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The purpose of this paper is threefold: first to mainly review several recent results con-
cerning the fine spectrum of the operat®y over the sequence spaceandi,,, where

1 < p < oo; second to provide some new results concerning the residual spectrum
and the continuous spectrum of the operat@rover the sequence spaceand!,; and

third to modify the definition of the operatdx, and to determine the fine spectrum of
the modified operator over the sequence spaae®l!/,, wherel < p < oo. Also, it

may be helpful to provide some comments and examples to support our results.
Keywords: Spectrum of an operator, Generalized difference operator, The sequence
spaces: and [,.

1 Preliminaries, background and notations

By w, we shall denote the space of all real or complex valued sequences. Any

vector subspace af is called asequence spac&Ve shall writel,, ¢, ¢y and bv for the
spaces of all bounded, convergent, null and bounded variation sequences, respectively. Also
by {1, I, andbv, we denote the spaces of all absolutely summable sequgrabsplutely
summable sequences aodbounded variation sequences, respectively.

A triangle is a lower triangular matrix with all of the principal diagonal elements
nonzero. Let\ andyu be two sequence spaces add= (a,j) be an infinite matrix of
real or complex numbers,;, wheren, k € N = {0, 1,2, ...}. Then, we say thatl defines
a matrix mapping from\ into u, and we denote it by : A — u if for every sequence
x = (xy) € A, the sequencdxz = {(Ax),}, the A-transform ofx, is in 1, where

(Az), = Zankxk, (n € N). (1.1)
k

For simplicity in notation, here and in what follows, the summation without limits runs
from 0 to co. By (A, 1), we denote the class of all matricdssuch thatd : A — p. Thus,
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A € (M, p) ifand only if the series on the right side of (1.1) converges for eachN and
everyxr € A, and we havelz = {(Ax),}nen € pforallz € X. We use the convention
that any term with negative subscript is equal to naught.

We recall some basic concepts of spectral theory which are needed for our investigation
[see 15, pp. 370-372].

Let X be a Banach space afid: X — X be a bounded linear operator. BY{T'), we
denote the range df, i.e.,

RT)={yeX:y=Tzx, z€ X}.

By B(X), we denote the set of all bounded linear operator&anto itself. If T € B(X),
then the adjointl™ of T is a bounded linear operator on the duat of X defined by
(T*f)(z) = f(Tz) forall f € X* andz € X.

Let X # {0} be a complex normed space d@id D(T') — X be alinear operator with
domainD(T) C X. With T we associate the operator

Ty =T -\, (1.2)

where) is a complex number anblis the identity operator o® (7). If Ty has an inverse
which is linear, we denote it b, ', that is

T = (T - )71, (1.3)

and call it theresolvent operatoof 7.

Many properties offy and7; ' depend om\, and spectral theory is concerned with
those properties. For instance, we shall be interested in the setdhate complex plane
such thaIT;1 exists. The boundednessﬁf1 is another property that will be essential.
We shall also ask for what's the domain ofF;1 is dense inX, to name just a few aspects.

Definition 1.1. Let X # {0} be a complex normed space d@fd D(T') — X be alinear
operator with domaiD (T") C X. A regular value) of T is a complex number such that:
(R1) Ty ' exists,

(R2) T ' is bounded,

(R3) Ty ! is defined on a set which is denseXn

Theresolvent sebf T', denoted by (T, X), is the set of all regular valuesof T. Its
complementr (T, X) = C\p(T, X) in the complex plan€ is called thespectrumof 7.
Furthermore, the spectrus{T’, X) is partitioned into three disjoint sets as follows:

The point (discretd spectrumo, (T, X) is the set such thélf;1 does not exist. Any
such\ € 0,(T, X) is called areigenvalueof T.

The continuous spectrura. (T, X) is the set such thal”;1 exists and satisfies (R3)
but not (R2), thatis7} ' is unbounded.
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Theresidual spectruna,.(T, X) is the set such thé?[’;1 exists (and may be bounded
or not) but does not satisfy (R3), that is, the domaitTp‘i1 is not dense inX.

Hence if(T' — Al )z = 6 for somez # 6, then\ € ¢,(T, X), by definition, that isA
is an eigenvalue of'. The vectoix is then called arigenvectoof T' corresponding to the
eigenvalue\.

