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Abstract: In this paper, an interactive approach for solving muléelemulti-objective fractional programming (ML-MOFP) driem
under hybrid uncertainty is developed. The proposed intemapproach makes an extension work of Shi and X2 [In the current
model the left-hand- and right-hand-side variables in tbestraints are influenced by hybrid uncertainty (i.e. batkziness and
randomness); represented by fuzzy random variables (FRWghe first phase, we make the best use of the chance-cimestra
programming approach and tieecut approach to obtain the equivalent deterministic madf¢he ML-MOFP problem with FRVs.
Then, the linear model of the crisp ML-MOFP problem is foratat. In the second phase, the interactive approach siespttie
ML-MOLP model by changing it into isolated multi-objectiviecision-making (MODM) problems, to avoid non-convexifso,
each separate MODM problem of the linear model is solved byetbonstraint method and the concept of satisfactorinesslliyj
illustrative example and comparison with the existing teghes are provided to indicate the efficiency of the intéva@pproach.

Keywords: Multi-level programming; Multi-objective programming; r&ctional programming; Fuzzy chance-constrained
programming; Fuzzy sets:constraint method.

1 Introduction

Hierarchical decision structures are prevalent in govemiraystems, competitive economic organizations, sug@ins,
agriculture, biofuel production, and so d5].[The area of multi-level mathematical programming (MLM#®pvides the
art and science of making such decisions. Several matheshatodels for such problems have been exhibife8,[L7,
19.

The fundamental idea of MLMP methodology is that the firselelecision maker (FLDM) decides his objectives and
choices, hence asks each inferior level of the associadiothéir solutions, which obtained individually. The lowevel
decision makers’ choices are then presented and alterde3LDM in light of the general advantage for the association
[1,5].

A significant amount of effort have been devoted to solve ML many efficient algorithms have been proposed
[1,2,5,6,17]. Shi and Xia R2] introduced interactive bi-level decision-making prabke Interactive fuzzy programming
has been extended by Sakawa et24] fo thoroughly consider in solving MLMP problems under fumess.

The balance space approach was modified to solve MLMP prattigmbo-Sinna et all]]. Baky [5] presented fuzzy
goal programming (FGP) methodology to tackle ML-MOLP pmhk. Interactive fuzzy random bi-level programming
via fractile criterion optimization has been presented bieBva et al. 25]. Osman et al. 7] proposed an interactive
methodology for tri-level MODM problems. Chen and Ché&hdtilized a fuzzy variable for relative satisfactions argon
leader- and -follower to solve the decentralized bi-levegpamming problem (BLPP). Arora and Gupgh gxhibited an
interactive FGP methodology for BLPP with the merits of dymaprogramming.
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Also, a fuzzy programming approach for bi-level stochagtmgramming was studied by Modak et dlf]. A fuzzy
BLPP via nearest interval approximation technique and Kigiimality conditions has been introduced &0.

Fractional programming problems originate from the faett throgramming paradigm could better fit the genuine
problems if the optimization of a proportion among the pbgkand economic quantities is consider@dIn the course of
recent decades, such problem has been one of the poweriunipigtools. It is routinely used in engineering applicatip
business and different discipline®, 11,26]. Recently, Lachhwanil4] introduced FGP methodology exhibited i, §]
with some alterations for ML-MOFP problems.

Interactive FGP approach using Jacobian matrix for deakred fractional BLPP has been introduced by Toksari and
Bilim [26]. An interactive algorithm to a certain type of bi-leveléger multi-objective fractional programming problem
was studied by Eman®].

Amid the previous two decades, the larger part of researchemulti-level programming issues have been focused
on the deterministic form in which the coefficients and diecivariables in the objective function and the constraamés
thought to be fresh esteems. Be that as it may, in all acyulis normally hard to know accurately the estimationshef t
coefficients because of the presence of loose or indetetemiada while building up multi-level model$$, 20, 21].

There are two noteworthy sorts of approaches for handlihigerabilities existing in decision making issues: fuzzy
mathematical programming (FMP) and stochastic mathealgirogramming (SMP). FMP is compelling in managing
choice issues under the fuzzy goals and in taking care oftignable coefficients of target capacity and requirements
caused by imprecision and unclearnés21]. SMP is an augmentation of numerical programming to chisisees whose
coefficients (input information) are not positively refedrto but rather could be spoken to as possibilities or pritibed
[10,11,18).

In true enhancement issues, the kind of uncertainty tha lgege consideration is "haphazardness” related with
different right-hand side parameters in the requiremebslp]. At the point when some right-hand side parameters
are of stochastic elements and can be spoken to as likelibmoceyance, the chance-constrained programming (CCP)
strategy can be utilized. Information once in a while car’ireasured/gathered accurately. This uncertainty mayemapp
in stochastic or non-stochastic (i.e. fuzzy) sense or btmbhsistic and fuzzy faculties together. During the timenspe
inferring models of CCP, consider that the conceivablerestibns of the arbitrary parameters under the event of catsis
as fuzzy numberslfg].

In this investigation, randomness and fuzziness are cereidall the while as FRVs. The idea of FRVs was first
presented by Kwakernaak3]. Buckly [3,28] characterized fuzzy probabilities utilizing fuzzy nunbas parameters in
probability density function and probability function. PGtrategy for tackling CCP issues including FRVs is as @f lat
concentrated in [4,16]. Parametric ML-MOFP problem withZimess in the constraints has been exhibited by Osman et
al. [18]. The proposed interactive approach makes an extensickhaf@hi and Xia R2].

Moreover, interactive mechanism for solving multi-leveD@M problems simplifies these problems by changing
them into isolated MODM problems at the different levelsthis way, the trouble related with non-convex numerical
programming to get a compromise solution was avoided. ligewthe algorithm raised the satisfactoriness concept as
only for the FLDM predilection17,22).

The point of this paper is to build up an interactive approswhsolving ML-MOFP problem with FRVs in the
constraints. These FRVs represents the uncertainty irsideaemaking problems. In order to do so, the problem is first
changed over into interval esteemed programming problesacban CCP procedure andcut of fuzzy sets. Then the
ML-MOFP problem is changed over into its equivalent detaistic form using fuzzy partial order relation.

