discontinuity in the first derivative of the processe
we propose a non-linear stress-strain model, which is aljpedvide convenient hysteresis cycles.
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