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Abstract: The quantum correlations, including entanglement and discord with its geometric measure, and classical correlation are
studied for a bipartite partition of a open or closed quantum system. It is found that the purity of the initial state plays an important
role in the dynamics of quantum and classical correlations. In the dephasing model, the quantum correlations loss and the classical
correlation gain are instantaneously happen. While, the purity of the initial state destroys the quantum correlations which is resulted by
the unitary interaction. Therefore, with the purity parameter, a particular region in which there is no state have quantum correlations
can be determined.
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1. Introduction

The development of the quantum information technology
stimulates a deep study of the properties of quantum cor-
relations inherent in a quantum system. In particular, there
is a problem of identification of those quantum correla-
tions which are responsible for the advantages of the quan-
tum computations in comparison with the classical ones.
Therefore, lots of interest have been devoted to the defini-
tion and understanding of correlations in quantum systems
in the last two decades. Specially, the definition and study
of quantum and classical correlations in quantum systems.
It is well known that the total correlation in a bipartite
quantum system can be measured by quantum mutual in-
formation [1], which may be divided into classical and
quantum parts [2-5]. The quantum part is called quantum
discord(QD) which is originally introduced by [4]. Re-
cently, it has been aware of the fact that quantum discord
is a more general concept to measure quantum correlation
than quantum entanglement(QE) since there is a nonzero
quantum discord in some separable mixed states [4]. The
dynamics of quantum discord and entanglement has been
recently compared under the same conditions when entan-
glement dynamic undergoes a sudden death [6–10]. It was
shown that quantum discord presents an instantaneous dis-
appearance at some time points in non-Markovian regime
[6], and exponential decay in Markovian regime[7]. Inter-

estingly, it has been proven both theoretically and exper-
imentally that such states provide computational speedup
compared to classical states in some quantum computation
models[11,12]. In these contexts, quantum discord could
be a new resource for quantum computation.

The calculation of quantum discord is based on numer-
ical maximization procedure, it does not guarantee exact
results and there are few analytical expressions including
special cases [13,14]. To avoid this difficulty, geometric
measure of quantum discord (GMQD) is introduced by
Ref.[15], which measures the quantum correlations through
the minimum Hilbert-Schmidt distance between the given
state and zero discord state.

Because of the unavoidable interaction between a quan-
tum system and its environment, understanding the dy-
namics of quantum and classical correlations (CC) is an in-
teresting line of research [14-17]. The influence of Marko-
vian [7] and non-Markovian [17] environment on the dy-
namics of QD and GMQD. They showed that both GMQD
and QD die asymptotically with entanglement sudden death,
and the discontinuity in the decay rate of GMQD does not
always imply the discontinuity in the decay rate of QD.
Also, they observed that even when QD vanishes at dis-
crete times, GMQD disappears but not instantly. But in our
work the dephasing environment, in which energy trans-
fer from the system to the environment does not occur,
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is considered. Some work has been devoted to this issue
[20–22], in which, the authors show that disentanglement
is dependent on the initial condition and temperature of
the environment. This type of the environment leads to
phenomenon entanglement sudden death, i.e., the entan-
glement can decrease to zero abruptly and remains zero
for a finite time [23–25]. Entanglement sudden death has
been experimentally observed in an implementation using
twin photons [26], and atomic ensembles [27].

In this paper, one considers a dephasing model, in which
two qubits embed into a multi-mode quantized field and
the interaction between the two qubits is also considered.
Therefore, the quantum correlations via quantum discord
and its geometric measure (GMQD) is compared with both
quantum entanglement and classical correlation.