Then, the linear model of the deterministic ML-MOFP problésnformulated by extending the work of M.
Chakraborty and S. Gupta [8]. Moreover, the interactiverapph simplifies the linear model by converting it into
isolated MODM problems. In addition to that, each separat@eDWl problem of the linear model is solved by the
g-constraint method and the concept of satisfactoriness.

Finally, An algorithm to clarify the developed interactimeethodology for the ML-MOFP problem with FRVs is
exhibited.

The rest of this paper is composed as takes after. Sectiana@lutes some basic definitions and preliminary results.
In Section 3, formulation of the ML-MOFP problem with FRVséghibited. Its proportionate deterministic model is
formulated in Section 4. Section 5 develops the linear moéi¢he problem. The interactive models for solving ML-
MOFP Problem with FRVs are introduced in Section 6. An intéve algorithm for ML-MOFP Problems with FRVs
is proposed in Section 7. A numerical illustration and clatien with the current techniques are given in in Section 8.
Closing comments are given toward the end.

2 Preliminaries

In this area, some essential ideas and preparatory outaditiesd as a part of this paper are quickly presented.
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Definition 1Let Rt be the set of all real numbers. Then a real fuzzy nurdkisrdefined by its membership functieg(x)
that satisfies:

1.A continuous mapping from‘Ro the closed interng, 1].
2.4z (x) =0forall x € (—0,a.

3.Strictly increasing and continuous ¢an bJ.

4.uz(x) =1forall x € [b,c|.

5.Strictly decreasing and continuous fund].

6.uz(x) = 0for all x € [d, +) [29].

Definition 2A fuzzy numbéii is said to be anZ.%-fuzzy number if

Z(aX x<a, Y2 >0,
Ha(x) = {ﬂ’ ((Xﬁ;y;)) x>a, fB*>0, @

where a is the mean value &andy? and 32 are positive numbers expressing the left and right spreddsaod reference
functions?, # :[0,1] — [0, 1] with .Z (1) = #Z (1) = 0and.Z (0) = #Z (0) = 1 are non-increasing, continuous functions
[29.

Utilizing its mean esteem and left and right spreads, angbsfianctions, such a&’%-fuzzy number is emblematically
composed ad = (a,y?,8%) r

Definition 3The a-level set of the fuzzy paramet@yis defined as an ordinary seI(&) for which the degree of its
membership function exceeds the levebset[0, 1], where 6,29

La (8 ={acR"| ua(x) > a} = {ac [&, ag] | ua (%) > a, },

whered; =a—2.¢ Y(a) anddy =a+B%2 Y(a). _
For two .ZZ-fuzzy numberé = (a,y?,3%) g andb = (b, yb,ﬁb)LR the formula for the extended addition becomes
[29]:

(a VaB LR+( vybv b)LR (a+b7ya+ybaBa+Bb)|_Rv
(@a—b,y2+B° B+ V) o

(ayaB LR (7yba b) LR —
3.(a Y3 B r x (b, B°) = (abay’+by2,aBP+bp?) , if a>0, b>0,
4.1 (a2, B2 )LR_{(( ”AV:BAB_))'\'T@)RL II; ;‘\ig: A is a scalar

All through this paper, we should take the ordering betweenftizzy numbers, andb. According to the following
definition.

Definition 4Let4,, = [d5,4Y] andb, = [b},bY] be two intervals. The order relations g and <_r betweerd,, andb,
are defined asZ0,27):

18, =<LRrb, if and only ifal, < b} anday < by,
2.8, ~Lrb, if and only ifd, < rb, andd, # by,

Definition 5A fuzzy random variable is a random variable whose paramsteizzy number. L&t be continuous random
variable with fuzzy parametét and P as fuzzy probability, theX is said to be continuous fuzzy random variable with

probability density function (x; 5) with the property B,4]

/f f(x 8)dx=1; 6 € 8[a]. @)

3 Problem Formulation

Consider the hierarchical system be made out of a p-levésidecmaker (DM). Let the DM at thé"-level denoted by
DM; controls over the decision variate= (Xi1,Xi2,--- ,Xin;) € R", i =1,2,---, p. wherex = (X1, X2,---,Xp) € R" and
n= 3"  n and furthermore assumed that

Fl(xlaXZ""7xp)E FI(X): RananX"'XRnp%Rma i:1727"'apa (3)
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are the vector of fractional objective functions for M = 1,2, --- , p. numerically, the ML-MOFP problem with FRVs
in the constraints may be formulated as follodss] 7,19];

18 Level
max Fp(x) = max(fi1(x), f12(x), -+, fuq (X)), (4)
X1 X1
wherexz, X3, -+, Xp solves
29 | evel
max Fz(X) = max(f21 (X), foo (X), ey, f2k2 (X)) , (5)
X2 X2
wherexp solves
p Level
max Fp(x) = max(fp (X), fp2 (%), -+ foi, (X)) 6)
Xp Xp
subject to
n
Prob[;ajxj Sb;| >1-—p, i=12,---,rg, 7
=
n ~
Prob Zéjxjgbi >1-p, i=ro+Llro+2,--,rq, (8)
=1
n ~
Prob GiXj<b|>1-p, i=r1+1r1+2,---,m, (9)
=1
Xj>0, j=12,---,n (10)
where

N CHX1+Ci2jx2+...+ciFJ;Xp+aij
Dij(x) dlﬁlfxl+dgxz+"'+dgxp+ﬁij )

fij(X) vy Py J:17277k| (11)
Also, c'kJ and d'kJ are nj-dimensional row vector for the coefficient of tH& decision vector of thé!" objective
function; a'l and B! are scalars;and bj,(i=1,2,---,ro) are independent normally distributed FRVs. Also,

bi, (i=ro+1,rg+2,---,r1) is exponentially distributed FRVs.

