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Abstract: In this paper, an interactive approach for solving multi-level multi-objective fractional programming (ML-MOFP) problem
under hybrid uncertainty is developed. The proposed interactive approach makes an extension work of Shi and Xia [22]. In the current
model the left-hand- and right-hand-side variables in the constraints are influenced by hybrid uncertainty (i.e. both fuzziness and
randomness); represented by fuzzy random variables (FRVs). In the first phase, we make the best use of the chance-constrained
programming approach and theα-cut approach to obtain the equivalent deterministic modelof the ML-MOFP problem with FRVs.
Then, the linear model of the crisp ML-MOFP problem is formulated. In the second phase, the interactive approach simplifies the
ML-MOLP model by changing it into isolated multi-objectivedecision-making (MODM) problems, to avoid non-convexity.Also,
each separate MODM problem of the linear model is solved by the ε-constraint method and the concept of satisfactoriness. Finally,
illustrative example and comparison with the existing techniques are provided to indicate the efficiency of the interactive approach.

Keywords: Multi-level programming; Multi-objective programming; Fractional programming; Fuzzy chance-constrained
programming; Fuzzy sets;ε-constraint method.

1 Introduction

Hierarchical decision structures are prevalent in government systems, competitive economic organizations, supply chains,
agriculture, biofuel production, and so on [5]. The area of multi-level mathematical programming (MLMP)provides the
art and science of making such decisions. Several mathematical models for such problems have been exhibited [1,5,17,
19].

The fundamental idea of MLMP methodology is that the first-level decision maker (FLDM) decides his objectives and
choices, hence asks each inferior level of the association for their solutions, which obtained individually. The lowerlevel
decision makers’ choices are then presented and altered by the FLDM in light of the general advantage for the association
[1,5].

A significant amount of effort have been devoted to solve MLMPand many efficient algorithms have been proposed
[1,2,5,6,17]. Shi and Xia [22] introduced interactive bi-level decision-making problems. Interactive fuzzy programming
has been extended by Sakawa et al. [24] to thoroughly consider in solving MLMP problems under fuzziness.

The balance space approach was modified to solve MLMP problems by Abo-Sinna et al. [1]. Baky [5] presented fuzzy
goal programming (FGP) methodology to tackle ML-MOLP problems. Interactive fuzzy random bi-level programming
via fractile criterion optimization has been presented by Sakawa et al. [25]. Osman et al. [17] proposed an interactive
methodology for tri-level MODM problems. Chen and Chen [7] utilized a fuzzy variable for relative satisfactions among
leader- and -follower to solve the decentralized bi-level programming problem (BLPP). Arora and Gupta [2] exhibited an
interactive FGP methodology for BLPP with the merits of dynamic programming.
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Also, a fuzzy programming approach for bi-level stochasticprogramming was studied by Modak et al. [16]. A fuzzy
BLPP via nearest interval approximation technique and KKT optimality conditions has been introduced in [20].

Fractional programming problems originate from the fact that programming paradigm could better fit the genuine
problems if the optimization of a proportion among the physical and economic quantities is considered [9]. In the course of
recent decades, such problem has been one of the powerful planning tools. It is routinely used in engineering applications,
business and different disciplines [8,11,26]. Recently, Lachhwani [14] introduced FGP methodology exhibited in [5,6]
with some alterations for ML-MOFP problems.

Interactive FGP approach using Jacobian matrix for decentralized fractional BLPP has been introduced by Toksari and
Bilim [ 26]. An interactive algorithm to a certain type of bi-level integer multi-objective fractional programming problem
was studied by Emam [9].

Amid the previous two decades, the larger part of research onthe multi-level programming issues have been focused
on the deterministic form in which the coefficients and decision variables in the objective function and the constraintsare
thought to be fresh esteems. Be that as it may, in all actuality, it is normally hard to know accurately the estimations of the
coefficients because of the presence of loose or indeterminate data while building up multi-level models [15,20,21].

There are two noteworthy sorts of approaches for handling vulnerabilities existing in decision making issues: fuzzy
mathematical programming (FMP) and stochastic mathematical programming (SMP). FMP is compelling in managing
choice issues under the fuzzy goals and in taking care of questionable coefficients of target capacity and requirements
caused by imprecision and unclearness [6,21]. SMP is an augmentation of numerical programming to choiceissues whose
coefficients (input information) are not positively referred to but rather could be spoken to as possibilities or probabilities
[10,11,16].

In true enhancement issues, the kind of uncertainty that gets huge consideration is ”haphazardness” related with
different right-hand side parameters in the requirements [10,12]. At the point when some right-hand side parameters
are of stochastic elements and can be spoken to as likelihoodconveyance, the chance-constrained programming (CCP)
strategy can be utilized. Information once in a while can’t be measured/gathered accurately. This uncertainty may happen
in stochastic or non-stochastic (i.e. fuzzy) sense or both stochastic and fuzzy faculties together. During the time spent
inferring models of CCP, consider that the conceivable estimations of the arbitrary parameters under the event of occasions
as fuzzy numbers [16].

In this investigation, randomness and fuzziness are considered all the while as FRVs. The idea of FRVs was first
presented by Kwakernaak [13]. Buckly [3,28] characterized fuzzy probabilities utilizing fuzzy numbers as parameters in
probability density function and probability function. FGP strategy for tackling CCP issues including FRVs is as of late
concentrated in [4,16]. Parametric ML-MOFP problem with fuzziness in the constraints has been exhibited by Osman et
al. [18]. The proposed interactive approach makes an extension work of Shi and Xia [22].

Moreover, interactive mechanism for solving multi-level MODM problems simplifies these problems by changing
them into isolated MODM problems at the different levels. Inthis way, the trouble related with non-convex numerical
programming to get a compromise solution was avoided. likewise, the algorithm raised the satisfactoriness concept as
only for the FLDM predilection [17,22].

The point of this paper is to build up an interactive approachfor solving ML-MOFP problem with FRVs in the
constraints. These FRVs represents the uncertainty in decision-making problems. In order to do so, the problem is first
changed over into interval esteemed programming problem based on CCP procedure andα-cut of fuzzy sets. Then the
ML-MOFP problem is changed over into its equivalent deterministic form using fuzzy partial order relation.

Then, the linear model of the deterministic ML-MOFP problemis formulated by extending the work of M.
Chakraborty and S. Gupta [8]. Moreover, the interactive approach simplifies the linear model by converting it into
isolated MODM problems. In addition to that, each separate MODM problem of the linear model is solved by the
ε-constraint method and the concept of satisfactoriness.

Finally, An algorithm to clarify the developed interactivemethodology for the ML-MOFP problem with FRVs is
exhibited.

The rest of this paper is composed as takes after. Section 2 introduces some basic definitions and preliminary results.
In Section 3, formulation of the ML-MOFP problem with FRVs isexhibited. Its proportionate deterministic model is
formulated in Section 4. Section 5 develops the linear modelof the problem. The interactive models for solving ML-
MOFP Problem with FRVs are introduced in Section 6. An interactive algorithm for ML-MOFP Problems with FRVs
is proposed in Section 7. A numerical illustration and correlation with the current techniques are given in in Section 8.
Closing comments are given toward the end.

2 Preliminaries

In this area, some essential ideas and preparatory outcomesutilized as a part of this paper are quickly presented.
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Definition 1Let R1 be the set of all real numbers. Then a real fuzzy numberã is defined by its membership functionµã(x)
that satisfies:

1.A continuous mapping from R1 to the closed internal[0, 1].
2.µã (x) = 0 for all x ∈ (−∞,a].
3.Strictly increasing and continuous on[a,b].
4.µã (x) = 1 for all x ∈ [b,c].
5.Strictly decreasing and continuous on[c,d].
6.µã (x) = 0 for all x ∈ [d,+∞) [29].

