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Abstract: This paper focuses on the solution of a three level largeespaddratic integer programming problem (TLLSQIPP) where
there are some or all of rough coefficients in the objectiveefion and that has block angular structure of the condtraém algorithm
based on interval method, Taylor’s series, decompositigoridhm and branch and bound method is suggested to find arconised
solution for the problem under consideration. Then, thgppsed algorithm is compared to Frank and Wolfe algorithmetmohstrate

its effectiveness. Finally, a numerical illustrative exgenis given to clarify the main results developed in thisgrap
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1 Introduction

Rough set theory has been demonstrated to be a proficienematical tool to incomplete knowledge. Pawldk [
has defined a new methodology in rough set. In this methogplagy ambiguous concept is developed by lower
approximations, upper approximations and the boundaigmegf a set.

Interval programming based on the interval analysis has loeeated as a helpful and basic method to deal with
classificatory analysis of ambiguous concepts; the roudénial is used to deal with partially vague or poorly
characterized parameted.[

Interval method has two features. First, the results angga of intervals. Second, the interval method doesn’t ignor
any part of solution region. Thus, the interval method givesolution with high precisiorg].

Multi-level programming (MLP) problem is a sequence of riplét optimization problems in which the constraint area
of one is decided by the solution of other decision makers.Sdguence of the play is very important and the decision of
the upper-level limitations affects the decision of theéoWevels {,5,6,7].

In large scale programming (LSP) problem, distributing theice space among several planning subunits. These
sub-units connect through a set of common constraintsvim@khe choice variables of all the divisions. The remagnin
constraints can be allocated to each subunit, with eachtreémsincluding only the choice variable of a single sulbuni
[8].

Quadratic programming (QP) is one of the most well-known etedised in decision-making and in optimization
problems. QP problem goes for minimizing (maximizing) a dyadic objective function subject to a set of linear
constraints. If the coefficients of the objective functioa exactly known crisp value, then these models can be sblyed
traditional algorithms, else interval method can be usambtwert rough nature to crispj|

Integer programming (IP) problems are optimization protgehat minimize or maximize the objective function in
the limits of equality or inequality constraints and integariables. More widely application of integer programmaan
be used to appropriately describe the decision problemsemanagement and effective use of resources in engineering
technology, business administration and numerous otleasdrQ].

* Corresponding author e-maiémrabohany8@gmail.com

(@© 2017 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/jsap/060206

306 NS 2 O. E. Emam et al.: On Rough Interval Three Level Large Scaledgatic...

Rough set theory, introduced by PawlaKl], presented ambiguity, not by means of membership, butzinij a
boundary region of a set. The theory of rough set defined thepapmation of a discretionary subset of a universe by two
determinable or detectable subsets called lower and uppeodmations.

Kryskiewice [L2] utilized a rough set theory to incomplete has discoveredynaeresting applications. Tsumottd
utilized the idea of lower and upper approximation in rougtssheory, knowledge covered up in information systems
may be unwound and developed in the form of decision rules.

Pal [14] see that the rough set approach seems to be of major sigriéica psychological sciences, particularly in the
fields of machine learning, decision analysis and expetégys. Xu et al. 15] transformed from random rough nature into
equivalent crisp model and introduced interactive metlagkt decision maker satisfying solution, using a randonghou
simulation technique which can act with random rough objedunctions and constraints, grouping with the genetic
algorithm.

Lu et al. [16] introduced the concept of rough interval to express duakudain information of many parameters
and the related solution method presented to solve roughvadtfuzzy linear programming (LP) problems. Aloly&lv]
tackled LP problems with fuzzy parameters in the objectiwecfion and the constraints based on preference relations
between explored intervals.

Lin [18] tackled constrained optimization problems using geredtjorithm with the rough set theory, which is known
as the rough penalty genetic algorithm (RPGA), with thendtéo adequately accomplish powerful solutions and to
resolve constrained optimization problems.

