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Abstract: In this paper, we introduce a new class of generalized Hermifler and Hermite-Genocchi polynomials and derive
some symmetric identities by applying the generating fonst Also, we obtain some potentially useful relationstfe Bernoulli
polynomials, Euler polynomials, power sum, alternatingysand Genocchi numbers. These results extend some knownations
and identities of generalized Hermite-Euler and Hermit&chi polynomials studied by Dattoli et al. [3], Pathad &an P] and
Khan [B].
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1 Introduction and
The 2-variable Hermite Kampé de Feériet polynomials ( ) G\ (It|<m1® =1). (15
(2VHKdFP)H(x,y) [1,3] are defined as: e+1 ZO (] ) (19)
Y X2 so that obviously
Hn(X,y) = n! ZOI72|’ (1.1) 1 1 1

S ri(n—2r)! Bn(X) = B(X), En(X) = E}(x) andGn(x) = GA(x), (n € N),

with the following generating function: whereNg =NU {0} (N=1,2,3,---).
gtt? _ ioHn(X y)ﬂ. (1.2) For each integek € N, S(n) is defined by
nl

= »
On replacingx by 2x and settingy = —1, equation (1.2) S(n) = 'zol : (1.6)
reduces to the classical Hermite polynomibligx) (see 1=
[2). is called sum of integer powers or simply power sum.

The generalized Bernoulli, Euler and Genocchi  The exponential generating function f&(n) is given
polynomials of (real or complex) ordem are usually by [4]:

defined by means of the following generating functions

(see p]-[11]):

ad tk e(n+1)t_1
Sk(n)—, —l4+drd .t -
( ) ZOBH (t|<2m1=1), (1.3) e k! a1

Fork € Ng andn e N, Ty(n) is defined by

(e‘ T 1) ZOEn (ltl<m1%=1) (1.4) Ti(n) = ii(_l)iik’ (18)
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is called the alternating sum of integer powers (2 ) gabxt-+a?bPy? 1-(—e™p?
' et+1 41
by The exponential generating functidp(n) is defined _ < 2 > LY 1(_ebt)i
0 tk 1— (_1)ne(n+1)t et +1 i;ﬁ
kZOTk(n)H =1 s (1.9) ( )

) 2b2yt2 ( 1)ie(bx+gi)at

Due to great importance and applications of i;)

Hermite-Euler and Hermite-Genocchi polynomials in © acl b

several diverse fields (for example, number theory, £t 20% )l LEL) bx+—| bzy) . (25)
combinatorics, classical and numerical analysis etc.), a n!

number of authors have introduced and investigated .
several generalizations of these polynomials. In sequel opince (-1t = (2 21):+1 the expression  for
such type of works, in this paper, we introduce a new f(t ) (e_atT) g+aoyt ”Teab‘ Therefore, we
generalization of Hermite-Euler and Hermite-Genocchiobtain the following power series expansion for f(t) by
polynomials. We also establish some elementarysymmetry

properties (for example, symmetric identities connection

and summation formulae) for the polynomials introduced ® b1 MES(

here by the approach given in the recent works of Yang et = 20 Z} )'b"HES ax+ b ia Y)_- (2.6)

al. [11], Khan et al. p] and Pathan and Kha9]

Equating the coefficients o}ﬁ in (2.5) and (2.6), we
get the desired result (2.3).

2 Some_wmmetry_'dent't'%for the . Remark 2.1. On settinga = 1, y = 0, Theorem 2.1
generalized Hermite-Euler polynomials reduces to the known result of Yang et al. [11, p.459(17)].

In this section, we introduce the generalized Corollary 2.1. For a = 1 in Theorem 2.1, we obtain the
Hermite-Euler polynomialsy Ena (x,y) for a real or following result:

complex parametesr defined by means of the following b1

generating function defined in a suitable neighborhood of 20( 1)ia"y En(bx+ Ei.bzy) _ 20(_1)ian En(ax+ Ei.azy).

t =0 i= a i= /

. (2.7)
( 2 )0’ et _ z HEr(ma)(K Y)ga (2.1) Theorem 22 Leta ar!db.be pgsitive intege.rs with same
€41 & n parity, then the following identity holds true:
so that n

> ()0 e oy T (o
k=

(G) _ A n (a)
HER (X y) = zo s ) En—sHs(xy).
. n
=2 (E) M UET (@ @y Tok(b).  (28)
k=0