Definition 2A fuzzy number̃a is said to be anL R-fuzzy number if

µã(x) =





L

(
a−x
γa

)
x≤ a, γa > 0,

R

(
x−a
β a

)
x≥ a, β a > 0,

(1)

where a is the mean value ofã andγa andβ a are positive numbers expressing the left and right spreads of ã and reference
functionsL , R : [0,1]→ [0,1] with L (1) = R (1) = 0 andL (0) = R (0) = 1 are non-increasing, continuous functions
[29].

Utilizing its mean esteem and left and right spreads, and shape functions, such anL R-fuzzy number is emblematically
composed as̃a= (a,γa,β a)LR

Definition 3The α-level set of the fuzzy parameterã, is defined as an ordinary set Lα (ã) for which the degree of its
membership function exceeds the level setα ∈ [0,1], where [6,29]:

Lα (ã) = {a∈ Rm | µãaa (x)≥ α}=
{

a∈
[
ãL

α , aU
α
] ∣∣ µãaa (x)≥ α,

}
,

whereãL
α = a− γaL −1(α) andãU

α = a+β aR−1(α).
For two L R-fuzzy numbers̃a = (a,γa,β a)LR and b̃=

(
b,γb,β b

)
LR the formula for the extended addition becomes

[29]:

1.(a,γa,β a)LR+
(
b,γb,β b

)
LR =

(
a+b,γa+ γb,β a+β b

)
LR,

2. (a,γa,β a)LR−
(
b,γb,β b

)
LR =

(
a−b,γa+β b,β a+ γb

)
LR

3. (a,γa,β a)LR×
(
b,γb,β b

)
LR

∼=
(
ab,aγb+bγa,aβ b+bβ a

)
LR i f a > 0, b> 0,

4. λ (a,γa,β a)LR =

{
(λa,λ γa,λ β a)LR i f λ ≥ 0,
(λa,−λ β a,−λ γa)RL i f λ < 0, λ is a scalar

All through this paper, we should take the ordering between two fuzzy numbers, ˜a andb̃. According to the following
definition.

Definition 4Let ãα =
[
ãL

α , ã
U
α
]

andb̃α =
[
b̃L

α , b̃
U
α
]

be two intervals. The order relations4LR and≺LR betweeñaα andb̃α
are defined as [20,27]:

1.ãα4LRb̃α if and only ifãL
α ≤ b̃L

α andãU
α ≤ b̃U

α ,
2.ãα≺LRb̃α if and only ifãα4LRb̃α andãα 6= b̃α ,

Definition 5A fuzzy random variable is a random variable whose parameteris fuzzy number. Let̃X be continuous random
variable with fuzzy parameter̃θ and P as fuzzy probability, theñX is said to be continuous fuzzy random variable with

probability density function f
(

x; θ̃
)

with the property [3,4]

∫ ∞

−∞
f (x;θ )dx= 1; θ ∈ θ̃ [α] . (2)

3 Problem Formulation

Consider the hierarchical system be made out of a p-level decision maker (DM). Let the DM at theith-level denoted by
DM i controls over the decision variablexxxiii = (xi1,xi2, · · · ,xini ) ∈ Rni , i = 1,2, · · · , p. wherexxx= (xxx111,xxx222,,, · · ·,,,xxxppp) ∈ Rn and
n= ∑p

i=1ni and furthermore assumed that

Fi (xxx111,xxx222,,, · · ·,,,xxxppp)≡ Fi (xxx) : Rn1× Rn2×·· ·×Rnp→Rmi , i=1,2, · · · , p, (3)
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are the vector of fractional objective functions for DMi , i = 1,2, · · · , p. numerically, the ML-MOFP problem with FRVs
in the constraints may be formulated as follows [1,5,7,19];
1st Level

max︸︷︷︸
xxx111

F1(xxx) = max︸︷︷︸
xxx111

(
f11(xxx) , f12(xxx) , · · · , f1k1 (xxx)

)
, (4)

wherexxx222,xxx333, · · · , xxxppp solves
2nd Level

max︸︷︷︸
xxx222

F2(xxx) = max︸︷︷︸
xxx222

(
f21(xxx) , f22(xxx) , · · · , f2k2 (xxx)

)
, (5)

...
wherexxxppp solves
pth Level

max︸︷︷︸
xxxppp

Fp(xxx) = max︸︷︷︸
xxxppp

(
fp1 (xxx) , fp2 (xxx) , · · · , fpkp (xxx)

)
, (6)

subject to

Prob

[
n

∑
j=1

ãi j x j ≤ b̃i

]
≥ 1− pi, i = 1,2, · · · , r0, (7)

Prob

[
n

∑
j=1

ẽi j x j ≤ b̃i

]
≥ 1− pi, i = r0+1, r0+2, · · · , r1, (8)

Prob

[
n

∑
j=1

ẽi j x j ≤ b̃i

]
≥ 1− pi, i = r1+1, r1+2, · · · ,m, (9)

x j ≥ 0, j = 1,2, · · · ,n. (10)

where

fi j (xxx) =
Ni j (((xxx)

Di j (xxx)))
=

ccci j
1 xxx111+ ccci j

2 xxx222+++ · · ·+++ccci j
pxxxppp+++α i j

dddi j
1 xxx111+dddi j

2 xxx222+++ · · ·+++dddi j
p xxxppp+++β i j

, i = 1,2, · · · , p, j = 1,2, · · · ,ki . (11)

Also, ccci j
k and dddi j

k are n j -dimensional row vector for the coefficient of thejth decision vector of theith objective
function; α i j and β i j are scalars. ˜ai j and b̃i,(i = 1,2, · · · , r0) are independent normally distributed FRVs. Also,
b̃i ,(i = r0+1, r0+2, · · · , r1) is exponentially distributed FRVs.

Moreover, b̃i ,(i = r1+1, r1+2, · · · ,m) follow Weibull distributed FRVs. While ˜ei j , (i = r0+1, r0+2, · · · ,m),
represents the fuzzy coefficients of thejth decision variable in theith stochastic constraints;pi , 0 ≤ pi = 1, is the
tolerance measures which represent the admissible risk of constrain violation. Theith imperative is happy with no less
than a likelihood of 1− pi.

Every one of the parameters are communicated as fuzzy numbers described by any type of membership functions,
contingent upon DM’s inclination. It is standard to expect thatDi j (xxx)>>> 0 for all estimations of decision variables.

4 The Equivalent Deterministic Model

In this section, the ML-MOFP problem with FRVs in the constraints is transformed into the deterministic model.

Case 1: Fuzzy normal distribution

In this case, it is accepted that the random variableξ has a normal distribution, i.e.ξ ∼ N(m,δ 2), wherem and δ 2

denotes the mean value and variance, respectively; becauseof subjective and objective impacting components,m andδ 2

are likewise considered as indeterminate and will be portrayed by fuzzy probabilistic distribution, i.e. ˜mandδ̃ 2.
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Therefore, the probability density function of the fuzzy normal distribution [15,16]:

f
(

x;m̃, δ̃ 2
)
=

1
√

2π δ̃
e

(
− (x−m̃)2

2δ̃2

)

(12)

Let the coefficients ˜ai j andb̃i,(i = 1,2, · · · , r0) be independent normally distributed FRVs which is presented in theith

constraint.
The ith CCP follows as:

Prob

[
n

∑
j=1

ãi j x j ≤ b̃i

]
≥ 1− pi, (i = 1,2, · · · , r0), (13)

Thus the normally distributed FRVs ˜ai j andb̃i are expressed asN(m̃ãi j , δ̃ 2
ãi j
) andN(m̃b̃i

, δ̃ 2
b̃i
) respectively; the fuzzy

meanm̃and fuzzy variancẽδ 2 are thought to beL R-fuzzy numbers.
Thus based on the stochastic CCP to handle constraint (13), let ũi = ∑n

j=1 ãi j x j − b̃i, such that ˜ui can be expressed as

a fuzzy normal distributionN(m̃ũi , δ̃ 2
ũi
) [10 ,15 ]. Moreover,(ũi − m̃ũi )/δ̃ ũi

, follow standard normal distribution. In the
interim, the requirement (13) could be changed into a deterministic nonlinear disparityas takes after:

Prob

[
n

∑
j=1

ãi j x j ≤ b̃i

]
⇐⇒ Prob[ũi ≤ 0]⇐⇒ Prob


 (ũi − m̃ũi )√

δ̃ 2
ũi

≤ −m̃ũi√
δ̃ 2

ũi


≥ 1− pi, (14)

ϕ−1 (1− pi)≤



 −m̃ũi√
δ̃ 2

ũi



 i = 1,2, · · · , r0, (15)

n

∑
j=1

m̃ãi j x j
+ϕ−1(1− pi)

√
n

∑
j=1

δ̃ 2
ãi j

x2
j + δ̃ 2

b̃i
≤ m̃b̃i

i = 1,2, · · · , r0, (16)

Thus, based on level set properties and the partial order relations [27], presented in section 2 then the constraint (16)
can be transformed to the following crisp equivalents:

n

∑
j=1

(
m̃ãi j

)U
α x

j
+ϕ−1(1− pi)

√
n

∑
j=1

(
δ̃ 2

ãi j

)U

α
x2

j +
(

δ̃ 2
b̃i

)U

α
≤
(

m̃b̃i

)U

α
i = 1,2, · · · , r0, (17)

n

∑
j=1

(
m̃ãi j

)L
αx

j
+ϕ−1(1− pi)

√
n

∑
j=1

(
δ̃ 2

ãi j

)L

α
x2

j +
(

δ̃ 2
b̃i

)L

α
≤
(

m̃b̃i

)L

α
i = 1,2, · · · , r0, (18)

where the upper and lowerα-cuts of the fuzzy means and fuzzy variances for ˜ai j andb̃i follows as:

(
m̃ãi j

)U
α = mãi j +β m

ãi j
R

−1 (α) , and
(
m̃ãi j

)L
α = mãi j − γm

ãi j
L

−1(α) , (19)

(
δ̃ 2

ãi j

)U

α
= δãi j +β δ

ãi j
R

−1 (α) , and
(

δ̃ 2
ãi j

)L

α
= δãi j − γ δ

ãi j
L

−1(α) , (20)

(
m̃b̃i

)U

α
= mb̃i

+β m
b̃i

R
−1 (α) , and

(
m̃b̃i

)L

α
= mb̃i

− γm
b̃i
L

−1(α) , (21)

(
δ̃ 2

b̃i

)U

α
= δb̃i

+β δ
b̃i

R
−1 (α) , and

(
δ̃ 2

b̃i

)L

α
= δb̃i

− γ δ
b̃i

L
−1 (α) , (22)
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Case 2: Fuzzy exponential distribution

In this case, it is assumed thatb̃i, (i = r0+1, r0+2, · · · , r1), in (8), is exponentially distributed FRVs. Thus̃bi has
probability density function follows as [4,28]:

f
(

bi ; θ̃i

)
= θ̃ie

−bi θ̃ i i = r0+1, r0+2, · · · , r1, (23)

To convert the constrain (8) to its equivalent deterministic form let ˜yi = ∑n
j=1 ẽi j x j , i = r0 + 1, · · · , r1, then

Prob
[
∑n

j=1 ẽi j x j ≤ b̃i

]
= Prob

[
ỹi ≤ b̃i

]
[3,4]. So, based onα-cut properties and the partial order relations presented in

section 2 then the constraint (8) expressed as:

Prob
[
ỹi ≤ b̃i

]
(α) =

{∫ ∞

yi

θie
−bi θi dbi : θi ∈ θ̃ i(α),yi ∈ ỹi (α)

}
≥ 1− pi , (24)

Prob
[
ỹi ≤ b̃i

]
(α) =

{
e−yi θi : θi ∈ θ̃ i(α),yi ∈ ỹi (α)

}
≥ 1− pi, (25)

Since, the coefficients ˜ei j , and the parameter̃θi of the FRV b̃i are considered as anL R-fuzzy number. Hence the
equivalent crisp constraints of the probabilistic constraints (8) follows as:

n

∑
j=1

(
ei j +β e

i j R
−1 (α)

)
x j

(
θi +β θ

i R
−1(α)

)
≤−ln(1− pi) , i = r0+1, r0+2, · · · , r1, (26)

n

∑
j=1

(
ei j − γe

i j L
−1 (α)

)
x j

(
θi − γθ

i j L
−1 (α)

)
≤−ln(1− pi) , i = r0+1, r0+2, · · · , r1, (27)

Case 3: Fuzzy Weibull distribution

In this case, it is assumed thatb̃i , (i = r1+1, r1+2, · · · ,m), in (9), represents Weibull distributed FRVs, thus its probability
density function is composed as [12]:

f (bi; µ̃i , ρ̃i ,ci) =
ci

ρ̃i

(
bi − µ̃i

ρ̃i

)ci−1

e
−
(

bi−µ̃i
ρ̃i

)ci

i = r1+1, r1+2, · · · ,m, (28)

It is also known that̃bi has three parameters̃µi , ρ̃i and ci where ρ̃i and ci are the scale parameters andµ̃i is the
location parameter. To convert the constrain (9) to its equivalent deterministic form let ˜yi = ∑n

j=1 ẽi j x j , i = r1+1, · · · ,m,

then Prob
[
∑n

j=1 ẽi j x j ≤ b̃i

]
= Prob

[
ỹi ≤ b̃i

]
[12]. So, based onα-cut properties and the partial order relations presented

in section 2 then the constraint (9) follows as:

Prob
[
ỹi ≤ b̃i

]
(α) =

{∫ ∞

yi

ci

ρi

(
bi − µi

ρi

)ci−1

e
−
(

bi−µi
ρi

)ci

dbi

∣∣∣∣∣
µi ∈ µ̃ i (α) ,ρi ∈ ρ̃i (α) ,

yi ∈ ỹi (α)

}
≥ 1− pi, (29)

Prob
[
ỹi ≤ b̃i

]
(α) =

{
e
−
(

yi−µi
ρi

)ci
∣∣∣∣

µi ∈ µ̃ i (α) ,ρi ∈ ρ̃i (α) ,
yi ∈ ỹi (α)

}
≥ 1− pi, (30)

Since, the coefficients ˜ei j , and the parameter̃µi , ρ̃i of the FRVb̃i are considered as anL R-fuzzy number. Hence the
equivalent crisp constraints of the probabilistic constraints (9) expressed as:

n

∑
j=1

[
ei j +β e

i jR
−1 (α)

]
x j ≤

[
µi +β µ

i R
−1(α)

]
+
[
ρi +β ρ

i R
−1(α)

]
[−ln(1− pi) ]

1
ci , i = r1+1, · · · ,m, (31)

n

∑
j=1

[
ei j − γe

i j L
−1 (α)

]
x j ≤

[
µi − γµ

i L
−1 (α)

]
+
[
ρi − γρ

i L
−1 (α)

]
[−ln(1− pi) ]

1
ci , i = r1+1, · · · ,m, (32)
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Hence, for a coveted estimation ofα, the ML-MOFP problem with FRVs in the constraints can be changed into the
α-(ML-MOFP) model as takes after:
1st Level

max︸︷︷︸
xxx111

F1(xxx) = max︸︷︷︸
xxx111

(
f11(xxx) , f12(xxx) , · · · , f1k1 (xxx)

)
, (33)

wherexxx222,xxx333, · · · , xxxppp solves
2nd Level

max︸︷︷︸
xxx222

F2(xxx) = max︸︷︷︸
xxx222

(
f21(xxx) , f22(xxx) , · · · , f2k2 (xxx)

)
, (34)

...
wherexxxppp solves
pth Level

max︸︷︷︸
xxxppp

Ft (xxx) = max︸︷︷︸
xxxppp

(
fp1 (xxx) , fp2 (xxx) , · · · , fpkp (xxx)

)
, (35)

subject to
n

∑
j=1

(
m̃ãi j

)U
α x

j
+ϕ−1(1− pi)