Jana et al.19] handled fuzzy rough multi-item economic production qitgrEPQ) model and developed constant
demand. Infinite production rate has adaptability and degkility consideration in production process, demand
dependent unit production cost and shortages under thiatioris on capacity region, by geometric programming (GP)
technique tackled the problem.

Saad et al. Z0] presented an algorithm for solving a three-level quadrptogramming, where some or all of its
coefficients in the objective function are rough interva@lmran et al. 21] presented an algorithm for solving a three level
fractional programming problem with rough coefficient imstraints.

Ma et al. [LO] proposed a new branch and bound algorithm through a sefriegpoovements on the traditional branch
and bound algorithm, which can be used to solve integer @tiadsrogramming problems effectively and efficiently.
This algorithm employed a new linear relaxation and bounthottand a rectangular deep bisection method. At the same
time, a rectangular reduction strategy is used to improgefiproximation degree and speed up the convergence of the
algorithm.

This paper is organized as follows: Section 2 formulatesntioelel of a three level large scale quadratic integer
programming problem with rough interval coefficients in tigective function. The theories used to transform rough
interval to crisp model are obtained in section 3. Sectionséusses Taylor’s series transformation. Section 5 ptesen
a decomposition algorithm for a three level large scaledlimarogramming problems and constraint method. Section
6 involves the concepts of Frank and Wolfe algorithm. An &t followed by a flowchart for solving the proposed
problem is suggested in Section 7 and Section 8. In addiiamymerical example is provided in Section 9 to clarify the
results. Finally, conclusion and future works are repoireSlection 10.

2 Problem Formulation and Solution Concept
A three level large scale quadratic integer programmindlera with rough interval coefficients in the objective

function (TLLSQIPPRIC) may be formulated as follows:
[First Level]

m
L = 1 L=
VaxF (9= 3 ([af.d) (a5 2))x + 5 " (e, a3 ), @
J:
Wherexs, ..., Xm Solves
[Second Level]
m
L wul [RE 7Yy LUt [RE BV T
MexFa (9= 3 ([Bh07]. [B1.B7 | i+ 5 X (k7] [B.B | ;. )
Wherexs, ..., Xm solves
[Third Level]
m
1 S
MaxF3 = > ([ef.qf] lJJ])XJFZXJ ([e.¢7]. [e7, lJJ])XL ©)
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Wherexz, ..., Xm solves

Subject to
x€ G={xe R™"|Ax< b,x>0}. (4)
Where

G = {ag1x1 + ao2x2 + aomXm < b,

dixg <by,

doxz < by,

OmXm < b,

X1,--.,Xm > O0and integey.
In the above Problem (1)-(4),x; € R.(j = 1,2,...mbe a real vector variables, [Q‘;,gﬂ,

[a'j-,aﬂ, [bf,bY], [E';,Eﬂ, {g'j-,gﬂ and {C‘;,Cﬂ are m x m matrix of rough interval coefficients of the objective

function for the three levelsG is the large scale linear constraint set wheses (bo,...,bm)" is (m+ 1) vector,
A= mx mnis the coefficients constraints matrix, aag, ..., agm, d1, ...,dm are constants.

ThereforeF : R" — R,(i = 1,2,3) be the first level, the second level, and the third level dhjecfunction,

respectively. Moreover, FLDM hag, xoindicating the first decision level integer choice, SLDM ardM havexz, X4
andxs, Xs indicating the second and the third decision level integ@iae, respectively.

To tackle Problem (1)-(4) and to deal with rough nature usirgginterval method to transform the rough coefficients in
the objective functions into crisp number presented iniSe@&.

3 The Equivalent Crisp Model for TLLSQIPPRIC

To solve the large scale quadratic integer programminglenobwhere there are some or all of rough coefficients in the
objective function, directly using the problem base forntheut transformation is very complex. Valuable studiesehav
been introduced in the area of the large scale quadratiagmuging P], which relied on indirect methods by dealing
with linear programs derived from the original programmprgblems, whose the solutions will be approximated to the
solution of the original problems without accuracy. Cuthgrihe challenging task for academic research is to sdiee t
quadratic programming problems using direct method to destnate the effectiveness of the indirect methods.

