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Abstract: In this paper, we have proposed a class of exponential dual toratio type compromised imputation technique and
corresponding point estimator. Its mean square error expression is compared with the sample mean, ratio and compromised methods
of imputation in the case of missing data. Further, numerical illustrations are provided with the help of some natural population data
sets to compare their efficiencies for different non-response rate.
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1 Introduction

In sample survey it is commonly experienced that complete data from the sampling units or respondents are not obtainable
for various reasons, for example in an opinion survey, the selected family might have shifted to some other places, and
selected person might have died. In mailed questionnaire many respondents do not sent their replies. Such a problem of
incomplete sample data due to non availability of information from the respondents is known as the problem of non-
response.

A common technique for handling non-response is imputation. The term imputation refers to the process of assigning
one or more values to an item when there is no reported value for that item and where the missing values are filled
into create a complete data set that can be analysed with traditional analysis methods. There are two principal uses
of imputation. These are(1) Imputation for item non-response only and (2) Imputation for item non-response as well
as for the unit non-response. Most of the currently used imputation methods involve the substitution of an imperfect
predicted value. Some of the important imputation methods of this kind are mean imputation, ratio and product method
of imputation, multiple imputation, hot deck imputation, cold deck imputation, distance function matching, regression
imputation, etc. to improve the estimation of population mean with non-response. In recent past, a number of efficient
compromised imputation strategies have been proposed by several survey statisticians.

In addition to the obvious advantage of allowing complete-data methods of analysis, imputation by the data collector
(e.g. the Census Bureau) also has the important advantage ofbeing able to utilize information available to the data collector
but not available to an external data analyst such as a university social scientist analyzing a public-use file. This information
may involve detailed knowledge of interviewing proceduresand reasons for nonresponse that are too cumbersome to place
in public-use files, or may be facts, such as street adresses of dwelling units, that cannot be placed on public-use files
because of confidentiality constraints. This kind of information, even though inaccessible to the user of a public-use file,
can often narrow the possible range of imputed values.

[8] suggested the first attempt in the estimation procedure forpopulation mean in presence of non-response by mail
questionnaire and the second attempt by a personal interview. [10] and [14] suggested imputation methods that make
an incomplete data set structurally complete and its analysis. [11] used the information on an auxiliary variable for the
purpose of imputation. [13] addressed two key concepts: missing completely at random,when the response indicator to
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the survey is independent of all other variables in the survey; missing at random, when the response indicator depends
only on some characteristics observed in the survey and available also for non-respondents. [23] and [19] have suggested
the class of estimators in simple random sampling. [21] introduced a compromised method of imputation. [20] suggested
a new power transformation estimator of population mean. Other authors such as [17], [9], [1], [6], [12], [2], [18],
[16], [7], [4], [5], [15] has studied the problem of imputation methods under singleand double sampling scheme.

For improving the precisions in estimating the unknown meanY of a finite population by using the auxiliary variable,
let for a finite (survey) populationU i.e; U = (U1,U2...UN) be the finite population of sizeN. To each unit
Ui(i = 1,2...N) in the population, paired values(yi ,xi) corresponding to study variabley and auxiliary variablex
correlated withy are attached. Now, define the population means of the study variabley and auxiliary variablex as

Y = 1
N ∑N

i=1yi , X = 1
N ∑N

i=1xi

A simple random sample without replacement (SRSWOR),s, of sizen is drawn from the population. Letr be the
number of responding units out ofn sampled units. Let the set of responding units be denoted byR and that of non-
responding units be denoted byRC. For everyi ∈ R, the value ofyi is observed. However, for the unitsi ∈ Rc, theyi values
are missing and imputed values are derived using different methods. The imputation is carried out with the aid of an
auxiliary variablex, such thatxi is the value of auxiliary variablex for unit i is known and positive for everyi ∈ s i.e; the
dataxs = {xi : i ∈ s} are known.

2 Notations:

The following notations have been used

Y : Study variable.

X : Auxiliary variable.

X, Y : The population mean of the variatesX andY respectively.

xn : The sample mean ofX for the sample of sizen.

yr : The mean of the variableY for the setR.

ρYX : The correlation coefficient between the variatesY andX.

S2
X, S2

Y : The population mean squares ofX andY respectively.

S2
X =

∑N
i=1(xi−X)2

N−1 , S2
Y =

∑N
i=1(yi−Y)2

N−1

CX , CY : The coefficient of variation ofX andY respectively.

CX = SX
X

, CY = SY
Y

g= n
N−n,

φY X = ρYXCY
CX

.