√
n

∑
j=1

(
δ̃ 2

ãi j

)U

α
x2

j +
(

δ̃ 2
b̃i

)U

α
≤
(

m̃b̃i

)U

α
i = 1,2, · · · , r0, (36)

n

∑
j=1

(
m̃ãi j

)L
αx

j
+ϕ−1(1− pi)

√
n

∑
j=1

(
δ̃ 2

ãi j

)L

α
x2

j +
(

δ̃ 2
b̃i

)L

α
≤
(

m̃b̃i

)L

α
i = 1,2, · · · , r0, (37)

n

∑
j=1

(
ei j +β e

i j R
−1 (α)

)
x j

(
θi +β θ

i R
−1(α)

)
≤−ln(1− pi) , i = r0+1, r0+2, · · · , r1, (38)

n

∑
j=1

(
ei j − γe

i j L
−1(α)

)
x j
(
θi − γe

i j L
−1 (α)

)
≤−ln(1− pi) , i = r0+1, r0+2, · · · , r1, (39)

n

∑
j=1

[
ei j +β e

i jR
−1 (α)

]
x j ≤

[
µi +β µ

i R
−1(α)

]
+
[
ρi +β ρ

i R
−1(α)

]
[−ln(1− pi) ]

1
ci , i = r1+1, · · · ,m, (40)

n

∑
j=1

[
ei j − γe

i j L
−1(α)

]
x j ≤

[
µi − γµ

i L
−1 (α)

]
+
[
ρi − γρ

i L
−1(α)

]
[−ln(1− pi) ]

1
ci , i = r1+1, · · · ,m, (41)

x j ≥ 0, j = 1,2, · · · ,n. (42)

5 Linear Model Development of Theα-(ML-MOFP) Problem

An equivalent linear multi-objective programming problemto multi-objective fractional programming (MOFP) problem
has been presented [8]. Now, we make further extensions on the article of M. Chakraborty and S. Gupta [8], to develop
a methodology for obtaining the linear model of theα-(ML-MOFP) problem. Since the MOFP problem for theith-level
decision maker may be written as:

max︸︷︷︸
xxxiii

Fi (xxx) = max︸︷︷︸
xxxiii

(
fi1 (xxx) , fi2 (xxx) , · · · , fiki (xxx)

)
, (43)

subject to
n

∑
j=1

(
m̃ãi j

)U
α x

j
+ϕ−1(1− pi)

√
n

∑
j=1

(
δ̃ 2

ãi j

)U

α
x2

j +
(

δ̃ 2
b̃i

)U

α
≤
(

m̃b̃i

)U

α
i = 1,2, · · · , r0, (44)

n

∑
j=1

(
m̃ãi j

)L
αx

j
+ϕ−1(1− pi)

√
n

∑
j=1

(
δ̃ 2

ãi j

)L

α
x2

j +
(

δ̃ 2
b̃i

)L

α
≤
(

m̃b̃i

)L

α
i = 1,2, · · · , r0, (45)
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n

∑
j=1

(
ei j +β e

i j R
−1 (α)

)
x j

(
θi +β θ

i R
−1(α)

)
≤−ln(1− pi) , i = r0+1, r0+2, · · · , r1, (46)

n

∑
j=1

(
ei j − γe

i j L
−1 (α)

)
x j

(
θi − γθ

i L
−1 (α)

)
≤−ln(1− pi) , i = r0+1, r0+2, · · · , r1, (47)

n

∑
j=1

[
ei j +β e

i j R
−1 (α)

]
x j ≤

[
µi +β µ

i R
−1 (α)

]
+
[
ρi +β ρ

i R
−1 (α)

]
[−ln(1− pi) ]

1
ci i = r1+1, · · · ,m, (48)

n

∑
j=1

[
ei j − γe

i j L
−1(α)

]
x j ≤

[
µi − γµ

i L
−1(α)

]
+
[
ρi − γρ

i L
−1(α)

]
[−ln(1− pi) ]

1
ci , i = r1+1, · · · ,m, (49)

x j ≥ 0, j = 1,2, · · · ,n. (50)

where

fi j (xxx) =
Ni j (((xxx)
Di j (xxx)))

=
ccci j xxx +++α i j

dddi j xxx +++β i j
, (i = 1,2, · · · , p) , ( j = 1,2, · · · ,ki) , (51)

Assuming that, the set of constraints (44)-(50) denoted byGα , I be the index set such thatI = { j : Ni j (xxx)≥ 0∀ xxx∈Gα}
so alsoIc = { j : Ni j (xxx)< 0 ∀ xxx∈ Gα}, whereI ∪ Ic = {1,2, · · · ,ki}. If Ni j (xxx) is concave,Di j (xxx))) is concave and positive
onGα andNi j (xxx) is negative for allxxx∈ Gα , so [8]:

max︸︷︷︸
xxx∈∈∈Gα

=
Ni j (((xxx)

Di j (xxx)))
⇐⇒ min︸︷︷︸

xxx∈∈∈Gα

=
−Ni j (((xxx)

Di j (xxx)))
⇐⇒ max︸︷︷︸

xxx∈∈∈Gα

=
Di j (xxx)))

−Ni j (((xxx)
, (52)

whereGα , is nonempty and bounded. For simplicity, assume that 1/dddi j xxx+++β i j and−1/ccci j xxx+++α i j is t for j ∈ I and j ∈ Ic,
respectively, i.e.

⋂

i∈I

1

dddi j xxx+++β i j
= t and

⋂

i∈Ic

−1
ccci j xxx+++α i j = t, (53)

which is amounting to:
1

dddi j xxx +++β i j
≥ t for j ∈ I and

−1
ccci j xxx +++α i j ≥ t for j ∈ Ic, (54)

Based on the transformationyyy= txxx (t > 0) , yyy∈ Rn, t ∈ R, and the above inequalities in equation (54) therefore, the
linear model of theith level decision maker problem is defined as takes after:

max︸︷︷︸
yyyiii

(t (Ni j (yyy/t)) , for j ∈ I ; t (Di j (yyy/t)) , for j ∈ Ic) , (55)

subject to
t (Di j (((yyy/t))≤ 1, for j ∈ I (i = 1,2, · · · , p) , ( j = 1,2, · · · ,ki) , (56)

−t (Ni j (yyy/t)) = 1, for j ∈ IC (i = 1,2, · · · , p) , ( j = 1,2, · · · ,ki) , (57)

n

∑
j=1

(
m̃ãi j

)U
α y

j
+ϕ−1(1− pi)

√
n

∑
j=1

(
δ̃ 2

ãi j

)U

α
y2

j +
(

δ̃ 2
b̃i

)U

α
t2 ≤

(
m̃b̃i

)U

α
t i = 1,2, · · · , r0, (58)

n

∑
j=1

(
m̃ãi j

)L
αy

j
+ϕ−1(1− pi)

√
n

∑
j=1

(
δ̃ 2

ãi j

)L

α
y2

j +
(

δ̃ 2
b̃i

)L

α
t2 ≤

(
m̃b̃i

)L

α
t i = 1,2, · · · , r0, (59)

n

∑
j=1

(
ei j +β e

i j R
−1(α)

)
y j

(
θi +β θ

i R
−1 (α)

)
≤ ((−ln(1− pi ))t, i = r0+1, r0+2, · · · , r1, (60)
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n

∑
j=1

(
ei j − γe

i j L
−1 (α)

)
y j

(
θi − γθ

i L
−1 (α)

)
≤ ((−ln(1− pi ))t, i = r0+1, r0+2, · · · , r1, (61)

n

∑
j=1

[
ei j +β e

i j R
−1 (α)

]
y j ≤

[[
µi +β µ

i R
−1 (α)

]
+
[
ρi +β ρ

i R
−1 (α)

]
[−ln(1− pi) ]

1
ci

]
t, i = r1+1, · · · ,m (62)

n

∑
j=1

[
ei j − γe

i j L
−1 (α)

]
y j ≤

[[
µi − γµ

i L
−1 (α)

]
+
[
ρi − γρ

i L
−1 (α)