Conversion of the proposed problem into upper and lower@apmpration is usually a hard work for many cases, but
transformation process needs the following definitionsadtown:
Definition 1. [3]
Rough Interval (RI) can be considered as a qualitative viaura vague concept defined on a variakia R.
Definition 2. [3]
The qualitative valué\ is called a rough interval when one can assign two closedviaiteA, andA* on Rto it where
A. CA".
Definition 3. [3]
A. andA* are called the lower approximation interval (LAI) and theapapproximation interval (UAI) oA, respectively.
Further,Ais denoted byA = (A, andA* ).
Definition 4. [3]
Consider all of the corresponding linear programming witieival coefficients (LPIC) and LP of Problem (1)-(4):
1.The interval[F-, FY] ([F*-,F*V]) is called the surely (possibly) optimal range of Problem(@)) if the optimal
range of each LPIC is a superset (subset)df, FX| ([F*,F*V]).
2.Let [F-EY]([F*L,F*Y]) be surely an optimal range of Problem (1)-(4), then the rougterval
([FL,EY] [F*,F*V]) is called the rough optimal range of Problem (1)-(4).
3.The optimal solution of each corresponding LPIC of Probl€l)-(4) which its optimal value belongs to
[FL EY] ([F*,F*VY]) is called a completely satisfactory (rather) solution aftifem (1)-(4).

Now, the equivalent problem of the first level by using int@rmnethod B] can obtained by getting the surely optimal
range of Problem (1) and (4) by solving two large scale quadirzteger programming(LSQIP) as Follow3 |
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m 1 m 1
L_ L L . Taly, u_ U VA PAY)
E —maxgl_ijJrz Xj aXj, B)| E —maxglélJ X5 Xjapx;, (6)
subject to subject to
x e G. x e G.

While the possibly optimal range of Problem (1) and (4) cataintby solving two LSQIPs as followsS]:

B mex S dx +1xTa x @) | F’=max S ax HESR P (8)
- Zlaljzllj’ = _Zlaljzlll’
j= j=
subject to subject to
x e G. xe G.

After using interval method3] to convert Problem (1) and (4) for the first level from rougdture to crisp that resulted
in four LSQIP problems. These steps will be repeated for rsg¢@nd third level, so the problem of TLLSQIPPRIC
(1)-(4) converted into twelve LSQIP with four problems atledevel. Then each level has Riger own optimal solution
using Taylor’s series and decomposition algorithm togethth constraint method.

4 Taylor’s Series Approach P]

To solve LSQIP problem using decomposition algorithm vemplex problem, Taylor series can overcome this problem
by obtaining polynomial objective functions which are eglént to quadratic objective functions.

e D 2000)
i(X) = I(Xj)+;1(XJ—Xj) ax,

(i=1,23). C)
So the equivalent large scale linear integer programmi&d-(B) problem can be written as:

Max H; (x),(i=1,2,3), (10)

Subject to
x e G.

5 A Decomposition Algorithm for Three Level Large Scale Linar Integer Programming
(TLLSLIP) Problem

To solve the TLLSLIP problem based on the decompositionrélgo [9] and constraint method. The FLDM gets the
optimal solution using decomposition algorithm by breakihe large scale problem into n-sub problems that can be
solved directly. Then by inserting the FLDM decision vat&ato the SLDM for him/her to seek the optimal solution
using decomposition method. Finally, the TLDM does the satén till he/she obtains the optimal solution of his
problem.

6 Frank and Wolfe algorithm [22]

This method deals with the following problem in which all straints are linear:
Max Z = f (X), (11)
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Subject to
AX <b,X>0.

Let X*be the feasible trial point at iteratiokithe objective functionf(X)can be expanded in the neighborhood of
Xkusing Taylor series. This gives

F(X) 2 f (xk) +of (xk) (x _xk) - (f (xk) T (xk) xk) +of (xk) X. (12)

The procedure calls for determining a feasible p&int X* such thatf (X) is maximized subject to the linear constraints
of the problem. Becausi(X¥) — d f (XK)XX is a constant, the problem for determiniXg reduces for solving the linear
program:

Max wi(X) = (X)X, (13)

Subject to
AX <b,X>0.