3 Some Available Methods of Imputation:

Mean method of imputation: The mean method is to replace each missing datum with the meanof the observed value.
The data after imputation becomes

y.i =

{

yi i ∈ R
yr i ∈ RC

Under this method of imputation, the point estimator of population mean given by,
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ys =
1
n ∑i∈sy.i

= 1
n

{

∑i∈Ryi +∑i∈RC yr

}

= 1
n {ryr +(n− r)yr}

= 1
n {ryr +nyr − ryr}

= 1
nnyr

= yr

Lemma 1.
B(yr) = 0 (1)

V(yr) =Y
2
(

1
r
−

1
N

)

C2
Y (2)

Ratio method of imputation: Following the notations of [11], in the case of single imputation method, if theith unit
requires imputation, the valuêbxi is imputed, wherêb= ∑i∈Ryi

∑i∈Rxi

y.i =

{

yi i ∈ R
b̂xi i ∈ RC

This method of imputation is called the ratio method of imputation. Under this method of imputation, the point
estimator of the population meanY is given by

yRAT = yr
xn

xr
(3)

whereyr =
1
r ∑i∈Ry.i , xr =

1
r ∑i∈Rxi , xn =

1
n ∑i∈sxi

Lemma 2.

B(yRAT) =Y

(

1
r
−

1
n

)

(1−φYX)C
2
X (4)

MSE(yRAT) =Y
2
{(

1
r
−

1
N

)

C2
Y +

(

1
r
−

1
n

)

(1−2φYX)C
2
X

}

(5)

Compromised method of imputation: [21] suggested a compromised method of imputation. It based on using
information from imputed values for the responding units inaddition to non-responding units. In case of compromised
imputation procedures, the data take the form

y.i =

{

α n
r yi +(1−α)b̂xi i ∈ R

(1−α)b̂xi i ∈ RC

whereα is a suitably chosen constant, such that the variance of the resultant estimator is minimum.
The point estimator of the population mean under compromised method of imputation method becomes

yCOMP= αyr +(1−α)yr
xn

xr
(6)

Lemma 3.

B(yCOMP) =Y

(

1
r
−

1
n

)

(1−α)(1−φYX)C
2
X (7)

MSE(yCOMP) =Y
2
[(

1
r
−

1
N

)

C2
Y +

(

1
r
−

1
n

)

{

(1−α)2−2(1−α)φYX
}

C2
X

]

(8)

αopt = 1−φYX

MSE(yCOMP)opt =Y
2
{(

1
r
−

1
N

)

C2
Y −

(

1
r
−

1
n

)

ρ2
YXC2

Y

}

(9)
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4 Properties of the Imputed Estimators:

To obtain the bias and MSE of imputed estimator, we write

e1 =
yr
Y
−1, e2 =

xr
X
−1 and

e3 =
xn
X
−1

such that

|ei |< 1 ∀ i = 1,2,3

Hence, we have

E(e1) = E(e2) = E(e3) = 0 andE(e2
1) =

(

1
r −

1
N

)

C2
Y,

E(e2
2) =

(1
r −

1
N

)

C2
X,E(e

2
3) =

(1
n −

1
N

)

C2
X ,

E(e1e2) =
(1

r −
1
N

)

ρYXCYCX,E(e2e3) =
(1

n −
1
N

)

C2
X,

E(e1e3) =
(

1
n −

1
N

)

ρYXCYCX.

where
ρYX = SXY/SXSY
andSXY is the covariance between variablesY andX.

5 The Proposed estimator:

Motivated with [22] and [3], we here propose the following exponential dual to ratio type compromised method of
imputation

y.i =







kn
r yi +(1− k)yr exp

(

Ψ−X
Ψ+X

)

i ∈ R

(1− k)yr exp
(

Ψ−X
Ψ+X

)

i ∈ RC

where

Ψ =
NX−nxr

N−n

The point estimator of the population meanY under proposed method of imputation is

yEDR= kyr +(1− k)yr exp

(

Ψ −X

Ψ +X

)

(10)

wherek is a suitably chosen constant to be determined under certainconditions.
Under large sample approximations the estimator takes the form

yEDR=Y

[

k(1+e1)+ (1− k)(1+e1)exp

{

−ge2

2

(

1−
ge2

2

)−1
}]

(11)

Theorem 1.The bias ofyEDR is given by

B(yEDR) =Y

(

1
r
−

1
N

)

(k−1)
g
2

(g
4
+φYX

)

C2
X (12)
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Proof.The estimatoryEDR in terms ofe1 ande2 can be written as

yEDR=Y

{

1+e1+
ge2

2
(k−1)+

g2e2
2

4
(k−1)−

g2e2
2

8
(k−1)+

ge1e2

2
(k−1)

}

(13)

Taking expectations in equation13and using the results ofE
(

e2
2

)

andE (e1e2), we get the bias of the estimator

B(yEDR) = E(yEDR−Y) =Y(k−1)
g
2

E

(

ge2
2

4
+e1e2

)

(14)

given as in equation12

Theorem 2.The mean square error ofyEDR is given by

MSE(yEDR) =Y
2
(

1
r
−

1
N

){

C2
Y +g

(

gk2

4
+

g
4
+ kφYX−

gk
2
−φYX

)

C2
X

}

(15)

Proof.Squaring and taking expectations on both the sides of13and neglecting the second and higher order terms, we get
the MSE ofyEDR to the first degree of approximation as