2. Measures of correlations

2.1. Quantum discord

To quantify the quantum correlations of a bipartite system,
no matter whether it is separable or entangled, one can use
the quantum discord [2,4]. Quantum discord measures all
nonclassical correlations and defined as the difference be-
tween total correlation and the classical correlation with
the following expression

D(ρAB) = I (ρAB)−Q(ρAB), (1)
which quantifies the quantum correlations inρAB and can
be further distributed into entanglement and quantum dis-
sonance (quantum correlations excluding entanglement)[28].
Here the total correlation between two subsystemsA and
B of a bipartite quantum systemρAB is measured by quan-
tum mutual information,
I (ρAB) = S (ρA)+S (ρB)−S (ρAB), (2)
whereS (ρAB) = Tr(ρAB logρAB) is the Von Neumann
entropy,ρA = TrB(ρAB) and ρB = TrA(ρAB) are the re-
duced density operators of the subsystemsA and B, re-
spectively. The measure of classical correlation is intro-
duced implicitly in Ref.[4] and interpreted explicitly in the
Ref.[2]. The classical correlation between the two subsys-
temsA andB is given by

Q(ρAB) = max
{Πk}

[S (ρA)−∑
k

pkS (ρk)], (3)

where{Πk} is a complete set of projectors to measure the
subsystemB, andρk = TrB[(IA⊗Πk)ρAB(IA⊗Πk)]/pk is
the state of the subsystemA after the measurement result-
ing in outcomek with the probability pk = TrAB[(IA⊗
Πk)ρAB(IA⊗Πk)], and IA denotes the identity operator
for the subsystemA. Here, maximizing the quantity rep-
resents the most gained information about the systemA as
a result of the perfect measurement{Πk}. It can be shown
that quantum discord is zero for states with only classical
correlations and nonzero for states with quantum correla-
tions. Note that discord is not a symmetric quantity, i.e.,
its amount depends on the measurement performed on the
subsytemA or B [15].

2.2. Geometric measure of quantum discord

The geometric measure of quantum discord quantifies the
quantum correlation through the nearest Hilbert-Schmidt
distance between the given state and the zero discord state
[15,16], which is given by

Dg
A = min

χ∈S
‖ρAB−χ‖2, (4)

whereSdenotes the set of zero discord states and‖A‖2 =
Tr(A†A) is the square of Hilbert-Schmidt norm of Hermi-
tian operators. The subscriptA of Dg

A implies that the mea-
surement is taken on the systemA. A stateχ on HA⊗HB

is of zero discord if and only if it is a classical-quantum
state [29], which can be represented as

χ =
2

∑
k=1

pk|k〉〈k|⊗ρk,

where{pk} is a probability distribution,|k〉 is an arbitrary
orthonormal basis forHA andρk is a set of arbitrary states
(density operators) onHB. An easily computable exact ex-
pression for the geometric measure of quantum discord is
obtained by Ref.[15] for a two qubit system, which can be
described as follows. Consider a two-qubit stateρAB ex-
pressed in its Bloch representation as

ρAB =
1
4
[IA⊗ IB + ∑

i=1
xi(σi ⊗ IB + IA⊗yiσi)

+ ∑
i j=1

Ri j σi ⊗σ j ], (5)

where{σi} are the usual Pauli spin matrices. The compo-
nents of the local Bloch vector arexi = Tr(ρAB(σi ⊗ I))
andyi = Tr(ρAB(I ⊗σi)). Ri j = Tr(ρAB(σi ⊗σ j)) are the
components of the correlation matrix[15]. Therefore, its
geometric measure of quantum discord is given by

Dg
A =

1
4
(‖x‖2 +‖y‖2−kmax), (6)

x = (x1,x2,x3)T , R is the matrix with elementsRi j andkmax

is the largest eigenvalue of the matrixK = xxT +RRT .

2.3. Entanglement via Negativity

Here, one uses the negativity[30] to measure the entangle-
ment, i.e., the negative eigenvalues of the partial transpo-
sition of ρAB are used to measure the entanglement of the
qubits system. Therefore, the negativity of a stateρAB is
defined as

N(ρ) = max(0,−2∑
j

µ j), (7)

whereµ j is the negative eigenvalue of(ρAB(t))TB, andTB
denotes the partial transpose with respect to the second
system.
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3. Quantum and classical correlations in
two-qubit models

In this section one tries to present, by examining two ex-
amples, an physical interpretation for the relation between
quantum entanglement, quantum and classical correlations.
The first model consists of two non-interaction qubits cou-
ple with the same quantized field under the rotating-wave
approximation. Another is the dephasing model, in which
two qubits embed into a multi-mode quantized field and
the interaction between the two qubits is also considered.