Given w; is constructed from the gradient ¢fX) at XX, an improved solution point can be secured if and only if
Wi (X*) = Wi (Xk). From Taylor expansion, the condition does not theX*) > f (Xk)unlessX* is in the neighborhood

of XK. However, givenwy (X*) = wy (X¥), there must exist a poink<*? on the line segmenfX*,X*) such that
f (X¥t1) - f (XK). The objective is to determing<**. Define

Xk”:(1—r)Xk+rX*:Xk+r(X*—X"),O<r§1. (14)
This means thaxkt1 is a linear combination ok andX*. Becaus&* andX* are two feasible pointin a convex solution
spaceXk+1is also feasible. The parameterepresents the step size.
The pointX*! is determined such thdt X) is maximized. Becaus¢*! is a function of r onlyX*** is determined by
maximizing

h(r)=f (Xk+r (x*_xk)). (15)

The procedure is repeated until, at tle iteration w (X*) < w (Xk) at this point, no further improvements are possible,
and process terminates wixf as the best solution point.

7 An Algorithm for Solving TLLSQIPPRIC

A solution algorithm to solve TLLSQIPPRIC is described inesiss of steps. This algorithm uses interval mettzjdq
convert the interval rough parameters into real numberséocome the complexity nature of the proposed problem and
uses the constraint method of the three level optimizatidadility the large scale nature. Inserting the variabkdsi® of
every higher level decision maker to his lower level decisitaker break the difficulty faces the problem.

The suggested algorithm can be summarized in the following amner.

Step 1.The FLDM converts Problem (1) and (4) into Problems (5)-(8uking interval method3], which resulted in
four LSQIP problems.

Step 2.Apply Taylor's series approach to obtain polynomial objeefunction in Formula (9), which results in four
LSLIP problems.

Step 3.Use the decomposition algorithr@][to solve the four LSLIP problems by breaking the large sgatgblem into
n-sub problems that can be solved directly, then the optaolation is reached.

Step 4.If the solution of the problem is integer optimal solution,tg Step 6, otherwise, go to Step 5.

Step 5.Using branch and bound methdd to find integer optimal solution.
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Step 6.1f the SLDM obtains his optimal solution, then go to Step Gestvise [x},x7 ], [0, %], 5. 5], [%5, %]
must be assigned to the SLDM constraints.

Step 7.The SLDM converts Problem (2) and (4) into Problems (5)-§8lbing interval methodd], go to Step 2.

Step 8. If the TLDM obtains his optimal solution, then go to Step 1Otheswise [x;,xX{],[X;,X7],
X5, [%.% ], X5, 5], [%6, %], x5, %7 ], [X5.%] | must be assigned to the TLDM constraints.

Step 9.The TLDM converts Problem (3) and (4) into Problem (5)-(8)Usjng interval method3, go to Step 2.

Stepl0. Set the optimal soluton of the TLDM [xi,x?], [®, %], [x5.x5], [5.X50]. X5, %51, [%5, %Y ]
XX XX X L (R, ®Y ] [x6. x5 |, [%. XY |as the compromised solution of the TLLSQIPPRIC, then stop.

8 A Flowchart for Solving TLLSQIPPRIC

A flowchart to explain the suggested algorithm is descritsefbbows:

FLDM use interval method to
formulate his LSQIPRIC problem
into four LSQIP problems
|
Apply Taylor's series approach to

———p= convert the four LSQIF problems
into four LSLIP problems
!

Y

Use the decom position algerithm
to solve the four LSLIP problams

reach optima
teger solutio:

Using branch and bound -

method

-

Yes SLOM reach
optimal

Assign FLDM decision
variables to the SLDM
constraints

TLOM reach
optimal

Set the optimal selution of the Assign FLDM and SLDM SLDM use Interval mothod
TLDM as the compromised decision variables to the to formulate his LSQIPRIC —
solution of the TLLSQIPPRIC TLOM constraints problem into four LSQIP

v

TLDM use interval method to formulate his
LSQIPRIC problem into four LSQIP

Fig. 1: flowchart to Explain The Suggested Algorithm.

