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Abstract: In this paper, we have proposed a class of exponential duaatio type compromised imputation technique and
corresponding point estimator. Its mean square error egfme is compared with the sample mean, ratio and comprdmisthods

of imputation in the case of missing data. Further, numeéiikeestrations are provided with the help of some naturgbplation data
sets to compare their efficiencies for different non-respamate.
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1 Introduction

In sample survey it is commonly experienced that complet& filam the sampling units or respondents are not obtainable
for various reasons, for example in an opinion survey, thecsed family might have shifted to some other places, and
selected person might have died. In mailed questionnairg/mespondents do not sent their replies. Such a problem of
incomplete sample data due to non availability of informatirom the respondents is known as the problem of non-
response.

A common technique for handling non-response is imputafitie term imputation refers to the process of assigning
one or more values to an item when there is no reported valuth&b item and where the missing values are filled
into create a complete data set that can be analysed withidrad analysis methods. There are two principal uses
of imputation. These are(1) Imputation for item non-regmoonly and (2) Imputation for item non-response as well
as for the unit non-response. Most of the currently used tatimn methods involve the substitution of an imperfect
predicted value. Some of the important imputation methddkis kind are mean imputation, ratio and product method
of imputation, multiple imputation, hot deck imputatiomld deck imputation, distance function matching, regi@ssi
imputation, etc. to improve the estimation of populatioramevith non-response. In recent past, a number of efficient
compromised imputation strategies have been proposed/byadsurvey statisticians.

In addition to the obvious advantage of allowing complea¢adnethods of analysis, imputation by the data collector
(e.g.the Census Bureau) also has the important advantag@éafable to utilize information available to the dataecior
but not available to an external data analyst such as a witliysocial scientist analyzing a public-use file. This imf@tion
may involve detailed knowledge of interviewing procedwed reasons for nonresponse that are too cumbersome to place
in public-use files, or may be facts, such as street adressbsedling units, that cannot be placed on public-use files
because of confidentiality constraints. This kind of infatian, even though inaccessible to the user of a public-lese fi
can often narrow the possible range of imputed values.

[8] suggested the first attempt in the estimation procedurpdpulation mean in presence of non-response by malil
questionnaire and the second attempt by a personal inteniEd] and [L4] suggested imputation methods that make
an incomplete data set structurally complete and its aigaljisl] used the information on an auxiliary variable for the
purpose of imputation. 1[3] addressed two key concepts: missing completely at randdran the response indicator to
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the survey is independent of all other variables in the symressing at random, when the response indicator depends
only on some characteristics observed in the survey anthblailso for non-respondent23 and [19] have suggested
the class of estimators in simple random samplir{] introduced a compromised method of imputatioRQ][suggested
a new power transformation estimator of population meahe©authors such aslf], [9], [1], [6], [12], [2], [18],
[16], [71, [4], [5], [15] has studied the problem of imputation methods under siagtedouble sampling scheme.

For improving the precisions in estimating the unknown méa a finite population by using the auxiliary variable,
let for a finite (survey) populatiotd i.e; U = (U1,U,...Un) be the finite population of siz&l. To each unit
Ui(i = 1,2...N) in the population, paired valugs;,x) corresponding to study variable and auxiliary variablex
correlated withy are attached. Now, define the population means of the stuiBblay and auxiliary variable as

Y=gy X =gl

A simple random sample without replacement (SRSWQRYf sizen is drawn from the population. Letbe the
number of responding units out ofsampled units. Let the set of responding units be denoteld agd that of non-
responding units be denoted By. For everyi € R, the value of; is observed. However, for the units RS, they; values
are missing and imputed values are derived using differezthads. The imputation is carried out with the aid of an
auxiliary variablex, such thalk; is the value of auxiliary variable for uniti is known and positive for eveliyc si.e; the
dataxs = {X; : i € s} are known.
2 Notations:
The following notations have been used

Y : Study variable.

X : Auxiliary variable.

X, Y : The population mean of the variatésandY respectively.

Xn : The sample mean of for the sample of siza.

y, : The mean of the variabMé for the setR.

Py x : The correlation coefficient between the variatesndX.

S%, 2 : The population mean squaresXandy respectively.

gl
[

S)2< _ ‘N,ll\(lxizi)z S% _ ZiNzl(yi*V)z

Cx, Gy : The coefficient of variation oK andY respectively.