Notice that (2.1) is the generalization of the following

function defined by Dattoli et al. [3, p.386(1.6)]: Proof. Let us consider

( ) =Y HEn(x y (2.2) B st azbzy2 14 (—1)*
é+1 ZO = —eat eab o1 ™ (2.9
Theorem 2.1. Let a andb be positive integers with same bty
parity, then _ eabxt+a2b2ytz 1- () a
) eaI e¢+1
a—

_Z)( 1) a'yEL (bx+b| b%y)

k o n
-3 E&‘”(bx, oy G- 5 )

Now replacingn by n—kin the R.H.S. of above equation,

n
- zo b En b 7a y) (23) we get
Proof. Let us consider (t) il < ) gl@ (b b2 y)a A"k, ( )(t)n
f(t) - 2 eabxtJrazbzytz 1+ ( 1)a+1eabt (2 4) nZOkZO k “ " n'
“\&r1 i1 ' (210)
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Since (—1)2t1 = (—1)b+1

f(t) = () @D EL

the expression  for
et Therefore, we

obtain the following power senes expansion for f(t) by

symmetry

-3 ( ) HE eyt T (o) O

n!
(2.11)

Now equating the coefficients q:ﬁ in the last two
expression for f(t), we get our desired result.

Remark 2.2. Fora = 1,y = 0, Theorem 2.2 reduces to
the known result of Yang et al.Ifl],p.460(18)].

Corollary 2.2. Takinga = 1 in Theorem 2.2, we deduce
the following result:

n
5 () WEox et T, (o
k=0

= z ( >HEk ax,a?y)bfa" T, (b). (212

Theorem 2.3. Let a andb be positive integers and be
even, then the following identity holds true:

b—1 a
onEn(aX+ Bi,azy)b”

112 B by

= Z} -] (2.13)
Proof. Let us consider
_ w+a2b2y2 1 — €7 1— et
_ 2 ) abx-+a%bPy? b_leait
(eb‘ +1 iZO
2 > a2b2yt2 ot (ax+ 2i)bt
= e e b
<ebt +1 i;
o b-1 b
XDZ)HEn ax+ ay) (2.14)

On the other hand, consideriads even, we have

2 eabxt+a2b2ytz 1— et
et 1—ett

( )eaerazbetZl (( ebt))a
g ( gAbxt-+a’b?y? Tl( eb't)

a”t n

HBn(bx+ bl bzy)

2 ® a—1 antn

o a—1

i b ) a_n—ltn—l
=-2 (—1)' 1B (bx+ =i, b%)
nZOiZO " a

n!

Replacingn by n+ 1 in the above equation, we get

xal 1 b ., a"tn
g(t) = —znzogo(—l) n+1HBn+1(bx+ i,b%y)— o
(2.15)

On equating the coefficients % in (2.14) and (2.15), we
get our required result (2.13).

Remark 2.3. For y = 0, Theorem 2.3 reduces to the
known result of Yang et al. {[1],p.460(19)].

Theorem 2.4. Let a andb be positive integers with same
parity, then

a—1

) (bx+ 2i,b22)
a

b—1
= Y(by)bka™™* S (~1)'HEL (ax+ i, a%2).
;() 5 (U e
(2.16)
Proof. Let us consider
2a—1ab(x+y)t+a2b2z? (14 (—1)3+1)
h(t) = 2 e e (2.17)
(€At +1)a (bt + 1)@

_ 2 abxt+a2b22tz 1-(—€t)? 2 aileabyt

et 11 et 1 et 1

2 b”tn

_ eabxt+a2b22t2
et+1

2 2b22t2
et +1

TLeegse
b"t"

_q)iglbxrBia i £ (g
& n!

_ Eo (bx+—| b%z)—— Z{)Ena Y(a bntn
— iaij Ek bX—I—EI b2 k' ZOEnC! 1) (ay) bn:]r;+k

On replacingn by n— kin the above equation, we have

(t):ii( ) ayab”kgb( D'y Eé”)(bx+gi,bzz)%. (2.18)
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We may also expand h(t) as: On settingy = 0, equation (3.1) immediately reduces
a1 to (1.5).
h(t) = ( 2 ) gbraftra L= (P ( 2 ) S .
et 1 et+1 et+1 Fora = 1, equation (3.1) reduces to
2 22 2P a”t” © tn
gabxt-+ab*zt E (o — l +yt2 v
( +1) .; Z et 1)< nZOHG"(X’y) mo 32
- <ebt ) ZbZZ‘Z 1)l l@xtgijbt iE,ﬁ“’l)(by)ﬁ If we seta = 0 in (3.1) then we get the generating
+1 = n function given by (1.2).
b-1 | (@) bk (a-1) anth N - .
= _Z}(—l) ZJHE (ax+ b' a’2)—— o ZOEn bY)T Theorem 3.1. Let a andb be positive integers with same
= k= ) parity, then the following identity holds true:
antn+