Remarkl. For TLLSQIPPRIC, the Lingo package is suggestedoa@sic solution tool.
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9 Numerical Example

To demonstrate the solution method for TLLSQIPPRIC in th¢ective, let us consider the following numerical

Max Fl (X) = MaX4([47 6]7 [37 7])X1_X%+4([274]7 [174]))(2 _X%+2X4+X5+X67

Max F2 (X) = |)\(/|axi(X5+3X2+6([2,4], [17 6])X3_X§+ ([Oa 3]7 [074])X4+X67
3>

I)\</|5§<‘é( F3 (X) = I)\(Q%le + ([17 Z]v [17 3]))(2 + 4([374]v [27 5]))(5 - XFZJ + 2([57 7]v [47 8]))(6 - Xiziv

example:
[FLDM]
X1,X2 X1,%X2
Where X3, Xs,Xs,Xg Solves
[SLDM]
X3,X4
Where Xxs,Xg solves
[TLDM]
Subject to
X1+ X2 + X3+ Xa + X5 + X < 50,
2X1 + X2 < 40,
5x3+x4 < 12,
X5+ X6 < 20,
Xs + 5xg < 80,

X1,X2,X3, X4, X5, X6 > 07X17X27X37X47X57X6 > 07 and integers'

FLDM problem using Taylor’s series and decomposition algoithms

The equivalent problem of the first level programming prableith rough coefficients in objective function by using

interval method can be written as:-

Table 1: The Equivalent Problem of The FLDM using Interval Method.

Upper

Lower

P1:Max12x; —X§ + 4%, — X5 + 2%, -+ Xg + Xg
Subject to

X1+ X +X3 4 X4+ X5 +Xg < 50,

2X1 + X2 < 40,

Bxg+X4 < 12,

X5+ Xg < 20,

X5+ 5% < 80,

X1, X2, X3, X4, X5, X6 > O.

P3:Max16x; — X§ + 8X, — X5 + 2%, + Xg + Xg
Subject to

X1 +Xp + X3 4 X4 + X5 +Xg < 50,

2X1 + X2 < 40,

Bxz+X4 < 12,

X5+ Xg < 20,

X5 + 5Xg < 80,

X1, X2, X3, X4, X5, X6 > O.

P2:Max28x; —X§ + 16X, — X5 + 2%, + Xg -+ Xg
Subject to

X1+ X +X3 4 X4+ X5 +Xg < 50,

2X1 + X2 < 40,

5x3+ x4 < 12,

X5 +Xg < 20,

X5 + 5Xg < 80,

X1, X2, X3, X4, X5, X6 > O.

P4:Max24x, — X5 + 16%, — X5 + 2X, + X5 + Xg
Subject to

X1 +Xp + X3 4 X4+ X5 +Xg < 50,

2X1 + X < 40,

5x3+x4 <12,

X5+ X5 < 20,

X5 + 5Xg < 80,

X1, X2, X3, X4, X5, X6 > 0.
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Then, the objective functions of the FLDM in Table (1) arens®rmed by using 3 order Taylor polynomial series to

linear functions as follows:

Table 2: Transformation of The FLDM Objective Functions to Lineamnktions.

Upper

Lower

IFp1(0,20,0,10,10,0) = —290, then
P1:Max12x; — 36x, + 2%, + X5 + X5 + 400
Subject to

x e G.

IFp3(0,21,0,5,10,0) = —253, then
P3:Max16x; — 34%, + 2%, + X5 + X5 + 441
Subject to

x e G.

IFp2(0,25,0,5,15,0) = —200, then
P2:Max28x; — 34X, + 2%, + Xg + X5 + 625
Subject to

xe G.