From now on, we should note that the ingelRas different meanings in the notation of
the spaces,, [; and the point spectrums, (A, ), 0,(A7, 1) which occur in theorems
given in Sections 2 and 3.

Several authors have studied the spectrum and fine spectrum of linear operators defined
by some particular limitation matrices over some sequence spaces. We summarize the
knowledge in the existing literature concerned with the spectrum and the fine spectrum.
The fine spectrum of the difference operafoover the sequence spaegsandc has been
studied by Altay and Basar [5]. Akhmedov and Basar [1,2] have studied the fine spectrum
of the difference operatof over the sequence spadgsandbv,, wherel < p < oo.

Note that the sequence spdeg was studied by Basar and Altay [8] and Akhmedov and
Basar [2]. Malafosse [17] has studied the spectrum and the fine spectrum of the difference
operatorA over the space,., wheres,. denotes the Banach space of all sequercey xy,)
normed by

Y
||$HST = Sup

GNTT’ (T>0)

The fine spectrum of the Zweier matrix operaftirover the sequence spadesandbv has
been examined by Altay and Karakus [7]. The fine spectrum of the generalized difference
operatorB(r, s) over the sequence spacgsandc has been studied by Altay and Basar
[6]. Also, the fine spectrum of the operatBir, s) over the sequence spadgsandbu,,,
wherel < p < oo has been determined by Bilgi¢c and Furkan [9]. The fine spectrum of
the generalized difference opera®(r, s,t) over the sequence spacgsandc has been
studied by Furkan et al. [12]. Also, the fine spectrum of the operBtor; s, t) over the
sequence spacésandbuv,, wherel < p < oo has been determined by Furkan et al. [13].
The fine spectrum of the operatdr, over the sequence spacgsandi; has been studied

by Srivastava and Kumar [19,20]. Also, the fine spectrum of the opersjoover the
sequence spacehas been examined by Akhmedov and El-Shabrawy [4]. Recently, El-
shabrawy [11] has studied the fine spectrum of the operatoover the sequence space
l,, wherel < p < oco. Panigrahi and Srivastava [18] have studied the fine spectrum of
the generalized second order difference operathr over the sequence spage The fine
spectrum of the generalized difference operalqr, over the sequence spacelas been
studied by Akhmedov and EI-Shabrawy [3].

Now, we may give:

Lemma 1.1. (cf. [21, p. 6]). The matrix4 =(a,) gives rise to a bounded linear operator
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T € B(c) from c to itself if and only if
1. the rows of4 are inl; and theirl; norms are bounded,
2. the columns ofl are in ¢,
3. the sequence of row sumsAfs in c.

The operator norm ofl" is the supremum of thig norms of the rows

Lemma 1.2. [10, p. 253]. The matrix4 = (a,x) gives rise to a bounded linear operator
T € B(l1) from; to itself if and only if the supremum 6f norms of the columns of is
bounded.

Lemma 1.3. [10, p. 245]. The matrix4 = (a,x) gives rise to a bounded linear operator
T € B(lw) fromli, to itself if and only if the supremum &f norms of the rows ofl is
bounded.

Lemma 1.4. [14, p. 59]. T has a dense range if and only/if is one to one.

The rest of this paper is organized as follows. Next, in Section 2 we mainly review
several recent results concerning the fine spectrum of opekatover the sequence spaces
c and [, wherel < p < oco. Also, some new results are obtained. In Section 3 we modify
the definition of the operatak, and determine the fine spectrum of the modified operator
over the sequence spacesnd/,, wherel < p < oco. Finally, Section 4 presents our
conclusions.

2 The spectrum of the operatorA, oncandl,, 1 < p < oo

The generalized difference operatdy has been defined by Srivastava and Kumar
[19]. The generalized difference operathy, is represented by the matrix

() 0 0
—g vy o ...
A, = s (2.1)

where, the sequendey,) is assumed to be either constant or strictly decreasing sequence
of positive real numbers satisfying

lim v, =L >0 (2.2)

k—oo

and
supvg < 2L. (2.3)
k
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Note That, if(vx) is a constant sequence, say = L # 0 for all k € N, then the
operatorA, is reduced to the operatd(r, s) with r = L, s = —L and the results for
the spectrum and fine spectrum of the operatgron the sequence spaaeandi, follow
immediately from the corresponding results in [6,9]. Then, throughout Sections 2.1 and 2.2,
we consider only the case when the sequgngé is assumed to be a strictly decreasing
sequence of positive real numbers satisfying Conditions (2.2) and (2.3).