3.1. Two non-interaction qubits couple with the
field

Here, one considers two qubits coupled with a single-mode
cavity field, which is in the case of the exact resonance
with the qubits. One of the pioneering potential applica-
tions on this Hamiltonian in the context of quantum infor-
mation is ” Cooper pair box”(qubits)[31], i.e., the coupled
system of two Cooper pair box (artificial atoms) and pho-
tons stored in the resonator (cavity mode). The cavity is
sustaining non-decaying single mode field in its thermal
state along with the mode structure of the electromagnetic
field. The interaction picture Hamiltonian with the rotating
wave approximation is given by

Ĥ = λ
2

∑
k=1

(â†|0〉k〈1|+ â|1〉k〈0|), (8)

whereâ† andâ are the creation and annihilation operators
for the cavity mode,|0〉k and|1〉k denote to the ground and
excited states of thek-th qubit, respectively. For the whole
system (system+field), the evolution of the whole system
is characterized by the interaction between the two-qubits
system and single-mode cavity. However from the point of
the qubits, the energy transfer between the qubits and the
field happens, which is described by the relaxation term
â†|0〉k〈1| and the backaction term̂a|1〉k〈0|. One assumes
that the two qubits are initially prepared in Werner states,
which is defined by

ρAB(0) = p|ϕ〉〈ϕ|+ 1
4
(1− p)Î , (9)

where|ϕ〉 = sinθ |11〉+ cosθ |00〉 and p is a real number
which indicates the purity of initial state,Î is a4×4 iden-
tity matrix. But the cavity field is initially prepared in the
vacuum state, i.e.,ρF(0) = |0〉〈0|. Then the initial density
operation for the whole qubits-field system is:ρABF(0) =
ρAB(0)⊗|0〉〈0|. By using the above initial states, the den-
sity matrix of the qubits-field system with the interaction
(8) evolves toρ(t) = Û(t)ρABF(0)Û†(t), where the time
evolution operatorÛ(t) = exp(−iĤt). The reduced den-
sity matrix,ρAB(t), of two qubits is calculated by tracing
out the cavity field variables. Therefore,ρAB(t) is given by

ρAB(t) = a1|11〉〈11|+a2|00〉〈00|+a3(|11〉〈00|
+|00〉〈11|)+a4(|10〉〈10|+ |01〉〈01|)
+a5(|10〉〈01|+ |01〉〈10|) (10)

with the abbreviation

a1 =
1− p

4
+

p
9
(2+cosϖt)2sin2 θ ,

a2 =
1− p

4
+ pcos2 θ +

2p
9

(1−cosϖt)2sin2 θ ,

a3 =
p
3
(2+cosϖt)sinθ cosθ ,

a4 =
1− p

4
+

p
6

sin2 ϖt sin2 θ , a5 = a4− 1− p
4

,

whereϖ = 2.4495λ . The eigenvalues of the density ma-
trix ρAB(t) are given by:λ1,2 = a4±a5, andλ3,4 = 1

2[(a1+

a2)±
√

(a1−a2)2−4a2
3]. After some straightforward cal-

culation, the reduced density matrices associated with the
above states is given by

ρA(t) = ρB(t)
= (a1 +a4)|11〉〈11|+(a2 +a4)|00〉〈00|. (11)

One noted that, the reduced density matrices of the qubits
are represented in diagonal matrices. Therefore, these the
statesρA(t) andρB(t) are classical states.

For the case of the two qubits coupled with a single-
mode cavity field, the results are given in Figs.1a,b. In
these figures, one reports the dynamics ofDg

A, D(ρAB),
N(ρ) andQ(ρ) as a functions of the timeλ t for different
values of the purity of initial state (namelyp = 0.5,1.0)
with θ = π

4 . It is worth noting to mention that, because
the matrix of the initial state of the two qubits is not a di-
agonal matrix, this state is not classical state. Therefore,
its quantum correlation have non zero value atλ t = 0.0.
For p = 1.0, these measures instantaneously oscillate and
reach their maximum (atλ t = 2nπ

ω ,n= 0,1,2, ...) and min-

imum values (atλ t = (2n+1)π
ω ) at the same time points (see

Fig.1a). Because the functioncosϖt is a periodical func-
tion on the scaled time with period2π

ϖ , Dg
A, D(ρ), N(ρ)

and Q(ρ) evolve periodically with respect to the scaled
time with period2π

ϖ (see Figs.1a,b). A rather counterintu-
itive feature of the QE is that it may exceed the measures
of the GMQD and QD (see Fig.1a). So one can say that
GMQD and QD are more general than QE.