IFp4(0,22,0,8,15,0) = —101, then
P4:Max24x; — 28%, + 2%, + X5 + Xg + 484
Subject to

x e G.

After that, apply the decomposition algorithm on the FLDMstidve linear large scale integer programming problem

in Table (2) and get the following results:

Table 3: Results of Applying The decomposition Algorithm on Lineamietions of The FLDM.

Upper

Lower

F] = 682, where
(X xE,xE X, xE xE) =(20,0,0,12 18,0).

L=803, where

ok
(X[, x5 xE X xE

£ xf) =(20,0,0,12,180).

F}=1227, wheréxt x5, 5 X, xE , xE)
(20,0,0,12,18,0).

= | FY=1006, where
(x, x5, xE X, xE, xE) =(20,0,0,12,18,0).

SLDM problem using Taylor’s series and decomposition algathms

Now setx] = (]20,20],[20,20])=20 andx; = ([0,0],[0,0]) = O to the SLDM constraints. Then, the equivalent problem
of the second level programming problem with rough intepaadfficients in objective function by using interval method

can be written as:

Table 4: The Equivalent Problem of The SLDM using Interval Method.

Upper Lower
P1:Max6x; — X3 + X + 400 P3:Max12x; — X5+ Xg + 400
Subject to Subject to
X3+ X4 + X5+ Xg < 30, X3+ X4 + X5+ Xg < 30,
5x3+Xx4 < 12 BXz+x4 <12
X5+ Xg < 20, X5+ Xg < 20,
X5+ 5xg < 80, Xg + 5xg < 80,
X3,X4,X5,X6 > 0. X3,X4,%5, X6 > 0.
P2:Max36x; — X5 + 4%, + X + 400 P4:Max24x; — X5 + 3%, + Xg + 400
Subject to Subject to
X3+ X4 + X5+ X5 < 30, X3+ X4+ X5 + X5 < 30,
5x3+x4 < 12, 5x3+Xx4 <12,
X5+ Xg < 20, X5 +Xg < 20,
X5 -+ 5%g < 80, X5 -+ 5Xg < 80,
X37X47X57X6 2 O X37X47X57X6 2 0
(@© 2017 NSP
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Then, do the same action on the SLDM and get the followingltgsu

Table 5: Results of Applying The decomposition Algorithm on Lineamietions of The SLDM.

Upper

Lower

F5 = 4266, where(55 )5, xS, X§) = (2.4,0,0,16).

Apply branch and bound algorithm to get integer optin
solution.

So,F5=425, where(x$ 5§, %8, x§) = (2,0,0,16).

F5=441, where( x5, 53, X2, X5) = (2.4,0,0,16).

nal\pply branch and bound algorithm to get integer optin
solution.

So, F5=437, where(x$ x5, X5, x§) = (2,0,0,16).

nal

F=503.4, wherg x§ 55, ¢, x5) = (2.4,2,0,16).

Apply branch and bound algorithm to get integer optin
solution.

FY=469.8, wherg x3,x3, x5, x§) = (2.4,0,0,16).

naf\pply branch and bound algorithm to get integer optin
solution.

S0,F5=497, wherex§ 5,38, x§) = (2,2,0,16).

nal

So, B/=465, wheréx3, x5, X2, x5) = (2,2,0,16).

TLDM problem using Taylor's series and decomposition algoithms
Now setx] = ([20,20],[20,20]) = 20x5 = ([0,0],[0,0]) = 0,x5 = ([2,2],[2,2]) = 2 andx; = ([0,2],[0,2]) to the TLDM

constraints. Then, the equivalent problem of the third li@regramming problem with rough interval coefficients in

objective function by using interval method can be w

Table 6: The Equivalent Probl

ritten a

em of The TLDM using Interval Method.

Upper Lower

P1:Max8xg — X& + 85 — Xg -+ 120 P3:Max12xg — X§ + 10x; — x5 + 120
Subject to Subject to

X5+ Xg < 28, X5+ Xe < 28,

X5 +Xg < 20, X5 +Xg < 20,

X5 + 5Xg < 80, X5 + 5xg < 80,

Xs,Xg > 0. X5, Xg > 0.