S S HEk ax+—| 22— S B Y(by) ) n a1 _
% Z) b~ kl ZO n! %( ) ) kbn k %( 1)IHG|((G)(bX+gi,bZZ)
=

Further, on replacing by n—k in the above equation, we

have
kgn-—k 4 kgh- kb i)
Zo Z) Y (by)bka z Y (by)bka %( 1)'HG, ’ (ax+ bl,a %2).
k=0 1=
% ;(_1)I E( )(ax+5| a Z)n (2.19)  Proof. Let us consider
= " (© (2t)20-1AbcHy)t+ 207 (L4(~1)* 1) gal s
After, equating the coefficients from (2.18) and = a a : :
(2.19), we get (2.16). ’ (St+1)7(en+1)
We can expand f(t) as:
Remark 2.4. On puttingz= 0, Theorem 2.4 reduces to a " w1
the known result of Yang et al. Jfl],p.461(21)]. f(t) = 2t eabxt+a2bzzt21_(_ebt)a 2 nt
Pl \etyl

et+1
Corollary 2.4. On settinger = 1 andy =0 in Theorem 2.4,
we get the following result: _ < 2

ki(ﬂ) akb”kéi(—l)iHEk(bx+gi,bzz) :(

n b-1 -1 i (a—
_ <E> bkanfki;)( 1) HEk(aX+ bl a Z) (220) = ;(—1) z ( >(bx+ | b2 ZOGn l

k=

eabxt+a2b2zt2 Z) ZOG a— 1
bn"

+1
) a 2b22[2 l( 1) (bX+ i)at GS‘]G 1) (ay)
i;) 20 n!

b”tn

i
i

bntn+k

i Gg@ b2 @ & (a1
(_1)|HG|< (bx“‘ahb Z)HnZoGn (ay) nl

On replacingn by n— k in the above equation, we have
3 Some symmetry identities for the

generalized Her mite-Genocchi polynomials Z}%( ) Y (ay)akp"

In this section, we introduce the generalized a1 b

Hermite-Genocchi polynomialsGL” (x,y) (for a real or X Z}(—l) G )(bx+ o bz )n—. (3.5)
P !

complex parametera) by means of the following
generating function defined in a suitable neighborhood ofwe may also expané(t) as

t =0:
2t 202421 — ( eat) ( 2t )al
a 0 n f(t)= eabxt+a b2zt eabyt
e ZOHGE")(x,y)t—, (3.1) ® (ebt+ ) Ayl \ef+1
é+1 & n!
< 2 aeab)d+a2bzzt2 bil(_eat)i iel(’lail)(by)ﬂ
so that 3 i; 3 _
n SHs(x)- - W D § Gl Yy
S; n s nZO { ~
(@© 2017 NSP

Natural Sciences Publishing Cor.



J. Ana. Num. Theol5, No. 2, 119-125 (2017)www.naturalspublishing.com/Journals.asp NS = 123

b1 P (a) pkek (a-1) antn . b .
=5 (=)' Y uGy (ax+6|7a D Z)Gn (by) - Since (— 1)'3“rl = (=1)P*1, the expression for
S W&o = : 20242 1
o o B . f(t) = (2" epberadn iebt—e'ab‘ Therefore, we
=3 (_1)iHG|<(a>(aX+ §i7a22)f Ggaﬂ)(by)at ) obtain the following power series expansion for f(t) by
o .Z) b k! nZO n! symmetry

Replacingn by n—kin the above equation, we have .
oo n
=3 ( 5 (1) woxtax. a2y>bka“-k+1Tn_k<b>> U

Zo%( ) U (by)bkank o \&o (3.1”1!)
1

b n By equating the coefficients oﬁ in the last two
% 20(_1)iHGI(<a>(aX+ ghaZZ):]_', (36)  expression forf (t), we arrive at our desired result (3.8).
e !
Remark 3.1. For x,y = 0, Theorem 3.2 reduces to the
By comparing the coefficients c}% in (3.5) and (3.6), we K It of Y ’ tal. 111].0.462(22
obtain our desired result (3.3). nown result of Yang et al. {1,p.462(22)]

, Theorem 3.3. Let m andn be positive integers, then the
Corollary 3.1. If we puta = 1 in Theorem 3.1, then we following identity holds true:

get the following result;