]
[−ln(1− pi) ]

1
ci

]
t, i = r1+1, · · · ,m (63)

y j ≥ 0, t > 0, j = 1,2, · · · ,n. (64)

Following the above discussion thus, theα-(ML-MOLP) model of theα-(ML-MOFP) problem is formulated as
follows:
1st Level

max︸︷︷︸
yyy111

F1 (yyy, t) = max︸︷︷︸
yyy111

(
t
(
N1 j(((yyy/t)

)
, for j ∈ I ; t

(
D1 j (yyy/t)

)
, for j ∈ Ic) , ( j = 1, · · · ,k1) , (65)

whereyyy222,yyy333, · · · , yyyppp solves
2nd Level

max︸︷︷︸
yyy222

F2 (yyy, t) = max︸︷︷︸
yyy222

(
t
(
N2 j(((yyy/t)

)
, for j ∈ I ; t

(
D2 j (yyy/t)

)
, for j ∈ Ic) , ( j = 1, · · · ,k2) , (66)

...
whereyyyppp solves
pth Level

max︸︷︷︸
yyyppp

Fp(yyy, t) = max︸︷︷︸
yyyppp

(t (Np j (yyy/t)) , for j ∈ I ;t (Dp j (yyy/t)) , for j ∈ Ic) , ( j = 1, · · · ,kp) , (67)

subject to
t (Di j (((yyy/t))≤ 1, for j ∈ I (i = 1,2, · · · , p) , ( j = 1,2, · · · ,ki) , (68)

−t (Ni j (yyy/t)) = 1, for j ∈ IC (i = 1,2, · · · , p) , ( j = 1,2, · · · ,ki) , (69)

n

∑
j=1

(
m̃ãi j

)U
α y

j
+ϕ−1(1− pi)

√
n

∑
j=1

(
δ̃ 2

ãi j

)U

α
y2

j +
(

δ̃ 2
b̃i

)U

α
t2 ≤

(
m̃b̃i

)U

α
t i = 1,2, · · · , r0, (70)

n

∑
j=1

(
m̃ãi j

)L
αy

j
+ϕ−1(1− pi)

√
n

∑
j=1

(
δ̃ 2

ãi j

)L

α
y2

j +
(

δ̃ 2
b̃i

)L

α
t2 ≤

(
m̃b̃i

)L

α
t i = 1,2, · · · , r0, (71)

n

∑
j=1

(
ei j +β e

i j R
−1(α)

)
y j

(
θi +β θ

i R
−1(α)

)
≤ (−ln(1− pi) )t, i = r0+1, r0+2, · · · , r1, (72)

n

∑
j=1

(
ei j − γe

i j L
−1 (α)

)
y j
(
θi − γe

i L
−1 (α)

)
≤ (−ln(1− pi ))t, i = r0+1, r0+2, · · · , r1, (73)

n

∑
j=1

[
ei j +β e

i j R
−1 (α)

]
y j ≤

[[
µi +β µ

i R
−1 (α)

]
+
[
ρi +β ρ

i R
−1 (α)

]
[−ln(1− pi) ]

1
ci

]
t, i = r1+1, · · · ,m (74)

n

∑
j=1

[
ei j − γe

i j L
−1 (α)

]
y j ≤

[[
µi − γµ

i L
−1 (α)

]
+
[
ρi − γρ

i L
−1 (α)

]
[−ln(1− pi) ]

1
ci

]
t, i = r1+1, · · · ,m (75)

y j ≥ 0, t > 0, j = 1,2, · · · ,n. (76)

where the system of constraints, in equations (68)-(76), at anα-level denoted bySSSα , which form a nonempty convex set.
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6 An Interactive Models for α-(ML-MOFP) Problem

To obtain theα-Pareto optimal solution (preferred solution) of theα-(ML-MOFP) problem with FRVs in the constraints
firstly, the crisp model, equations (33)-(42), is developed based on CCP technique and theα-cut of fuzzy sets.
Consequently, theα-(ML-MOLP) model is formulated as presented in the previoussection equations (65)-(76).

In the interactive mechanism, after obtaining the preferred or satisfactory solutions by theε-constraint method and the
concept of satisfactoriness, the FLDM gives the favored arrangements that are satisfactory in rank request referring to the
satisfactoriness of the preferred solutions to the SLDM.

Then, the SLDM uses theε-constraint method to achieve the solution that progressively accesses the favored solution
of the FLDM [22]. Afterwards, the acquired solutions are delivered to the PLDM who will look up the solution by the
ε-constraint method and the concept of satisfactoriness to attain the solution that is closest to the favored solution ofthe
top levels.

At long last, the top level determine the favored solution ofthe α-(ML-MOLP) problem as indicated by their
satisfactoriness. Then, the corresponding preferred solution to theα-(ML-MOFP) problem is obtained.

6.1 The First Level Decision Maker (FLDM) Problem

The first level decision-making problem of theα-(ML-MOLP) model follows as:

max︸︷︷︸
yyy111

(
t
(
N1 j(((yyy/t)

)
, for j ∈ I ; t

(
D1 j (yyy/t)

)
, for j ∈ Ic) , ( j = 1,2, · · · ,k1) , (77)

subject to
(y1,y2, · · · ,yp, t) ∈ SSSα . (78)

To obtain theα-Pareto optimal solution of the FLDM; we change the MODM problem, model (77)-(78), by the
ε-constraint method into the accompanying single-objective decision-making (SODM) problem:

max
(
t
(
N1 j(((yyy/t)

)
, for j ∈ I ; t

(
D1 j (yyy/t)

)
, for j ∈ Ic) , ( j = ℓ) , (79)

subject to
t
(
D1 j(((yyy/t)

)
≥ δ1 j , for j ∈ I ( j = 1,2, · · · ,k1) , ( j 6= ℓ) , (80)

−t
(
N1 j (yyy/t)

)
= δ1 j , for j ∈ IC ( j = 1,2, · · · ,k1) , ( j 6= ℓ) , (81)

(y1,y2, · · · ,yp, t) ∈ SSSα . (82)

So the solution of the first level is obtained by executing algorithm I , as
(
y∗1,y

∗
2, · · · ,y∗p, t

)
=
(
yF

1 ,y
F
2 , · · · ,yF

p , t
)
.

6.2 The Second Level Decision Maker (SLDM) Problem

Secondly, following the concept of MLMP problems, the first level decision variableyF
1 should be included in the SLDM

problem; hence, the problem of SLDM can be expressed as:

max︸︷︷︸
yyy222

(
t
(
N2 j(((yyy/t)

)
, for j ∈ I ; t

(
D2 j (yyy/t)

)
, for j ∈ Ic) , ( j = 1,2, · · · ,k2) , (83)

subject to (
yF

1 ,y2, · · · ,yp, t
)
∈ SSSααα . (84)

Theε-constraint method is utilized to formulate the SODM problem as follows:

max
(
t
(
N2 j(((yyy/t)

)
, for j ∈ I ; t

(
D2 j (yyy/t)

)
, for j ∈ Ic) , ( j = ℓ) , (85)

subject to
t
(
D2 j(((yyy/t)

)
≥ δ2 j , for j ∈ I ( j = 1,2, · · · ,k2) , ( j 6= ℓ) , (86)
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−t
(
N2 j (yyy/t)

)
= δ2 j , for j ∈ IC ( j = 1,2, · · · ,k2) , ( j 6= ℓ) , (87)

(
yF

1 ,y2, · · · ,yp, t
)
∈ SSSααα . (88)

Our basic thought on solving model (85)-(88) is to obtain the second level non-inferior solution
(
yF

1 ,y
S
2, · · · ,yS

p, t
)

that
is closest to the FLDM solution

(
yF

1 ,y
F
2 , · · · ,yF

p , t
)
by following algorithmI .