P2:Max20x; — X + 16x5 — X§ + 120 P4:Max16x; — X + 14x; — X5 + 120
Subject to Subject to

X5+ Xg < 26, X5+ Xg < 26,

X5 +Xg < 20, X5 +Xg < 20,

X5+ 5% < 80, X5 + 5xg < 80,

Xs,Xg > 0. X5, Xg > 0.

Then, do the same action on the TLDM and get the followingltesu

Table 7: Results of Applying The decomposition Algorithm on Lineamtions of The TLDM.

Upper Lower
F3 = 250 where FL=337, where
(4. %) =(200) (X, =(20,0).
fg =506,where Eg =426, where
(. %) =(200) (X .x0) = (20,0).
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FLDM problem using frank and Wolfe algorithm combined with d ecomposition algorithm

apply Frank and Wolfe algorithm combined with decompositidgorithm on the FLDM to solve quadratic large scale
integer programming problem in Table (1) with direct stepd get the following results:

Table 8: Results of Applying Frank and Wolfe Algorithm Combined widecomposition Algorithm on The FLDM.
Upper Lower

f'i = 84, where E']-F=124, where
(:E?x;x;x;x;xg) = (6,2,0,12,10,10). (x, x5, xE X, xE %) =(8,4,0,12,10,10).
F1=300.5, where FY=250.5, where

(X[ X5, x5 %G xE xE) = (135,7.5,0,12,8.5,85). (K X E ) =(115,7.5,0,12,9.5,9.5).
Apply branch and bound algorithm to get integer optimaApply branch and bound algorithm to get integer optimal
solution. solution.

So,F} =300, where

So, F{ =250, where
(X5, X, xE xE) =(13,7,0,12 8,10).

(X, x5 xE X, € xE) =(11,7,0,12,9,11).

SLDM problem using frank and Wolfe algorithm combined with decomposition algorithm Now set
x| = ([8,11]),[6,13)), andx; = ([4,7]),[2,7]) to the SLDM constraints. Then, the equivalent problem ofsteond level
programming problem with rough interval coefficients inetijve function by using interval method can be written as:

Table 9: The Equivalent Problem of The SLDM using Interval Method.

Upper Lower
P1:Maxbx; — X5 + X + 42 P3:Max12x; — X5 + X5+ 76
Subject to Subject to
X3+ X4 + X5+ X < 42, X3+ X4+ X5 + X5 < 38,
Sx3+x4 <12 5x3+X4 < 12,
X5 +Xg < 20, X5+ Xg < 20,
X5+ 5Xg < 80, X5 + 5% < 80,
X3,%4,%5,%X6 > 0. X3, %4, X5, X > O.
P2:Max36x3—x§+4x4+xﬁ+190 P4:Max24x3—x§+3x4+x6+142
Subject to Subject to
X3+ X4+ X5 +Xe < 30, X3+ X4+ X5 +Xg < 32,
Bxg+x4 <12, 5xg+ X4 < 12,
X5 +Xg < 20, X5+ Xg < 20,
X5+ 5% < 80, X5 -+ 5xg < 80,
X3,X4,Xs5,Xg > 0. X3, %4, X5,%g > O.

After that, apply Frank and Wolfe algorithm combined witttdmposition algorithm on the SLDM to solve quadratic

large scale integer programming problem in Table (9) witkedisteps and get the following results:
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Table 10: Results of Applying Frank and Wolfe Algorithm Combined widlecomposition Algorithm on The SLDM.