Moreover, by, (i=r1+1,r1+2,---,m) follow Weibull distributed FRVs. Whilegj, (i=ro+1,r0+2,---,m),
represents the fuzzy coefficients of ti{€ decision variable in th@" stochastic constraintsp;, 0 < p; = 1, is the
tolerance measures which represent the admissible riskreftiin violation. Thé'" imperative is happy with no less
than a likelihood of 1- p;.

Every one of the parameters are communicated as fuzzy nsrdescribed by any type of membership functions,
contingent upon DM’s inclination. It is standard to expéeitD;; (X) > O for all estimations of decision variables.

4 The Equivalent Deterministic Model

In this section, the ML-MOFP problem with FRVs in the congttaiis transformed into the deterministic model.

Case 1: Fuzzy normal distribution

In this case, it is accepted that the random varidbleas a normal distribution, i.&€ ~ N(m,5?), wherem and &2
denotes the mean value and variance, respectively; beofisabjective and objective impacting componenignd 62

are likewise considered as indeterminate and will be ppetidy fuzzy probabilistic distribution, i.enand&2.

(@© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro6, No. 3, 549-566 (2017)www.naturalspublishing.com/Journals.asp NS = 553

Therefore, the probability density function of the fuzzymal distribution [15,16]
- (x-m?
f (x; i, 52) ! e( =3 (12)
V2o
Let the coefficients;j andBi, (i=1,2,---,ro) be independent normally distributed FRVs which is pregiimt¢heit
constraint.
Theit" CCP follows as:
Prob| § &jxj <bi| >1-p, (i=12-,r0), (13)
=1
Thus the normally distributed FR\s; andb; are expressed aﬁ(ﬁlﬁn,gz’g‘”) andN(mai,ézi) respectively; the fuzzy

meanniand fuzzy variancé? are thought to beZ %-fuzzy numbers _
Thus based on the stochastic CCP to handle constm)]tl(atﬁi = 2? 18ijXj — bi, such thaui"can be expressed as
)/5~ follow standard normal distribution. In the

a fuzzy normal dIStrIbutIOIN(n’hl,(SZ ) [10,15 ]. Moreover(G; —
interim, the requiremeni@) could be changed into a determlmstlc nonlinear dispastyakes after:

n 9 — M
Prob < bj | <= Prob[(; < 0] «= Prob — | >1—p;, (14)
Lzl ] [ 1/52 1/52@]
17 27 T rOa (15)
(16)

Thus, based on level set properties and the partial ordeions P7], presented in section 2 then the constrair@)

can be transformed to the following crisp equivalents:

n V] ~ U U
gl(m@j)ﬂxjm (1-p) 2(52 ) %+(83) < () i=1,2,- 10, (17)
n L
Z (n]éi X + ¢ 1 pl \/Z 62 X2 (62 ) S (ﬁgl) I = 17 27 -+, T, (18)
=1 a
where the upper and lower-cuts of the fuzzy means and fuzzy variancesprandb; follows as
(e ), =My +BE 2 (@), and (e ) = me; — Va2 (@), (19)
~ V] L
(83,), =& +B27 (@), and (8%,), =&~z @), (20)
~ u m -1 2 L -1
(M) =my+B0 % (), and (™) =m— 2 (@), (21)
2 \Y S p—1 2\t 5 o1
(5Bi)a=55i+;35i% (ar), and (5&)&:5&“’&3 (a), (22)
(@© 2017 NSP
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Case 2: Fuzzy exponential distribution

In this case, it is assumed thB{g (i=ro+21ro+2,---,r1), in (8), is exponentially distributed FRVs. Thus has
probability density function follows a€[28]:

f(bi;é.):é.e—bi 6 o Lro4+2,e 1, (23)

To convert the constraing] to its equivalent deterministic form lgt = z’j‘zléjxj, i=ro+1---,rg, then

PrOb[ZT:léij < Bi} = Probly < Bi} [3,4]. So, based on-cut properties and the partial order relations presented i
section 2 then the constrair@)(expressed as:

Probl[§ < bi] (a) = { e 8 db: 6 € i(a)y e (or)} >1-p, (24)
Yi

Prob[y < Bi] (a)= {e‘yi .6 ¢c6i(a)y e (a)} > 1-pi, (25)

Since, the coefficients;; and the parameteé. of the FRV b are considered as af #-fuzzy number. Hence the
equivalent crisp constraints of the probabilistic corietsa) follows as:

=}

> (@585 % (@)x; (8480 % (o)) < —In(1-p) . i=roFLrot 2, (26)

(@i -2 )( —y )g—ln(l—pi), i —ro+1ro+2, -, r1, 27)

D

Case 3: Fuzzy Weibull distribution

In this case, it is assumed tHmt (i=ri1+21r1+2,---,m),in(9), represents Weibull distributed FRVS, thus its probapili
density function is composed aB:

1 (b
f(blyuhplacl) p(blp ) e_(Ti> i:rl+17rl+27"'7m7 (28)
| 1

It is also known thab; has three parametefs, pi and G wherep and g are the scale parameters afdis the
location parameter. To convert the constr&nt¢ its equivalent deterministic form lgt = z'j‘:léjxj, i=ri+1,---,m,

then Prot{z’j‘zléjxj < Bi} = Prob[; < Bi] [12]. So, based on-cut properties and the partial order relations presented
in section 2 then the constrairg)(follows as:

Prob[yi < bi] (a) = {/yl . <b. . M) e (bip;iui)cidh ‘ i € ﬁiﬁicre)’)??i(g)ﬁi (a), } >1-p, (29)

Probl[§i < bi] (a) = {e (%) ‘ HiE R f/l E)y?'(e)ﬁi (@), } >1-pi, (30)

Since, the coefficients; and the parameter;, p; of the FRVD; are considered as a#f%-fuzzy number. Hence the
equivalent crisp constraints of the probabilistic coriatsa(9) expressed as:

(& +B5%H(a)]x; < [wi+BF%  (a)] + [oi+ B2 ()] [-In(1— pi) o i=r4lom (3D)

M=

]

laj—ve L M a)]x < [ — 'L Ha)] + [Pi—vipffl(aﬂ[—ln(l—pi)]%‘ai=f1+17---,m, (32)