Therefore, we will test whether
(
yF

1 ,y
S
2, · · · ,yS

p, t
)

is a preferred solution to the FLDM or it might be changed according
to the accompanying test: If ∥∥F1

(
yF

1 ,y
F
2 , · · · ,yF

p , t
)
−F1

(
yF

1 ,y
S
2, · · · ,yS

p, t
)∥∥

2∥∥F1
(
yF

1 ,y
S
2, · · · ,yS

p, t
)∥∥

2

< σF (89)

Then,
(
yF

1 ,y
S
2, · · · ,yS

p, t
)

is a favored solution to the FLDM, whereσF is a small positive constant given by the FLDM.

6.3 ThePttthhh Level Decision Maker (Pttthhh LDM) Problem

Consequently, as indicated by the concept of MLMP problems the decision variables of top levels
(

yF
1 ,y

S
2, · · · ,y

(p−1)
(p−1)

)

should be given to the Pth LDM problem; hence, the problem of Pth LDM can be defined as:

max︸︷︷︸
yyyppp

(t (Np j(((yyy/t)) , for j ∈ I ; t (Dp j (yyy/t)) , for j ∈ Ic) , ( j = 1,2, · · · ,kp) , (90)

subject to (
yF

1 ,y
S
2, · · ·y

(P−1)
(P−1),yp, t

)
∈ SSSααα . (91)

Based on theε-constraint method the SODM problem of the Pth LDM follows as:

max(t (Np j(((yyy/t)) , for j ∈ I ; t (Dp j (yyy/t)) , for j ∈ Ic) , ( j = ℓ) , (92)

subject to
t (Dp j (yyy/t))≥ δp j, for j ∈ I ( j = 1,2, · · · ,kp) , ( j 6= ℓ) , (93)

−t (Np j(((yyy/t)) = δp j, for j ∈ IC ( j = 1,2, · · · ,kp) , ( j 6= ℓ) , (94)

(
yF

1 ,y
S
2, · · · ,y

(P−1)
(P−1),yp, t

)
∈ SSSααα . (95)

The aim of solving model (92)-(95) is to find the Pth LDM non-inferior solution closest to the preferred solutions of

the top levels
(

yF
1 ,y

S
2, · · ·y

(P−1)
(P−1),y

p
p, t

)
, by following algorithmI .

Now, we will test whether
(
yF

1 ,y
S
2, · · · ,y

p
p, t

)
is a favored solution to the(P−1)th LDM or it might be changed

according to the accompanying test: If
∥∥∥F(p−1)

(
yF

1 ,y
S
2, · · · ,y

(p−1)
p , t

)
−F(p−1)

(
yF

1 ,y
S
2, · · · ,y

p
p, t

)∥∥∥
2∥∥F(p−1)

(
yF

1 ,y
S
2, · · · ,y

p
p, t

)∥∥
2

< σ (p−1) (96)

Then,
(
yF

1 ,y
S
2, · · · ,y

p
p, t

)
is a preferred solution to the Pth LDM, which means

(
xF

1 ,x
S
2, · · · ,x

p
p
)

is the corresponding

preferred solution of theα-(ML-MOFP) problem. Whereσ (p−1) is a small positive constant given by the(p−1)th LDM.
For theith LDM problemδi j , bi j andai j are defined as:

δi j = (bi j −ai j )si +ai j , (i = 1,2, · · · , p) , ( j = 1,2, · · · ,kp) , (97)

bi j = max︸︷︷︸
(y,t)∈SSSααα

(t (Ni j (((yyy/t)) , for j ∈ I ; t (Di j (yyy/t)) , for j ∈ Ic) , (98)
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ai j = min︸︷︷︸
(y,t)∈SSSααα

(t (Ni j (((yyy/t)) , for j ∈ I ; t (Di j (yyy/t)) , for j ∈ Ic) , (99)

wheresi is the satisfactoriness given by theith level decision maker.
The preferred solution of theith LDM problem is obtained by the following algorithm:
Algorithm I:

Step 1. Set the satisfactorinesssiv, (i = 1,2, · · · , p) , v = 1,2, · · · . Let si = si0 toward the start, and letsi =
si1,si2,si3, · · · , (i = 1,2, · · · , p) respectively.

Step 2. Set up theε-constraint problemP(ε−ℓ(siv)) , if P(ε−ℓ(siv)) has no solution or has an ideal solution with
t (Ni j (((yyy/t))< δℓ j , for j ∈ I ; t (Di j (yyy/t))< δℓ j , for j ∈ Ic, then go to step 1, to adjusts= si(v+1) < siv.
Otherwise, go to step 3.

Step 3. If the DM is happy with
(

y∗1
t ,

y∗2
t , · · · ,

y∗p
t

)
=

(
x∗1,x

∗
2, · · · ,x∗p

)
, then it is the favored solution of the

ithLDM, go to step 5. Otherwise, go to step 4.
Step 4. Adjust satisfactoriness, letsi(v+1) > siv and go to step 2.
Step 5. Stop.

7 Interactive Algorithm for the ML-MOFP Problem with FRVs in the Constraints

Following the discussion in the previous sections, the proposed interactive algorithm will be developed for fathomingthe
ML-MOFP problems with FRVs as follows:

Step 1. Formulate the deterministic ML-MOFP model, equations (33)-(42), at the specified value ofα.
Step 2. Compute the individual best and worst values of each objective function in theα-(ML-MOFP) model.
Step 3. Formulate the linear model of theα-(ML-MOFP) problem, equations (65)-(76).
Step 4. Calculate the individual best and worst values for each objective function in the linear model (65)-(76).
Step 5. Setr = 0.
Step 6. Execute the steps presented in AlgorithmI to acquire an arrangement of favored solutions for

the FLDM problem equations (79)-(82). The FLDM puts these solutions in order as indicated
by the accompanying configuration : Preferred solution

(
yr

1, · · · ,yr
p

)
, · · · ,

(
yr+n

1 , · · · ,yr+n
p

)
=(

xr
1, · · · ,xr

p

)
, · · · ,

(
xr+n

1 , · · · ,xr+n
p

)
. Preferred ranking

(
yr

1, · · · ,yr
p

)
≻

(
yr+1

1 , · · · ,yr+1
p

)
≻ ·· · ≻(

yr+n
1 , · · · ,yr+n

p

)
=
(
xr

1, · · · ,xr
p

)
≻
(
xr+1

1 , · · · ,xr+1
p

)
≻ ·· · ≻

(
xr+n

1 , · · · ,xr+n
p

)
.

Step 7. Giveny F
1 = yr

1, to the SLD. Solve the SLDM problem, equations (85)-(88), following Algorithm I and
obtain

(
y s

2 , y s
3 , · · · ,y s

p , t
)
=
(
y∗2,y

∗
3, · · · ,y∗p, t

)
.

Step 8. If
‖F1(yF

1 ,y
F
2 ,··· ,yF

p ,t)−F1(yF
1 ,y

S
2,··· ,yS

p,t)‖2

‖F1(yF
1 ,y

S
2,··· ,yS

p,t)‖2

< σF , then go to Step 9. Otherwise go to Step 12.

Step 9. Given
(

yF
1 ,y

S
2, · · · ,y

(P−1)
(P−1), t

)
to the PthLDM problem, solve the PthLDM problem, equations (91)-(94),

following Algorithm I to obtain
(

yF
1 ,y

S
2, · · · ,y

(P−1)
(P−1),y

p
p, t

)
.

Step 10. If

∥∥∥F(p−1)

(
yF
1 ,y

S
2,··· ,y

(p−1)
p ,t

)
−F(p−1)(yF

1 ,y
S
2,··· ,y

p
p,t)

∥∥∥
2

‖F(p−1)(yF
1 ,y

S
2,··· ,y

p
p,t)‖2

< σ (p−1) , then go to Step 11. Otherwise, go to Step 12.

Step 11. If the FLDM is happy with
(
yF

1 ,y
S
2, · · · ,y

p
p, t

)
and F1

(
yF

1 ,y
S
2, · · · ,yP

p, t
)
, then

(
yF
1
t ,

yS
2
t , · · · ,

yP
p
t

)
=

(
xF

1 ,x
S
2, · · · ,x

p
p
)

is the preferred solution of theα-(ML-MOFP) problem, go to Step 13. Otherwise
go to Step 12.