Upper Lower
F} = 66.64, where F5=115.04, where
(G35, X5, X§) = (2.4,0,0,16). (5,5, X2, x5) = (2.4,0,0,16).
Apply branch and bound algorithm to get integer optimahpply branch and bound algorithm to get integer optimal
solution. solution.
So,F5=66, where(x3,x§. X3 x§) = (2,0.,0,16). So,F5=112, where(x$ xS, xS, xS) = (2,0,0,16).
F3=286.64, where F5=209.84,where
(X5.%5, X2, X3) = (2.4,0,0,16). (35,55, X2, X5) = (2.4,0,0,16).
Apply branch and bound algorithm to get integer optimahpply branch and bound algorithm to get integer optimal
solution. solution.
So,F,=282, where(x$.x§. X3, %§) = (2,2.0,16). So, /=208, wheréx$ x5, x8,x8) = (2,2,0,16).

TLDM problem using frank and Wolfe algorithm combined with d ecomposition algorithm

Now setxt, = ([8,11]),[6,13)) x5 = ([4,7],[2,7)).x5 = ([2,2],[2,2]) = 2andx, = ([0,2],[0,2]) to the TLDM constraints.
Then, the equivalent problem of the third level programngir@pblem with rough interval coefficients in objective fuioct
by using interval method can be written as:

Table 11: The Equivalent Problem of The TLDM using Interval Method.

Upper Lower
P1:Max8xg — X€ + 8xg — X2 + 38 P3:Max12xg — X¢ + 10xg — X5 + 52
Subject to Subject to
X5+ X < 40, X5+ Xg < 36,
X5 +Xg < 20, X5 +Xg < 20,
X5+ 5% < 80, X5 + 5xg < 80,
Xs,X > 0. X5,Xg > 0.
P2:Max20xg — X + 16xg — X5 + 99 P4:Max16xg — X + 14x; — x5+ 80
Subject to Subject to
X5+ X < 26, X5+ Xg < 28,
X5 +Xg < 20, X5 +Xg < 20,
X5 + 5%g < 80, X5 + 5Xg < 80,
Xs,X > 0. X5,Xg > 0.

After that, apply Frank and Wolfe algorithm combined withcdmposition algorithm on the TLDM to solve quadratic
large scale integer programming problem in Table (11) witbad steps and get the following results:
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Table 12: Results of Applying Frank and Wolfe Algorithm Combined widlecomposition Algorithm on The TLDM.

Upper Lower
f'g =70, where F5=113, where
fg =263, where FY=193, where
(X.x) =(108). (X&) =®7).
Finally, getting the following results
The possibly The surely The possibly using The surely using
Level
using Taylor using Taylor Frank and Wolfe Frank and Wolfe
FLDM [664,1209] [785, 988] [48, 280] [95,225]
SLDM [409,477] [421, 451] [54, 274] [101,199]
TLDM [250, 506] [337,426] [70, 263] [113,193]

The proposed algorithm produces an approximated, in agurat fast solutions. These solutions can be used in fields
such as agricultural decisions.

The Frank and Wolfe algorithm introduces accurate but sldwt®ns. These solutions can serve in fields such as medical
and financial decisions.

10 Conclusion and Future Points

This paper suggested an algorithm to solve TLLSQIPPRIC. sthygested algorithm has used interval method at each
level to define a crisp model, then all decision makers attempptimize their problems separately as a large scale
quadratic programming using Dantzig and Wolfe decompmsithethod and Taylor's series together with constraint
method. Then, compared the proposed algorithm to Frank aifit\Algorithm to demonstrate its effectiveness

The solution algorithm has a few features:

1.It combines interval method, Taylor’s series, decontmsialgorithm, branch and bound and constraint method to
obtain a compromised solution for the TLLSQIPPRIC.

2.The results are in the form of intervals and the intervahoé doesn’t ignore any part of solution area.

3.1t can be efficiently coded.

Finally, a numerical example was given to clarify the maisules developed in this paper.

However, there are many other aspects, which should by egland studied in the area of a large scale multi-level
optimization such as:

1.Large scale multi-level fractional programming probheith rough interval parameters in the objective functiond a
in the constraints and with integrality conditions.

2.Large scale multi-level fractional programming problesith rough fuzzy number in the objective functions and in
the constraints and with integrality conditions.

3.Large scale multi-level quadratic programming probleitihwough fuzzy number in the objective functions and in
the constraints and with integrality conditions.
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