Il
ik
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Hence, for a coveted estimation af the ML-MOFP problem with FRVs in the constraints can be ¢gfeahinto the
o-(ML-MOFP) model as takes after:

18 Level
@( F (X) = Q:’:Lx(fll (X), f12 (X), ey flkl (X)) R (33)
wherexz, X3, - -+, Xp solves
24 |_evel
max R (x) = max(fa1(X), f22(X), -+, fax, (X)) (34)
X2 X2
wherexp solves
p" Level
max R (x) = max(fpn (), fpa (%), -+ fpiy (X)) (35)
Xp Xp
subject to
LR SIS YCN YL S SR C R
=1 =1
et 3@ <), e @
J=1 J:1 a 1/ a a
S (e + B2 () (8+B° % *(a)) <-In(1-p), i =ro+Lro+2, .m0, (38)
=1
S (& —yﬁ.i”*l(a))xj (G.—V,‘J?.Z*l(a)) <—In(1—-p), i=ro+1rog+2,--,r1, (39)
=1
S lej +B5% *(a)|x; < [wi+B'% ()] + [pi+ BP % ()] [-In(1— i) ]%, i=ry+21,---,m, (40)
=1
S lei—viZ Ha)lx < -y @)+ [p— L )] [-In(l-p) ]fli, i=ri+1,---,m, (41)
=1

XJZO, j:1727"'7n' (42)

5 Linear Model Development of Thea-(ML-MOFP) Problem

An equivalent linear multi-objective programming problésmulti-objective fractional programming (MOFP) problem
has been presented]][ Now, we make further extensions on the article of M. Chhkréy and S. Guptad], to develop

a methodology for obtaining the linear model of ingML-MOFP) problem. Since the MOFP problem for tif&level
decision maker may be written as:

maxF; (x) = @((fil(x), fiz (X), -, fix, (%)), (43)
X X
subject to
(et 3 (3)08 e (3) < (), sz w9
= 1=
(e taomy (3 (B) 6 (%), <(m),  imteen a9
= 1=
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i(a,—kﬁu ())Xj(&—i—ﬁie%‘l(a))S—In(l—pi), i=ro+1ro+2,---,r1, (46)
Ji(aj — LN a)x (9. - V,H.Z‘l(a)) < In(l—p), i=ro+1r0+2-,r1, (47)
il[a,w. )] < [+ B2 (@) + [+ B @) [HIn@—p) |5 i=ritlom (48)
J”l[ L@ < [ @]+ -2 @] [Fn-p) [ i=neleem (49)
x>0, j=12n. (50)

where y -
Nij(x) cIx+all

fii (X) = = = — —

Assuming that, the set of constraindglf-(50) denoted b)Go,, | be the index set such thiat= {j : Njj (X) >0V xe Gq}

(i:1,2,"',p),(j:1,2,"',ki), (51)

soalsol®={j: Nij (X) <0V xeGq}, wherel UI®={1,2,--- ki}. If Njj (X) is concaveD;j(X) is concave and positive
on G4 andN;j (x) is negative for alk € G4, so [8]:
i (X . —N;j (x D
max = i (%) — mm:i”( ) — max= (9 , (52)
Dij (X) ~~ Dij (X) ~~ —Nij (X)
XEGq XEGq XEGq

whereGy, is nonempty and bounded. For simplicity, assume thidt'x+ '/ and—1/c¢ix+a'l ist for j € | andj € I°,
respectively, i.e.

1 -1
iel d X+B ielCc X+a
which is amounting to:
-.;..zt forjel and 71 >t forjelS, (54)
d’ x +pii cix+a

Based on the transformatign=tx (t > 0), y € R", t € R, and the above inequalities in equati&d) therefore, the
linear model of thé'" level decision maker problem is defined as takes after:

@((t(Nij (y/t)), forjel; t(Dj(y/t)), forjel), (55)
Yi
subject to
t(DIJ(y/t))Sla fOf]El (|:1,2,,p), (J:17277k|)? (56)
_t(Nij (Y/t)):]-a fij€|C (i:1727"'7p)7 (J:1,2,,k|), (57)
()Y, +¢ ' (1—p \/Z A (52) t2§(m5i)jt i =1,2, 1o, (58)
i=
n L .
J; Ma,)qy, +9 (1 p \/Z (52) e (i)t i=12-n (59)
S (o +BS 7 L)y, (8+B° 27 (@) <(—In@—p )L, i=To+Lro+2 11, (60)
=1
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3 (&2 @)y (8-¥2 @) <(-In@-p)t. i=To+Lro+2-ry, (61)
=1

=}

oy + B (@))yy < [ [+ B2 ()] + o+ BP# (@) [HIn(—p) ] ti=ra+1m  (62)
1

J
i[aj 2@y < [z @]+ [a- AL @) Fn@-p) 7]t i=rLeem (63)
J:

YJZOa t>oa j:1727"'7n' (64)

Following the above discussion thus, tbe(ML-MOLP) model of thea-(ML-MOFP) problem is formulated as
follows:

1% Level
maxFy (y,t) = max(t (Nuj(y/1) , for j € 1;t (Daj (y/1)), for j €1°), (j =1, k), (65)
Y1 Y1
whereyy,ys, -, Yp solves
2" | evel
maxFs (y,t) = max(t (Ngj (y/1)) , for j € 1;t (Daj (y/1)) , for j€1°), (j =1+ k), (66)
y2 Y2

wherey,, solves

p' Level
maxFp (y;t) = max(t (Npj (y/1)), for j € Lit (Dp; (y/1)), for j€ 1), (j =1, kp), (67)
Yp Yp
subject to
t(DIJ(y/t))Sla forjEI (i:1,2,---,p),(j=1,2,---,ki), (68)
_t(NIJ(y/t)):]'? fijElC (|:1,2,,p),(]:1,2,,k|), (69)
n n - u ~_\U u .
jzl(mé”)l;’yiﬂb1(1_pi)\/jzl(62541)ay12+(525i)at25 (mf)i)at i=12-.r0, (70)
n n L ~ \L L
S imty o taom 3 G)b @S () m1eem @
n (aj+B5 % H(a))yj (e. +B° %—1(0{)) <(=In(l—p))t,  i=ro+Lro+2-,r, (72)
=1
i (al_Vllef_l(a))yl(a_ﬁg_l(a))S(_ln(l_pl ))t7 i:r0+17r0+27"'7r17 (73)
=1

l&j + 852 (a)]y; < [[ui +B 2 ()] + [pi+ P2 ()] [-In(1— i) ]*} ti=ri+l--.m  (74)
1