Step 12. Let r = r +1, and go to Step 7.
Step 13. Stop.

8 Numerical Example

To illustrate the proposed interactive approach, considerthe following ML-MOFP problem with FRVs in the constraints.
1st Level

max︸︷︷︸
xxx111

(
f11 =

1.25x1+4.5x2−0.75x3−0.75
1.5x1+2.5x2+0.75x3+1.5

, f12 =
2.5x1−0.75x2−2.5x3+4.5
1.5x1−1.25x2+0.75x3+4

)
,
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wherexxx222,xxx333 solves
2nd Level

max︸︷︷︸
xxx222

(
f21 =

−2.5x1+2.5x2−1.5x3

0.75x1+0.75x2+0.75x3+2.5
, f22 =

7.5x1+2.5x2−0.75x3−0.75
4x1+1.5x2+0.75x3+0.75

)
,

wherexxx333 solves 3rd Level

max︸︷︷︸
xxx333

(
f31 =

−0.75x1+0.75x2−0.75x3+4.5
0.75x1+9x3+5.5

, f32 =
−1.5x1+0.75x2−0.75x3+3.5
−1.25x1+0.75x2+0.75x3+8

)
.

subject to
Prob

[
ã11x1+ ã12x2+ ã13x3 ≤ b̃1

]
≥ 0.9,

Prob
[
ẽ21x1+ ẽ22x2+ ẽ23x3 ≤ b̃2

]
≥ 0.95,

Prob
[
ẽ31x1+ ẽ32x2+ ẽ33x3 ≤ b̃3

]
≥ 0.9,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

where ã11, ã12, ã13 and b̃1 follow normally distributed independent FRVs with fuzzy means and fuzzy variances as
follows: m̃ã11 = (5,2,2)LR, δ̃ 2

ã11
= (3,1,2)LR, m̃ã12 = (6,1,2)LR, δ̃ 2

ã12
= (4,2,2)LR, m̃ã13 = (8,1,2)LR,

δ̃ 2
ã13

= (5,2,2)LR, m̃b̃1
= (8,1,2)LR, δ̃ 2

b̃1
= (4,1,3)LR. b̃2 is exponentially distributed FRV with parameter

θ̃2= (0.03,0.02,0.02)LR. Also, b̃3 represents Weibull distributed independent FRV having parameters
ρ̃ = (2,1,2)LR, µ̃ = (20,2,4)LR andc = 2. On the other hand, the coefficients of the probabilistic constraints ˜e21, ẽ22,
ẽ23, ẽ31, ẽ32, and ẽ33 are thought to beLR-fuzzy numbers: ˜e21 = (3,1,2)LR, ẽ22 = (4,1,2)LR, ẽ23 = (1,1,2)LR,
ẽ31 = (1,1,2)LR, ẽ32 = (2,1,2)LR, and ẽ33 = (7,2,3)LR.

Following the proposed interactive algorithm, the solution of the ML-MOFP problem with FRVs in the constraints
follows as:

Based on the chance-constrained approach andα-level properties, expect that anα-level of 0.5 is is acknowledged by
the three level DMs. Then, the deterministic model of the ML-MOFP problem with FRVs, is gotten as takes after:
1st Level

max︸︷︷︸
xxx111

(
f11 =

1.25x1+4.5x2−0.75x3−0.75
1.5x1+2.5x2+0.75x3+1.5

, f12 =
2.5x1−0.75x2−2.5x3+4.5
1.5x1−1.25x2+0.75x3+4

)
,

wherexxx222,xxx333 solves
2nd Level

max︸︷︷︸
xxx222

(
f21 =

−2.5x1+2.5x2−1.5x3

0.75x1+0.75x2+0.75x3+2.5
, f22 =

7.5x1+2.5x2−0.75x3−0.75
4x1+1.5x2+0.75x3+0.75

)
,

wherexxx333 solves
3rd Level

max︸︷︷︸
xxx333

(
f31 =

−0.75x1+0.75x2−0.75x3+4.5
0.75x1+9x3+5.5

, f32 =
−1.5x1+0.75x2−0.75x3−3.5
−1.25x1+0.75x2+0.75x3+8

)
,

subject to

4x1+5.5x2+7.5x3+1.28
√

2.5x2
1+3x2

2+4x2
3+3.5≤ 7.5,

6x1+7x2+9x3+1.28
√

4x2
1+5x2

2+6x2
3+5.5≤ 9,

0.05x1+0.07x2+0.01x3 ≤−−−ln0.95 ,

0.16x1+0.2x2+0.08x3 ≤−−−ln0.95 ,

0.5x1+1.5x2+6x3 ≤ 19+1.5
√
−−−ln0.9 ,

2x1+3x2+8.5x3 ≤ 22+3
√
−−−ln0.9 ,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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Table 1: Individual best, worst values for the fractional model.
f11(((xxx) f12(((xxx) f21(((xxx) f22(((xxx) f31(((xxx) f32(((xxx)

max fi j (((xxx) 0.186 1.183 0.237 0.81 0.853 -0.4
min fi j (((xxx) -0.616 0.67 -0.319 -1 0.369 -0.523

The individual best and worst values for the fractional model exhibited in Table 1.
Definition of the liner model for the crisp ML-MOFP problem:

1st Level

max︸︷︷︸
y1

=

(
f11(y, t) = 1.25y1+4.5y2−0.75y3−0.75t,
f12(y, t) = 2.5y1−0.75y2−2.5y3+4.5t

)
,

whereyyy222,yyy333 solves
2nd Level

max︸︷︷︸
y2

=

(
f21(y, t) =−2.5y1+2.5y2−1.5y3,
f22(y, t) = 7.5y1+2.5y2−0.75y3−0.75t

)
,

whereyyy333 solves
3rd Level

max︸︷︷︸
y3

=

(
f31(y, t) =−0.75y1+0.75y2−0.75y3+4.5t,
f32(y, t) =−1.25y1+0.75y2+0.75y3+8t

)
,

subject to

4y1+5.5y2+7.5y3+1.28
√

2.5y2
1+3y2

2+4y2
3+3.5t2−7.5t ≤ 0,

6y1+7y2+9y3+1.28
√

4y2
1+5y2

2+6y2
3+5.5t2−9t ≤ 0,

0.05y1+0.07y2+0.01y3+(ln0.95 )t ≤ 0,

0.16y1+0.2y2+0.08y3+(ln0.95 )t ≤ 0,

0.5y1+1.5y2+6y3−
(

19+1.5
√
−−−ln0.9

)
t ≤ 0,

2y1+3y2+8.5y3−
(

22+3
√
−−−ln0.9

)
t ≤ 0,

1.5y1+2.5y2+0.75y3+1.5t ≤ 1,

1.5y1−1.25y2+0.75y3+4t ≤ 1,

0.75y1+0.75y2+0.75y3+2.5t ≤ 1,

4y1+1.5y2+0.75y3+0.75t ≤ 1,

0.75y1+9y3+5.5t ≤ 1,

1.5y1−0.75y2+0.75y3+3.5t ≤ 1,

y1 ≥ 0,y2 ≥ 0,y3 ≥ 0, t > 0,

The individual best and worst values for the linear model exhibited in Table 2.