For p= 0.5 (see Fig.1b), one can observe that the phe-
nomenon of entanglement death occurs, but this phenomenon
does not occur for GMQD and QD even when the pu-
rity p is small. Because the entanglement undergoes sud-
den death while the correlations are long lived, QE is not
greater than QD, GMQD and CC for some time. Also one
can see that one value of QE corresponds to many values
of QD and GMQD, meaning that the states in possession
of the same entanglement give different correlations. This
means that, there are correlations(quantum and classical)
in the intervals of entanglement death. Therefore, the en-
tanglement is not the only part of quantum correlations.
This agrees with Ref.[29], which showed thatabsence of
entanglement does not imply classicality. From Fig.1a, one
can see that the intervals of vanishing negativity disappear
whenp = 1. Therefore, the entanglement sudden death is
completely sensitive to the purity of the initial-state.
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Figure 1 Time evolutions of the quantum discord (dash plots),
the geometric measure of QD (sold plots), the negativity (dotted
plots) and the classical correlation (dash-dot plots) forp = 1 in
(a) andp = 0.5 in (b) for θ = π

4 .

3.2. Dephasing two interaction qubits by a
multimode quantized field

Here, one considers a dephasing model of two qubits em-
bed into a multimode quantized field and the interaction
between the two qubits is also considered. The dephasing
channel case is important situation for the open systems, in
which there is no energy transfer between the system and
environment. The Hamiltonian of this case can be written
as[33]

Ĥ =
ω0

2
(σz

A +σz
B)+λ (σ+

A σ−B +σ+
B σ−A )

+∑
k

ωkb̂
†
kb̂k + γk(σ+

A σ−B +σ+
B σ−A )(b̂†

k + b̂k), (12)

whereωo is the qubit transition frequency andωk the fre-
quency of thek-th field, the coupling constant between the
two qubits isλ but γk is system-reservoir coupling con-
stant (dephasing channel parameter).
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Figure 2 Time evolutions of the quantum discord (dash plots),
the geometric measure of QD (sold plots), the negativity (dotted
plots) and the classical correlation (dash-dot plots) forγ = 0.0λ
in (a) andγ = 1.0λ in (b)for θ = π

60 andp = 0.5.

By using the same previous initial states but with|ϕ〉=
sinθ |10〉+ cosθ |01〉, the density matrix of the dephasing
qubits-field system is given by:̂U(t)ρABF(0)Û†(t). There-
fore, the reduced density matrix of the two qubits is given
by

ρAB(t) = α1(|11〉〈11|+ |00〉〈00|)+α2|10〉〈10|
+α3|01〉〈01|+α4|10〉〈01|+α∗

4 |01〉〈10|, (13)

with the abbreviation

α1 = (1− p)/4, α2 = (1+ p)/4−β ,

α3 = (1+ p)/4+β , α4 =
p
2

sin2θ − iβ ,

β =
p
2

Ld cos2θ cos2λ t,

Ld = exp[−4∑
k

(
γk

ωk
)2(1−cosωk)].

WhereLd is the decoherence factor which leads to damp-
ing of the off-diagonal terms. One can get the eigenvalues
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Figure 3 The same as in Fig.2 but for( γ
λ ,θ) = (2, π

60) in (a) and
( γ

λ ,θ) = (2, π
3 ) in (b)

of the density matrixρ(t) as

λ1,2 = α1, λ3,4 =
1
4
[1+ p±

√
(1+ p)2−16|α4|2 ] (14)

The reduced density matrices associated with the above
states are given by

ρA(t) = (α1 +α2)|11〉〈11|+(α1 +α3)|00〉〈00|, (15)

ρB(t) = (α1 +α3)|11〉〈11|+(α1 +α2)|00〉〈00|. (16)

The results of the case of the dephasing model are given
in Figs.2-5. In Fig.2, GMQD, QD, QE and CC are plotted
as a functions of the timeλ t for different values of system-
reservoir coupling parameterγ (namelyγ/λ = 0.0,1,2) with
θ = π

60 and p = 0.5. From Fig.2a, one can easily find the
common features of the dynamics of GMQD, QD, QE and
CC. The previous measures of quantum and classical cor-
relations present instantaneous oscillations and reach their
extreme values at the same time points. Because the en-
tanglement undergoes sudden death forγ 6= 0, while Dg

A,
D(ρ) andQ(ρ) are long lived.N(ρ) is not greater thanDg

A,
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Figure 4 The negativity in(a) and the quantum discord.