]

o= 2 M@y < [[- 2 @) + [a— 2 H@)] [Fn@—p) 5]t i =ri+Lm(75)
1

YJZOa t>oa j:1727"'7n' (76)

where the system of constraints, in equatidd®+(76), at ana-level denoted bys,, which form a nonempty convex set.
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6 An Interactive Models for a-(ML-MOFP) Problem

To obtain theor-Pareto optimal solution (preferred solution) of th§ML-MOFP) problem with FRVs in the constraints
firstly, the crisp model, equation83)-(42), is developed based on CCP technique and dheut of fuzzy sets.
Consequently, the-(ML-MOLP) model is formulated as presented in the previsestion equation$6)-(76).

In the interactive mechanism, after obtaining the prefkoresatisfactory solutions by tleeconstraint method and the
concept of satisfactoriness, the FLDM gives the favoredragements that are satisfactory in rank request refemwitiggt
satisfactoriness of the preferred solutions to the SLDM.

Then, the SLDM uses the-constraint method to achieve the solution that progressaccesses the favored solution
of the FLDM [22]. Afterwards, the acquired solutions are delivered to th®® who will look up the solution by the
e-constraint method and the concept of satisfactorinesttdmahe solution that is closest to the favored solutiothef
top levels.

At long last, the top level determine the favored solutiontloé o-(ML-MOLP) problem as indicated by their
satisfactoriness. Then, the corresponding preferredisolto thea-(ML-MOFP) problem is obtained.

6.1 The First Level Decision Maker (FLDM) Problem

The first level decision-making problem of the(ML-MOLP) model follows as:

@((t (Ngj(y/t)), forjel; t(Dgj(y/t)), forjel®), (j=1,2,-- k), 77
Y1
subject to
(YLYZa'” 7yp7t) ESY (78)

To obtain thea-Pareto optimal solution of the FLDM; we change the MODM gdeoh, model {7)-(78), by the
g-constraint method into the accompanying single-objeatigcision-making (SODM) problem:

max(t (Ngj(y/t)), forjel; t(Dy(y/t)), forjel®), (i=1), (79)

subject to
_t(Nlj (y/t))zélJ’ fijElC (levzvakl)a (J?éé)a (81)
(ylay27 e 7yp7t) S SG (82)

So the solution of the first level is obtained by executingetm|, as(y;,ys, -, Yp.t) = (V1Yo . Yh.t).

6.2 The Second Level Decision Maker (SLDM) Problem

Secondly, following the concept of MLMP problems, the fiestdl decision variably{ should be included in the SLDM
problem; hence, the problem of SLDM can be expressed as:

@((t (N2j(y/t)), forjel; t(Dyj(y/t)), forjel®), (i=1,2,-- ko), (83)
Y2

subject to

(YEv)/Zv"'a)/pat)esa- (84)
The g-constraint method is utilized to formulate the SODM problas follows:

max(t (Nzj(y/t)), forjel; t(Dy(y/t)), forjel®), (j=10), (85)

subject to
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_t(NZJ(y/t)):@h fijElC (1213237k2)a (17&6)3 (87)

(yfay&'" aypvt) ESU (88)

Our basic thought on solving mod@&3)-(88) is to obtain the second level non-inferior soluti@i,yg, ‘. ,yg,t) that
is closest to the FLDM solutiofy],y5 .-+ ,y5,t) by following algorithml .
Therefore, we will test Whethe(yf,yg, ‘e ,yS,t) is a preferred solution to the FLDM or it might be changed aditwm

to the accompanying test: If
HF]. (yFayFa yF7t) _Fl (Yang, ’ys’t)HZ < O-F
P (5 Y5 - ya ),

Then(yy,y5,---,yp,t) is a favored solution to the FLDM, wher is a small positive constant given by the FLDM.

(89)

6.3 TheP" Level Decision Maker®" LDM) Problem

Consequently, as indicated by the concept of MLMP probldmesdecision variables of top Ieve(syf,yg, e ,yggjg)

should be given to the'fPLDM problem; hence, the problem ofF.LDM can be defined as:

w(t(NpJ(y/t))a for] EI! t(DpJ (y/t))v for] EIC)’ (J :1727 7kp)7 (90)
Yp

subject to

(yfaygv : ygp l>7yp7 ) S Sa (91)
Based on the-constraint method the SODM problem of tH8 PDM follows as:

max(t (Npj(y/t)), forjel; t(Dpj(y/t)), forjel®), (j=10), (92)

subject to
—t(Npj(y/t)) = 8pj,  forjel® (i=L12-kp),  (I#0), (94)

The aim of solving modeIS{Z) (95) is to find the B' LDM non-inferior solution closest to the preferred solatoof
the top Ievels(y':,yS p 1 ,yp, ) by following algorithml.

Now, we will test Whether(yf,yg,--- ,yB,t) is a favored solution to théP— 1)th LDM or it might be changed
according to the accompanying test: If

HF(p—l) (yfayga ay(Ppil)vt) - F(p—l) (YEaYEa aYth)HZ
[Fp-1) O1-¥3. - ¥b D) [

Then, (yi,y5, -+ ,yp.t) is a preferred solution to the'PLDM, which means(x{,x5,--- ,xf) is the corresponding

preferred solution of ther-(ML-MOFP) problem. Wherer(P~1) is a small positive constant given by the— 1)th LDM.
For theit" LDM problem§;j, bij anda;j are defined as:

g(P-1) (96)

dJ:(blj_aﬂ)s_'_a*]v (izlvzv"'ap)a (jzlaza"'akp)a (97)
bij = max (t(Nj(y/1)), forjel; t(Djj(y/1)), forjel), (98)
(Y1)€Sa
(@© 2017 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

560 NS 2 M. S. Osman et al.: Interactive approach for multi-level...

aj= min (t(Nj(y/D), forjel; tDy(y/), forjeld), (99)

(Yt)€Sa

wheres is the satisfactoriness given by ti&level decision maker.