MSE(yEDR) = E(yEDR−Y)2 =Y
2
E

(

e2
1+

g2k2e2
2

4
+

g2e2
2

4
+gke1e2−

g2ke2
2

2
−ge1e2

)

(16)

Putting the results ofE
(

e2
1

)

, E
(

e2
2

)

andE (e1e2) in equation16, we get the mean square error (MSE)of the estimator10
that poves the theorem2

Theorem 3.The minimum mean square error ofyEDR is given by

MSE(yEDR)min =Y
2
(

1
r
−

1
N

)

(

1−ρ2
YX

)

C2
Y (17)

for the optimum value of k which is given by

kopt = 1−
2φYX

g
(18)

Proof.Differentiating equation15with respect tok and equating it to zero, we get optimum value ofk as

kopt = 1−
2φYX

g

Putting the value ofk in equation15, we get the minimum mean square error (MSE) of the proposed estimatoryEDR given
as in equation17

Remark.1. Whenk= 1, the proposed class of estimators reduces to mean method ofimputation
yEDR= yr
The bias and MSE ofyr can be obtained by puttingk= 1 in 12and 15 respectively as

B(yr) = 0 (19)

MSE(yr) =Y
2
(

1
r
−

1
N

)

C2
Y (20)

2. Whenk= 0,
the proposed class of estimators reduces to imputed exponential dual to ratio estimator

yDR = yrexp
(

Ψ−X
Ψ+X

)

The bias and MSE ofyDR can be obtained by puttingk= 0 in 12and 15 respectively as

B(yDR) =−Y

(

1
r
−

1
N

)

g
2

(g
4
+φYX

)

C2
X (21)

MSE(yDR) =Y
2
(

1
r
−

1
N

)

{

C2
Y +g

(g
4
−φYX

)

C2
X

}

(22)
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6 Efficiency comparison of the estimator(yEDR)opt :

1.Comparison of the estimator(yEDR)opt and the estimatoryr

V(yr)−MSE(yEDR)opt =Y
2
(

1
r
−

1
N

)

ρ2
YXC2

Y > 0 (23)

which is always true, hence the estimator(yEDR)opt is always better than the estimatoryr under the optimality condition
18.

2.Comparison of the estimator(yEDR)opt and the estimatoryRAT

MSE(yRAT)−MSE(yEDR)opt =Y
2
{(

1
n
−

1
N

)

ρ2
YXC2

Y +

(

1
r
−

1
n

)

(CX −ρYXCY)
2
}

> 0 (24)

which is always true, hence the estimator(yEDR)opt is always better than the estimatoryRAT under the optimality
condition 18.

3.Comparison of the estimator(yEDR)opt and the estimator(yCOMP)opt

MSE(yCOMP)opt−MSE(yEDR)opt =Y
2
{(

1
n
−

1
N

)

ρ2
YXC2

Y

}

> 0 (25)

which is always true, hence it can be concluded that the proposed estimator(yEDR)opt is always preferable over the
estimator(yCOMP)opt.

4.Comparison of the estimator(yEDR)opt and the estimatoryDR

MSE(yDR)−MSE(yEDR)opt =Y
2
(

1
r
−

1
N

)

(g
2
−φYX

)2
C2

X > 0 (26)

which is always true, hence it can be concluded that the proposed estimator(yEDR)opt is always better than the
estimator(yDR)opt.

7 Emperical study:

To illustrate the findings, we consider the parameters of four different population data sets, which are given in Table1.
We have also computed the percent relative efficiencies (PRE) of different estimators which are given in Table2.

Table 1: Population Parameters of four different populations
parameters Population A Population B Population C Population D

Kadilar and Cingi(2008) Singh (2009) Diana and Perri(2010) Mukhopadhyaya(2000)

N 19 3055 8011 20

Y 575.00 308582.4 28229.43 41.5

X 13537.68 56.5 1.69 441.95

SY 858.36 425312.8 22216.56 9.784518
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parameters Population A Population B Population C Population D

Kadilar and Cingi(2008) Singh (2009) Diana and Perri(2010) Mukhopadhyaya(2000)
[0.5 ex]SX 12945.38 72.3 0.78 101.0703

ρ 0.88 0.677 0.46 0.6521

CX 0.953712 1.279646018 0.461538 0.2286

CY 1.4928 1.378279513 0.787 0.2358

n 10 611 400 7

r 8 520 250 5

Table 2: PRE of the considered estimator under four different populations
Estimator Population A Population B Population C Population D

V(yr) = 41290.80821 V(yr) = 288655816 V(yr) = 1309431 V(yr ) = 14.36399

yr 100 100 100 100

yRAT 132.88 107.63 108.19 114.11

yCOMP 136.52 108.96 108.92 119.33

yDR 199.48 116.78 101.41 137.42

yEDR 443.26 184.61 126.84 173.98

8 conclusion

In this paper, the PRE of the suggested estimatoryEDR has been compared with several other estimators, viz;yr yRAT,
yCOMP, andyDR. From table2, it is observed that the proposed estimatoryEDR in its optimality is more efficient than the
other estimators taken for comparisons under considerations.
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