3 Some Available Methods of Imputation:

Mean method of imputation: The mean method is to replace each missing datum with the nfe¢he observed value.
The data after imputation becomes
yiieR
Yi= RC

Vi€
Under this method of imputation, the point estimator of dafian mean given by,
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Vs = % YiesYi
=3 {SicRrYi+ Sicre It }
= jﬁ {ryr =+ (n_ r)yr}

3rg, +ny, —ry, }

-

= 5Ny,
=Y
Lemma 1.
B(Y,) =0 1)
V(Vr):V2<%_%>C\2( 2

Ratio method of imputation: Following the notations of 1[1], in the case of single imputation method, if feunit
requires imputation, the valleg is imputed, wherd = Z—z:ig

_JYi 1€R
YiZ\bxickre
This method of imputation is called the ratio method of ingtioin. Under this method of imputation, the point

estimator of the population meahis given by
Xn

VRATZVr% (3)
Where}_/r = %zieRy.ia X = % Zieina Xn = %Ziesxi
Lemma 2.
. /1 1 X
B(Yrat) =Y - (1—rx)Cx (4)
_ 1 1 1 1
MSE(VRAT):YZ{(F_N>C$+ (F_ﬁ> (1—25PKX)C>2<} 5)

Compromised method of imputation: [21] suggested a compromised method of imputation. It basedsorgu
information from imputed values for the responding unitadfdition to non-responding units. In case of compromised
imputation procedures, the data take the form

_falyi+(1-a)bxieR
yi= (1—a)bx icRE

wherea is a suitably chosen constant, such that the variance otthdtant estimator is minimum.
The point estimator of the population mean under comprasisethod of imputation method becomes

Yecomp = QY +(1— U')Vr% (6)
Lemma 3. 11
B(VCOMP):V<F_H> (1— o) (1— @rx)Ck (7)
MSE(Yeomp) = Y- [(% - %) Ci+ <% - %) {(1-a)®—2(1- G)WX}C;(] (8)
Oopt=1—@x
MSE(VCOMP)ODI:V2{<%_%>C\2(_ <%—%) ngc\z(} 9)
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4 Properties of the Imputed Estimators:

To obtain the bias and MSE of imputed estimator, we write

Y
=21
such that

lel<1Vi=1,23
Hence, we have

E(e1) = E(e2) = E(e3) = 0 andE(€f) = (} — §) C¥,
£(&) = (- )Gk E@) = (- 4

E(ere) = (£ — §) orxCrCx, E(eze3) = (£ — &) C%,
E(eres) = (§ — ) PYxCrCx

where

Pyx = Sxv/SSy

andSyy is the covariance between variab¥eandX.

5 The Proposed estimator:

Motivated with 2] and [3], we here propose the following exponential dual to ratipetcompromised method of

imputation
" Ky + (1-K); exp(wx) ieR
i = .
(1—K)y, exp(wx) ieRC

where

The point estimator of the population medminder proposed method of imputation is

Yeor =Ky, + (1 - k)yrexp($_§> (10)

wherek is a suitably chosen constant to be determined under cedaititions.
Under large sample approximations the estimator takesotime f

yEDR:V[k<1+e1> - k><1+e1>exp{ (1 92y H (11)

Theorem 1The bias ofjzpr is given by

B30 =7 (- 1 ) (k- 13 5+ 00 3 12)
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ProofThe estimatoygpg in terms ofe; ande, can be written as

2 2
VEDR_Y{1+e1+gez(k 1)+ 93 %(k—l) geéez(k 1)} (13)
Taking expectations in equatioh3 and using the results & (e%) andE (e;e), we get the bias of the estimator
B(Yeor) = E(Vepr—Y) =Y(k—-1 g <ge% + elez) (14)

given as in equatiori2

Theorem 2The mean square error §tpg is given by

MSE(VEDR):V2<:- ){Cv+g< g +g+k§0{ _%_(P{X)CX} (15)

ProofSquaring and taking expectations on both the side$3dnd neglecting the second and higher order terms, we get
the MSE ofyzpg to the first degree of approximation as

7S

+gkee, —

MSE(Yepr) = E(Vepr—Y)? = Y°E <e§+ # - gelez) (16)

Putting the results df (€f), E (€5) andE (ee;) in equation16, we get the mean square error (MSE)of the estimaior
that poves the theoregh