The preferred solution of th&' LDM problem is obtained by the following algorithm:

Algorithm I
Step 1. | Set the satisfactorinesg, (i=1,2,---,p), v=12,---. Lets = 5, toward the start, and leg =
S1,S2,S3,, (i=1,2,---, p) respectively.
Step 2. | Setup the-constraint problen® (e_,(s,,)), If P(e_((s,)) has no solution or has an ideal solution with
t(Nij (y/t)) < &j, for jel;t(Dij(y/t)) < &j, for j €1° then go to step 1, to adjust= Sy..1) < Sv-
Otherwise, go to step 3.

Yp

Step 3. | If the DM is happy with(’?,’?,--- ,T) = (x§,%5,---,%;), then it is the favored solution of the

i"LDM, go to step 5. Otherwise, go to step 4.
Step 4. | Adjust satisfactoriness, lgf,. 1) > sv and go to step 2.
Step 5. | Stop.

7 Interactive Algorithm for the ML-MOFP Problem with FRVs in the Constraints

Following the discussion in the previous sections, the psep interactive algorithm will be developed for fathoming
ML-MOFP problems with FRVs as follows:

Step 1. | Formulate the deterministic ML-MOFP model, equatiod3){(42), at the specified value @f.

Step 2. | Compute the individual best and worst values of each olbpétinction in thea-(ML-MOFP) model.
Step 3. | Formulate the linear model of ttee-(ML-MOFP) problem, equation$6)-(76).

Step 4. | Calculate the individual best and worst values for eachativjefunction in the linear mode6g)-(76).
Step 5. | Setr =0.

Step 6. | Execute the steps presented in Algoritinto acquire an arrangement of favored solutions [for
the FLDM problem equations70)-(82). The FLDM puts these solutions in order as indicated

by the accompanying configuration : Preferred solutig,---,Yp),---, (Vi ---,¥p™") =
(Koo XG) yeee (O, X5 . Preferred ranking (Y, -+, Y5) = (Yi'h - vt = - -
Y™ ¥ = (ko ) = O ) e O ).

Step 7. | Giveny =yj, to the SLD. Solve the SLDM problem, equatioB§)-(88), following Algorithm I and

Obtain(yZSJ y3s7 e 7ypsat) = (yzayga e 7yT37t) .

Step 8. If HFl(y'lz,yg,---,y';,t)fFl(y'lz,y%,---,y%,t)
P [R05E- 50T,

Step 9. | Given (y':,yS S yP (P_1)» t) to the P'LDM problem, solve the PLDM problem, equationsy1)-(94),

2 < o, then go to Step 9. Otherwise go to Step 12.

following Algorithm | to obtain(y1 Y ,yEP:lg,yp,t) .

F Yours ; Yo Vit .
H e ORI ) Fon (A5 B, < aP-1 then go to Step 11. Otherwise, go to Step 12.
[Fip-u (55 ybt) 15

Step 11. | If the FLDM is happy with (Y{.y5,---,yp,t) and Fi (YL,y5,--,Y5,t), then (ﬁ,yé,--- ,VI—E> =

(xf,xg, . xp) is the preferred solution of the-(ML-MOFP) problem, go to Step 13. Otherwise
go to Step 12.

Step 12. | Letr =r+1,and goto Step 7.
Step 13. | Stop.

Step 10.

8 Numerical Example

To illustrate the proposed interactive approach, conghiefollowing ML-MOFP problem with FRVs in the constraints.
15t Level

o (1., 1254 +45% —0.75 075 _ 25%—0.75 — 2.5x3+ 4.5
Y B 15X + 25% + 0.75 + 1.5 © 27 15x;— 1.25x5+ 0.75x3 1 4
1
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wherex,, X3 solves

2" | evel
max [ for — —2.5%1 + 2.5%0 — 1.5x3 - 7.5%1 + 2.5% — 0.75x3 — 0.75
=~ 217 075x + 0.75% + 0.75x3+ 25" 227 4xy+ 15x2+0.75%+ 0.75 )’
2
wherexz solves 3 Level
o ((fo— 0T H0T5 0756 +45 . —L5x1+0.75 075 +35
=~ = 0.75% + 9%3 + 5.5 © 32T T 25 1 0.75% + 0.75x3+ 8 /)
3

subject to .
PrOb[éj_]_Xl + 819X + 813%3 < bl} > 0.9,

PI’Ob[éz]_Xj_ + EyoXo + Boaxz < 52] > 0.95,

Prob[&x; + 832%, + &3xg < bg] > 0.9,
Xy >0, X >0, x3>0.

whereai;, ap», a;3 and by follgw normally distributed independent FRVs with fuzzy ams and fuzzy variances as
f?”OWS: Mg, = (57272)LR' 62’5\11 = (3L1’2)LR, My, = (67172)LR7 52512 = (47272)LR7 Ma; = (87172)LR'
0%. = (52,2) g my, = (8,1,2) g, 5251 = (4,1,3),g- b2 is exponentially distributed FRV with parameter

a3

6,= (0.03,0.02,0.02) . Also, bs represents Weibull distributed independent FRV having apeters
p=(212)g H=(2024)andc=2.0n the other hand, the coefficients of the probabilistitst@intse>1, &,
&3, &1, &), and €33 are thought to bd R-fuzzy numbersies; = (3,1,2) g, €2 = (4,1,2) g &3 = (1,1,2)R
é31 = (17 17 Z)LRl é32 = (25 17 2)|_R7 and éé3 = (75 27 3)LR'

Following the proposed interactive algorithm, the solataf the ML-MOFP problem with FRVs in the constraints
follows as:

Based on the chance-constrained approacloaledel properties, expect that anlevel of 0.5 is is acknowledged by
thte three level DMs. Then, the deterministic model of the MDFP problem with FRVS, is gotten as takes after:
15t Level

max | fi1=
(11
X1

1.25%; + 4.5%, — 0.75x3 — 0.75  25x—0.75% — 2.5%3 4+ 4.5
15x +25%+ 075+ 15 27 15x,—1.25+0.75%+4 )’

wherexy, X3 solves

2nd | evel
max [ for — —2.5%1 + 2.5%0 — 1.5x3 . 7.5%1 + 2.5% — 0.75x3 — 0.75
=~ 21 075 + 0.75% + 0.75% - 2.5° 227 “4xy + 1.5% + 0.75% 1+ 0.75 )’
2
wherexs solves
39 Level
rax [ fo— Z0751+ 07500756 +45 —15%+075¢ 075635
=~ = 0.75% + 9%3 + 5.5 © 32T T 25 1 0.75% + 0.75x3+ 8 )’
3
subject to

a%, +5.5%+ 7.5 + 1.28,/2.5¢ + 3G+ H3+35< 75,

6%y + T+ O + 1.28) /4G + 54 + 63+ 55< 9,
0.05x; + 0.07%2 + 0.01x3 < —In0.95,
0.16x1 + 0.2x2 + 0.08x3 < —In0.95,

0.5%1 + 1.5%2 + 6x3 < 19+ 1.5v/—In0.9,
21 4 3%+ 8.5x3 < 22+ 3v/—In0.9,

X1 >0, x>0, x3>0.
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Table 1: Individual best, worst values for the fractional model.
f11(X) | f12(X) | f21(%) | f2o(X) | far(X) | f3a(X)
max fj(x) | 0.186 | 1.183 | 0.237 | 0.81 0.853 -0.4
min fj(x) | -0.616 | 0.67 | -0.319 -1 0.369 | -0.523

The individual best and worst values for the fractional meddibited in Table 1.
Definition of the liner model for the crisp ML-MOFP problem:

1% Level
( f11(y,t) = 1.25y; + 4.5y, — 0.75y3 — 0.7%, >

MAX= 1\ 15 (y,t) = 2.5y, — 0.75y, — 2.5y5+ 4.5

~—~
Y1

wherey,, y3 solves
29 | evel
ax— ( f21(y,t) = —2.5y1+ 2.5y, — 1.5y3, )
~~ foo(y,t) = 7.5y1 4+ 2.5y, — 0.75y3— 0.75% |’
Y2

whereyjy solves
39 Level

max=
~—~
Y3

f31(y,t) = —0.75y1 + 0.75y, — 0.75y3+ 4.5t,
fa2 (y,t) = —1.25y; + 0.75y, + 0.75y3+ 8t ’

subject to

4y1 + 5.5y, + 7.5y3 + 1.28\/2.5y§ +3y2+4y2+ 3502 7.5t < 0,

6y1 -+ 7ys+ 9y3 + 1.28\/4y§ +5y2+6y2+5.5t2— 9t < 0,
0.05y1 + 0.07y, +0.01y3 + (IN0.95 )t < O,
0.16y1 + 0.2y, + 0.08y3 + (In0.95)t < O,

0.5y1 + 1.5y, + 6ys — (19+ 1.5//=In0.9 ) t<0,

2y1 + 3y + 8.5y3 — (22+ 3v/=In0.9 ) t<0,

1.5y; +2.5y,+0.75y3+ 1.5t < 1,
1.5y; —1.25y,+0.75y3+ 4t < 1,
0.75y1+0.75y,+0.75y3+ 2.5t < 1,
4y; + 1.5y, +0.75y3+ 0.75t < 1,
0.75y1 +9y3+5.5t < 1,
1.5y; —0.75y2+0.75y3+ 3.5t < 1,
y1>0,y2 >0,y3 > 0,t >0,

The individual best and worst values for the linear modellgiigd in Table 2.

Table 2: Individual best, worst values for the linear model.

fra(y,t) | fra(y,t) | faaly,t) | faa(yit) | faa(yit) | faa(y,t)
bij = maxXfij(y,t)) | 0.072 | 0923 | 0.116 | 0.286 | 0.853 | 1.489
aj=min(f;j (y.t)) | -0.136 0 -0.139 | -0.136 0 0

Formulate and solve the FLDM single-objective decisiorkimg problem 79)-(82):
max f1(y,t) = 1.25y; + 4.5y, — 0.75y3 — 0.75,

(@© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro6, No. 3, 549-566 (2017)www.naturalspublishing.com/Journals.asp NS = 563

subject to
2.5y1 — 0.75y, — 2.5y3+ 4.5t > 0.738

4y + 5.5y, + 7.5y3 + 1.28\/2.5y§ +3y2+ 4y2+ 352 7.5 < 0,

61+ 792+ 9ys + 1.28,/4y3 +5y3 + 63 + 552 9t < O,
0.05y1 + 0.07y> + 0.01y3 + (IN0.95 )t < 0,
0.16y1 + 0.2y + 0.08y5 + (In0.95 )t < 0,

0.5y + 1.5y, + Bys — (19+ 1.5/~1n0.9 ) t<0,

2y1+ 3y + 8.5y5 — (22+ 3v/—In0.9 ) t<0,

1.5y; +2.5y2+0.75y3+ 1.5t < 1,
1.5y; — 1.25y,4 0.75y3+ 4t < 1,
0.75y1 +0.75y2+ 0.75y34+ 2.5t < 1,
4y, + 1.5y, +0.75y3+ 0.75 < 1,
0.75y1 +9y3+5.5t < 1,
1.5y1 — 0.75y, 4 0.75y5+ 3.5t < 1,
y1>0,y2>0,y3>0,t >0,

whered;, = (b1p— a12) s1 + a1 = 0.738, so the solution of the FLDM i§/],y5,y5,t) = (0, 0.04636 0, 0.1818 and

s1 = 0.8, 07 = 0.05 are given by the FLDM.
Secondly, formulate the SLDM single-objective decisioaking problem 85)-(88):

max b1 (y,t) = —2.5y; + 2.5y — 1.5ys3,

subject to
7.5y1+ 2.5y, — 0.75y3— 0.75 > —0.031

dy1 + 5.5y, + 7.5y + 1.28\/2.5y§ +3y2+4y2+ 352 7.5t < 0,

61+ 7y2+ 9y + 1.28,/4y3 +5y3 + 63 + 552 9t < 0,

0.05y; + 0.07y,+ 0.0ly5+ (In0.95 )t < 0,
0.16y; + 0.2y, -+ 0.08y5+ (IN0.95)t < 0,