Table 2: Individual best, worst values for the linear model.
f11(((yyy, t) f12(((yyy, t) f21(((yyy, t) f22(((yyy, t) f31(((yyy, t) f32(((yyy, t)

bi j = max( fi j (((yyy, t)) 0.072 0.923 0.116 0.286 0.853 1.489
ai j=min( fi j (yyy, t)) -0.136 0 -0.139 -0.136 0 0

Formulate and solve the FLDM single-objective decision-making problem (79)-(82):

max f11(y, t) = 1.25y1+4.5y2−0.75y3−0.75t,
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subject to
2.5y1−0.75y2−2.5y3+4.5t ≥ 0.738,

4y1+5.5y2+7.5y3+1.28
√

2.5y2
1+3y2

2+4y2
3+3.5t2−7.5t ≤ 0,

6y1+7y2+9y3+1.28
√

4y2
1+5y2

2+6y2
3+5.5t2−9t ≤ 0,

0.05y1+0.07y2+0.01y3+(ln0.95 )t ≤ 0,

0.16y1+0.2y2+0.08y3+(ln0.95 )t ≤ 0,

0.5y1+1.5y2+6y3−
(

19+1.5
√
−−−ln0.9

)
t ≤ 0,

2y1+3y2+8.5y3−
(

22+3
√
−−−ln0.9

)
t ≤ 0,

1.5y1+2.5y2+0.75y3+1.5t ≤ 1,

1.5y1−1.25y2+0.75y3+4t ≤ 1,

0.75y1+0.75y2+0.75y3+2.5t ≤ 1,

4y1+1.5y2+0.75y3+0.75t ≤ 1,

0.75y1+9y3+5.5t ≤ 1,

1.5y1−0.75y2+0.75y3+3.5t ≤ 1,

y1 ≥ 0,y2 ≥ 0,y3 ≥ 0, t > 0,

whereδ12 = (b12−a12)s1+a12 = 0.738, so the solution of the FLDM is
(
yF

1 ,y
F
2 ,y

F
3 , t

)
= (0, 0.04636, 0, 0.1818) and

s1 = 0.8, σF = 0.05 are given by the FLDM.
Secondly, formulate the SLDM single-objective decision-making problem (85)-(88):

max f21(y, t) =−2.5y1+2.5y2−1.5y3,

subject to
7.5y1+2.5y2−0.75y3−0.75t ≥−0.031,

4y1+5.5y2+7.5y3+1.28
√

2.5y2
1+3y2

2+4y2
3+3.5t2−7.5t ≤ 0,

6y1+7y2+9y3+1.28
√

4y2
1+5y2

2+6y2
3+5.5t2−9t ≤ 0,

0.05y1+0.07y2+0.01y3+(ln0.95 )t ≤ 0,

0.16y1+0.2y2+0.08y3+(ln0.95 )t ≤ 0,

0.5y1+1.5y2+6y3−
(

19+1.5
√
−−−ln0.9

)
t ≤ 0,

2y1+3y2+8.5y3−
(

22+3
√
−−−ln0.9

)
t ≤ 0,

1.5y1+2.5y2+0.75y3+1.5t ≤ 1,

1.5y1−1.25y2+0.75y3+4t ≤ 1,

0.75y1+0.75y2+0.75y3+2.5t ≤ 1,

4y1+1.5y2+0.75y3+0.75t ≤ 1,

0.75y1+9y3+5.5t ≤ 1,

1.5y1−0.75y2+0.75y3+3.5t ≤ 1,

y1 = 0,

y2 ≥ 0,y3 ≥ 0, t > 0,
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whereδ22 = (b22−a22)s2 + a22 = −0.031, so the SLDM solution is
(
yF

1 ,y
S
2,y

S
3, t

)
= (0, 0.04636, 0, 0.1818) and

s2 = 0.25,σS= 0.05 are given by the SLDM.
Now, the FLDM test function, equation (89), will be utilized to decide whether the solution(0, 0.04636, 0, 0.1818)

is acceptable or not:

‖F1 (0,0.04636,0,0.1818)−F1(0,0.04636,0,0.1818)‖2

‖F1(0,0.04636,0,0.1818)‖2
=

‖(0.0723, 0.7833)− (0.0723,0.7833)‖2

‖(0.0723, 0.7833)‖2
= 0< 0.005

Finally, formulate the TLDM single-objective decision-making problem (92)-(95):

max f31(y, t) =−0.75y1+0.75y2−0.75y3+4.5t,

subject to
−1.25y1+0.75y2+0.75y3+8t ≥ 1.489,

4y1+5.5y2+7.5y3+1.28
√

2.5y2
1+3y2

2+4y2
3+3.5t2−7.5t ≤ 0,

6y1+7y2+9y3+1.28
√

4y2
1+5y2

2+6y2
3+5.5t2−9t ≤ 0,

0.05y1+0.07y2+0.01y3+(ln0.95 )t ≤ 0,

0.16y1+0.2y2+0.08y3+(ln0.95 )t ≤ 0,

0.5y1+1.5y2+6y3−
(

19+1.5
√
−−−ln0.9

)
t ≤ 0,

2y1+3y2+8.5y3−
(

22+3
√
−−−ln0.9

)
t ≤ 0,

1.5y1+2.5y2+0.75y3+1.5t ≤ 1,

1.5y1−1.25y2+0.75y3+4t ≤ 1,

0.75y1+0.75y2+0.75y3+2.5t ≤ 1,

4y1+1.5y2+0.75y3+0.75t ≤ 1,

0.75y1+9y3+5.5t ≤ 1,

1.5y1−0.75y2+0.75y3+3.5t ≤ 1,

y1 = 0,

y2 = 0.04636,

y3 ≥ 0, t > 0,

whereδ32 = (b32−a32)s3+a32= 1.489, so the TLDM solution is
(
yF

1 ,y
S
2,y

T
3 , t

)
= (0, 0.04636, 0, 0.1818) ands3 = 1,

is given by the TLDM.
Now, the SLDM test function, equation (96), will be utilized to decide whether the solution(0, 0.04636, 0, 0.1818)

is acceptable or not:

‖F2(0,0.04636,0,0.1818)−F2(0,0.04636,0,0.1818)‖2

‖F2 (0,0.04636,0,0.1818)‖2
=

‖(0.1159, −0.0205)− (0.1159,0.0205)‖2

‖(0.1159, 0.0205)‖2
= 0< 0.005

So
(
yF

1 ,y
S
2,y

T
3 , t

)
= (0, 0.04636, 0, 0.1818) is the preferred solution, which means that(x1,x2,x3) = (0, 0.255, 0) is the

corresponding preferred solution to the ML-MOFP problem.
The comparison between the proposed interactive approach and the strategy for Lachhwani [14] is given in Table 3.

The outcomes demonstrate that the preferred solution of theproposed interactive approach and the method of Lachhwani
14 are close to one another.
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Table 3: Comparison between the proposed interactive approach and Lachhwani [14].
Interactive approach Lachhwani [14] Ideal objective vector
f11 = 0.1859
f12 = 1.17
f21 = 0.2368
f22 =−0.099
f31 = 0.853
f32 =−0.4

µ11 = 0.999
µ12 = 0.975
µ21 = 0.999
µ22 = 0.498
µ31 = 1
µ32 = 1

f11 = 0.182
f12 = 1.17
f21 = 0.235
f22 =−0.1
f31 = 0.853
f32 =−0.4

µ11 = 0.995
µ12 = 0.975
µ21 = 0.996
µ22 = 0.497
µ31 = 1
µ32 = 1

f11 = 0.186
f12 = 1.183
f21 = 0.237
f22 = 0.81
f31 = 0.853
f32 =−0.4

9 Conclusions

In this paper, an effective and powerful interactive approach is presented to solve ML-MOFP problem with FRVs in the
constraints. Applying the CCP technique andα-level concept, a numerical crisp model of the ML-MOFP is formulated.
Moreover, the linear model of the problem is developed by extending the work of M. Chakraborty and S. Gupta [8]. Then,
the interactive approach simplifies the ML-MOLP model by changing it into isolated MODM problems, thus the complex
MLMP problem is simplified and the non-convex mathematical programming difficulty has been avoided. Hence, theε-
constraint method and the concept of satisfactoriness is utilized to solve each isolated MODM problem of the ML-MOLP
model. A procedure has been suggested for solving the ML-MOFP problem with FRVs in the constraints.

Several open points for research in the area of ML-MOFP, fromour point of view, to be studied in the future. Some of
these focuses are given in the following:

1.The interactive algorithm is needed for dealing with ML-MOFP in a rough environment.
2.The interactive algorithm is needed for tackling integerML-MOFP with fuzzy parameters.
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