D(ρ) andQ(ρ) for small intervals and QE attains constant
values during an intervals while the quantum correlations
(GMQD and QD) vary in these intervals.

In Figs. 2b, 3a,b, one examines the effect of system-
reservoir couplingγ on the dynamics of the previous mea-
sures of quantum and classical correlations withθ = π

60.
It is clear thatDg

A, D(ρ) andN(ρ) decrease with increas-
ing of γ, and they have zero values. Precisely, the dephas-
ing parameterγ leads to exponentially decay for maximum
values of theDg

A, D(ρ) andN(ρ) to zero value, whileQ(ρ)
exponentially evolves to its asymptotic value. It is inter-
esting to note that the larger the value ofγ is, the more
rapidly Dg

A, D(ρ) and N(ρ) reach its asymptotic values
of zero. This means that, quantum correlations, includ-
ing entanglement and discord with its geometric measure
die asymptotically with large values ofγ. On the contrary,
the classical correlation increases with increasingγ, and
it have nonzero values forγ > 0. The figures show that
the classical correlation approaches an almost steady state
for large values ofγ faster than that for small values of
γ. Finally, after a very long time, the classical correlation
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Figure 5 The classical correlation in (a) and the geometric mea-
sure of QD in (b).

loses it oscillations and asymptotically reaches its steady
state, i.e., the final state of the qubits reaches a classical
state. One can say that, the quantum states with largeγ are
rapidly transformed into classical states, i.e., the processes
of quantum correlation loss and classical correlation gain
are instantaneously happen.

To investigate the influence ofθ = π
3 (mixed state)

with a large value ofγ = 2λ on the correlations see Fig.
3,b. From this figure, one notes that both QD and CC reach
their asymptotic values and approximately have the same
behavior while GMQD and QE have the same behavior.
This shows that the mixedness of the initial states affects
on all the previous measures in a similar way and it inhibits
them from going into zero. In Figs. 4, 5, one examines
the effect of the purity of the initial states on the dynam-
ics of the previous measures withθ = π

3 and γ = 0.8λ .
It is clear that they decrease with decreasing of the pu-
rity parameterp. When the purityp is zero, all the mea-
sures vanish, i.e, the mixedness of the initial states have
the same effect on all measures. One sees that the influ-

ence of purity leads to: the amplitudes of the local max-
ima of Dg

A, D(ρ), N(ρ) andQ(ρ) have exponential decay
with decreasing the parameterp. When quantum correla-
tions measures quite vanishes, the statesρAB finally go into
a classical state and its quantum correlation is lost com-
pletely. This means that, after a particular time, the purity
destroys the quantum correlations of the qubits which is
resulted by the unitary interaction. Therefore, in the pres-
ence of purity one can determines a particular region, in
which, there is no state have quantum correlations.

4. Conclusions

The dynamics of quantum correlations, including entan-
glement and discord with its geometric measure, and clas-
sical correlation in two-qubit models are introduced for a
open or closed quantum system. It is found that the dy-
namics of GMQD, QD, QE and CC differ. Where, quan-
tum discord and its geometric measure are exist in the re-
gion where the entanglement is zero, which is a strong
signature for the presence of non classical correlations.
System-reservoir coupling leads to: GMQD, QD and QE
die asymptotically with larger system-reservoir coupling
parameter. Also, processes of quantum correlation loss and
classical correlation gain are instantaneously happen. It is
found that the purity of the initial states destroys the quan-
tum correlations by exponential decay. Therefore, in pres-
ence of the purity, one can determines a particular region
in which there is no state have quantum correlations.
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