0.5y + 1.5y, + Bys — (19+ 1.5/~1n0.9 ) t<0,

2y1 + 3y2 + 8.5y3 — (22+ 3%) t<o0,

1.5y; +2.5y2+0.75y3+ 1.5t < 1,
1.5y; — 1.25y,4 0.75y3 + 4t < 1,

0.75y1 +0.75y2+ 0.75y3+ 2.5t < 1,
4y; + 1.5y, 4+ 0.75y3+0.75t < 1,

0.75y1+9y3+ 5.5t <1,
1.5y1 — 0.75y, 4 0.75y5+ 3.5t < 1,
y1=0,
y2>0,y3 > 0,t >0,
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where &y = (b2 — ap2) s, + a2 = —0.031, so the SLDM solution iy} ,y5,y5,t) = (0, 0.04636 0, 0.1818 and
s = 0.25,0° = 0.05 are given by the SLDM.

Now, the FLDM test function, equatioB9), will be utilized to decide whether the soluti¢d, 0.04636 0, 0.1818
is acceptable or not:

[|F1(0,0.046360,0.1818 — F;(0,0.046360,0.1818)|,  [/(0.0723 0.7833 — (0.07230.7833)||, 0< 0005
|IF1(0,0.046360,0.1818), N |(0.0723 0.7833)||, N '
Finally, formulate the TLDM single-objective decision-kiag problem 02)-(95):
max &1 (y,t) = —0.75y1 + 0.75y, — 0.75y3 + 4.5¢,

subject to
—1.25y; +0.75y,+ 0.75y3 + 8t > 1.489

4y, + 5.5y, + 7.5y + 1.28\/2.5y§ +3y2+4y2+ 3502 7.5t < 0,

By1 -+ 7ys+ 9ys+ 1.28\/4y§ +5y2+6y2+5.5(2— 9t < 0,
0.05y1 + 0.07y2 + 0.01y3 + (IN0.95 )t < O,
0.16y1 + 0.2y, + 0.08y5 + (In0.95)t < O,

0.5y1 + 1.5y, + 6ys — (19+ 1.5¢/=In0.9 ) t<0,

2y1+3y»+8.5y3— (22+ 3v—=In0.9 )t <0,

1.5y; +2.5y,+0.75y3+ 1.5t < 1,
1.5y1 — 1.25y,4 0.75y3+ 4t < 1,
0.75y; +0.75y2+0.75y34+ 2.5t < 1,
4y, + 1.5y, +0.75y3+0.75 < 1,
0.75y1 +9y3+5.5t < 1,
1.5y1 — 0.75y5+ 0.75y3+ 3.5t < 1,
y1=0,
y2> = 0.04636
y3 > 0,t >0,

whereds, = (bso — agp) S3+ agz = 1.489, so the TLDM solution igy;,y5,y31,t) = (0, 0.04636 0, 0.1818 andsz =1,
is given by the TLDM.

Now, the SLDM test function, equatiof®), will be utilized to decide whether the solutigd, 0.04636 0, 0.1818
is acceptable or not:

|F2(0,0.046360,0.1818 — F»(0,0.046360,0.1818)|, _ [(0.1159 —0.0205 — (0.11590.0205),

= 0<0.005
[F2(0,0.046360,0.1818)|, [(0.1159 0.0205), <

So (y%,y5,y5.t) = (0, 0.04636 0, 0.1818) is the preferred solution, which means tiwt, x,,x3) = (0, 0.255, 0) is the
corresponding preferred solution to the ML-MOFP problem.

The comparison between the proposed interactive appraattha strategy for Lachhwanl4] is given in Table 3.
The outcomes demonstrate that the preferred solution gfrttyl@osed interactive approach and the method of Lachhwani
14 are close to one another.
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Table 3: Comparison between the proposed interactive approach aetthivani L4].

Interactive approach Lachhwani [14] Ideal objective vecto
fll =0.1859 Hi1 = 0.999 fll =0.182 Hi1= 0.995 fll =0.186
f]_z =117 Hi2 = 0.975 f12 =117 Hi2 = 0.975 f]_z =1.183
fop=0.2368 Lo = 0.999 fp1=0.235  Lp =0.996 fp = 0.237
f22 =—-0.099 Hoo = 0.498 f22 =-01 Hoo = 0.497 f22 =0.81

f31 =0.853 Ha1 = 1 f31 =0.853 Ha1 = 1 f31 =0.853
f32 =-04 H32 = 1 f32 =-04 H32 = 1 f32 =-04

9 Conclusions

In this paper, an effective and powerful interactive apphoia presented to solve ML-MOFP problem with FRVs in the
constraints. Applying the CCP technique amdevel concept, a numerical crisp model of the ML-MOFP isiiofated.
Moreover, the linear model of the problem is developed bgmding the work of M. Chakraborty and S. Gupgh [Then,
the interactive approach simplifies the ML-MOLP model byrmfiiag it into isolated MODM problems, thus the complex
MLMP problem is simplified and the non-convex mathematicagpamming difficulty has been avoided. Hence, ¢he
constraint method and the concept of satisfactorinesdimaatto solve each isolated MODM problem of the ML-MOLP
model. A procedure has been suggested for solving the ML-Ri@®blem with FRVs in the constraints.

Several open points for research in the area of ML-MOFP, foonpoint of view, to be studied in the future. Some of
these focuses are given in the following:

1.The interactive algorithm is needed for dealing with MIOKP in a rough environment.
2.The interactive algorithm is needed for tackling intelgle-MOFP with fuzzy parameters.
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