0 n at b i({j‘) B(n X Tok(n) =272 (Bul3, 5]+ (—1)"1Bm(n, ) )
kpn—k < (1) D2 &
k;<k)ab i;( 1)'y Gy (bx+ a|,b 2) (312)
5 () B )= 2 (Bmea(n. )~ Bmia(3.3)).
K k m+1 m+1
= %( )bk a"” kzj( 1)'nGu(ax+ oi,a%2).  (37) 2k m+1 2 22
b (3.13)
Theorem 3.2. Let a andb be positive integers with same Proof. Let us consider

parity, then the following identity holds true: _1\n+1

f(t) = (o ) e L™ (3.14)
n g1 g+1

% ( E) H Gk (bx, b?y)ab" ¥ 1T, (a)
k=
= Z}Bk (n,xX)— k' Z Tm(n

Replacingm by m— kin the above equation, we have

m:0k20< )Bk (1 X) Tk (N )%- (3.15)

(1) = 2abt ) bt +a?h2y2 1+ (ebt )a+1eab‘ (3.9)
et +1 1 '
N * On the other hand
_ 2abt ) eab><t+a2b2ytz 1- ( ebt)a ter\t+)([ + (_1)n+1te2nt+xt
+1 M1 f(t) = Z 1
a-1 .
_ (eftabt]-) (At a2ty zo(_ebt)l - ¢ ot (—1)nHie2ntt
+ B “\FE1® )T
- al(—1)‘b( ) R 12 0 x (2t) ()t @ X (26)M
2, 1 =32 Bl ol 2 By
afl ) ktk 0 ntn m
= 1)'b Gk (bx, b bi)"—. 2 e n x X t
3, (-1 3 G oxi) T 5 (00 f(t) = < S 2 (B 5+ (1) ) o
Replacingn by n—kin the above equation, we have (3.16)

L a1l n On comparing the coefficients (ﬁ? in (3.15) and (3.16),
f)=3 (kzo ( k) H Gi(bx, b?y)akph -+ i;(—1)%”'() o Wearrive at the desired result (3.12).
Similarly by considering,

o= nZO (kzo (E) HGx(bx y)a't kHTnk(a)) n’ g€ -1
(3.10) g(t) = ( o 1) 1 (3.17)
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k o tm

t
_zEanklem m|

Replacingm by m— kin the above equation, we have

m

t
g( JEnNSh . (319
m:Ok
On the other hand
_(_2 e € —1
g(t>_<et+1>e g1
224Xt _ ot
I~
2e2nt+xt 2em+)(t
TeE-1 &1
_2g @ 2 &g nx (2"
= 2 BTt 2 Be )T
S X noxy\t™?
B <n;2 (Brin.5) =Bl 2))> m

Replacingn by m+ 1 in the above equation, we get
2m+2 n x

00 = 5 (255 (Bratn) -3 3) ) 1
" (3.19)

On comparing the coefficients éﬁa in (3.18) and (3.19),
we get the desired result (3.13).

tm

Remark 3.2. For x = 0, Theorem 3.3 reduces to the
known result of Yang et al. {[1],p.463(26)].

Theorem 3.4. Let m andn be positive integers, then the
following identity holds true:

m

Ge(n)Sn () = 2™ (Bu(n. 3) ~Bn(3.5)).

2'2)
(3.20)

5)—
k=0 12

Proof. Let us consider

<é+1> G

o tm

_%Gknx z
m:m(;( )GanSm_():]:.

On the other hand

(3.21)

2t 1
h(t) = (et+1> -
2te2nt+xt_2tent+xt
B &1

2te2nt+xt 2tent+xt
T 1 &1
- X, (2t)m ad n x (2t)m
zzngosm(n,i) = —2wgosm(§,§) —
h(t) = i (2"‘+1 (Bm( 2) Bm(g )2())) t—n: (3.22)

m=0

On comparing the coefficients cﬁ? in (3.21) and
(3.22), we get the desired result (3.20).

Remark 3.3. For x = 0, Theorem 3.4 reduces to the
known result of Yang et al. {[1],p.463(27)].

4 Conclusion

Recently, many authors namely, Kha®],[Yang et al.
[11], Khan et al. Bp] and Pathan and Khan9], have
introduced and investigated several generalizations of
Hermite-Euler and Hermite-Genocchi polynomials. In a
sequel of such type of works, in this paper, we have
introduced a new generalization of Hermite-Euler and
Hermite-Genocchi polynomials. We have also established
some elementary properties (for example, symmetric
identities, summation formulae, power sum and
alternating sum) for the polynomials introduced here. The
results presented in this paper are more general in nature.
Therefore, by the results established here, we may derive
some other interesting special cases.
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