Theorem 3The minimum mean square erroryp is given by

21 1
MSE(epr)min = Y- <F - N) (1—péx) CF (17)
for the optimum value of k which is given by
2
kopt =1i—- ﬂ (18)
g
Proof Differentiating equationl5 with respect tdk and equating it to zero, we get optimum valuekafs
2¢rx
o = 1= =g~

Putting the value ok in equation15, we get the minimum mean square error (MSE) of the proposedasry:pg given
as in equationl?7

Remarkl. Whenk = 1, the proposed class of estimators reduces to mean methogotation

Yepr=Yr
The bias and MSE ¢df, can be obtained by puttifg= 1 in 12and 15respectively as

B(Y) =0 (19)
MSE(y,) =72(%—§)03 (20)
2. Whenk =0,
the proposed class of estimators reduces to imputed expaldunl to ratio estimator
Yor = YrEXp(iJr;)
The bias and MSE ofpg can be obtained by putting= 0 in 12and 15respectively as
vy _y(i_1)9(9 2
B(Yor) = Y(r N)2(4+(Wx)cx (21)
oy 2 (1 g
MSE(Ypr) =Y <F__) {CY+9(——(0{x) Cx} (22)
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6 Efficiency comparison of the estimatonYgpr)opt :

1.Comparison of the estimat(ygpr)opt and the estimatoy,

V(¥;) — MSE(Yepr)opt = Y2 (% - %) PIxCy >0 (23)

which is always true, hence the estimaig¥pr)opt is always better than the estimagpunder the optimality condition
18
2.Comparison of the estimat(yzpr)opt and the estimatorat

MSE(Yrat) — MSE(YepRr)opt = Vz{ (% - %) PFxCG + (% - %) (Cx— PYXCY)Z} >0 (24)

which is always true, hence the estima{§gpr)opt is always better than the estimatggar under the optimality

condition 18.
3.Comparison of the estimat(yzpr)opt and the estimataiycomp)opt

_ 1 1
MSE(Ycomp)opt — MSE(Yepr)opt = Y { <ﬁ - N) ngc\zf} >0 (25)

which is always true, hence it can be concluded that the megestimato(Yepr)opt iS always preferable over the

estimatonYcomp)opt-
4.Comparison of the estimat(¥gpr)opt and the estimatofpr

—2/1 1 2
MSE(Ypr) — MSE(Yepr)opt = Y <F - N) (g - (Wx) C; >0 (26)

which is always true, hence it can be concluded that the mepe@stimato(yepr)opt is always better than the
estimatornYpr)opt-

7 Emperical study:

To illustrate the findings, we consider the parameters of difterent population data sets, which are given in Table
We have also computed the percent relative efficiencies YBRdifferent estimators which are given in Tabke

Table 1: Population Parameters of four different populations

parameters] Population A | Population B] PopulatonC | Population D |
Kadilar and Cingi(2008)| Singh (2009)| Diana and Perri(2010} Mukhopadhyaya(20001

N 19 | 3055 | 8011 | 20 |

Y 57500 | 3085824 | 2822943 | 415 |

X 1353768 | 565 | 1.69 | 44195 |

S 85836 | 4253128 | 2221656 | 9.784518 |
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parameters| Population A | Population B PopulatonC | Population D |
Kadilar and Cingi(2008)| Singh (2009)| Diana and Perri(2010}) Mukhopadhyaya(2000}

[0.5 ex]Sx 1294538 723 | 0.78 | 1010703 |
p 0.88 | 0677 | 0.46 | 0.6521 |

Cx 0.953712 | 1.279646018| 0461538 | 0.2286 |

Cy 14928 | 1.378279513| 0.787 | 0.2358 |

n 10 | 611 | 400 | 7 |

r 8 | 520 | 250 | 5 |

Table 2: PRE of the considered estimator under four different pdjmria

Estimator Population A | PopulationB | PopulatonC | PopulationD |
V() = 4129080821 | V(y,) = 288655816| V/(5,) = 1309431 | V(y;) = 1436399 |

Y 100 | 100 | 100 | 100 |
YRAT 13288 | 107.63 | 10819 | 11411 |
Ycomp 13652 | 10896 | 10892 | 11933 |
Yor 19948 | 11678 | 10141 | 13742 |
YEDR 44326 | 18461 | 12684 | 17398 |

8 conclusion

In this paper, the PRE of the suggested estimptpi has been compared with several other estimators yyigzat,
Yeomp: @ndypr. From table 2, it is observed that the proposed estimaasy in its optimality is more efficient than the
other estimators taken for comparisons under consideratio
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