The contents of this section are divided into three subsections. In Sections 2.1 and 2.2
we mainly review several recent results concerning the fine spectrum of the op&rator
on the sequence spacesnd [,,, wherel < p < co. Also, we provide some new results
concerning the residual spectrum and the continuous spectrum of the op&jaborthe
sequence spacesand [,. Finally, in Section 2.3 we give comments with some detailed
examples.

2.1 The spectrum of the operatorA, onc

Akhmedov and EI-Shabrawy [4] have studied the fine spectrum of the opéxator
on the sequence spacavith the additional condition thaty # 2L. In this subsection we
summarize the main results.

The bounded linearity of the operatdr, onc is given by the following theorem.

Theorem 2.1. [4, Theorem 2.1] The generalized difference operatgr : ¢ — cis a
bounded linear operator with the norfi\, || . = vo + v;.

The spectrum of the operatdyx, onc is given by the following theorem.
Theorem 2.2. [4, Theorem 2.2 (A,,¢) ={A € C: A - L| < L}.

The following theorem gives the point spectrum of the operatpon c.
Theorem 2.3. [4, Theorem 2.3b,(A,, ¢) = 0.

It is known that if 7" : ¢ — cis a bounded linear operator with matri¥ then the
adjoint operatofl™ : ¢* — ¢* acting onC & [; has a matrix representation of the form

x 0
B At ]’

wherey is the limit of the sequence of row sums Afminus the sum of the limit of the
columns of4, and B is the column vector whodeth entry is the limit of thek-th column
of A for eachk € N. ForA, : ¢ — ¢, the matrixA} € B(ly) is of the form

A= (00
0 Al
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It should be noted that the dual spa€eof ¢ is isomorphic to the Banach spateof
absolutely summable sequences normeglddy = > [xy|.
k

The results concerning the point spectrum of the adjoint opersjasf A, are given
by the following theorem.

Theorem 2.4. [4, Theorem 2.4]

i {\eC:|A\—L| < L}U{0} C op(A%,c¥),

Vi

ii. {)\ eC: sup‘)ﬁ”‘" < 1} Cop(Af, ),
k

iii. 0,(A%,c*) C {)\ €C:inf ‘A*—k

<1}u{0}.

The following theorem gives some results on the residual spectrum of the op&rator
onc.

Theorem 2.5. [4, Theorem 2.5]
i. {AeC:|A=L|<L}U{0} Co.(Ay,0),

i, {)\G(C:Stlip’/\;:k

< 1} - UT(AU;C)a

iii. 0.(A,,c)C {/\ €C: igf‘% < 1} U {0}.

For the continuous spectrum of the operatqron ¢, we have the following theorem.
Theorem 2.6. [4, Theorem 2.6]

i, 0e(Ay,c) C{NEC: [A—L| =L}\ {0},

i. 0.(Ay,c) C {{/\ €C:IA\-L|<L}n {A €C: s%p]ﬁ—:k > 1}] \ {0} .
Now we give the following example:
Example 2.1. Consider the sequencey,), wherev, = % k € N. Clearly,

) ) ) - (k+2)"+(k+3)"
(vx) is a strictly decreasing sequence of positive real numbers satisfying

lim vk:L:%>O, and
k—oo

sup v = % <1=2L.
k
We can prove that € o,(Aj,c¢*). Butl ¢ {AeC:|A—L|<|L|} U {0} and1 ¢
{)\G(C:sup ”’;x“<1}.

On the other hand if, = 2’2—1“5 k € N, thenl e {/\ € C:inf
1 ¢UP(A:7C*)'

“*;J—‘A‘ < 1}U{O} and



On the fine spectrum of the operatfyx;, over the sequence ..... 641

From Example 2.1, we see that the equalities in Theorem 2.4 do not hold in general.
But we give the following theorem for the point spectrum of the adjoint operafor

Theorem 2.7. ¢,(A},c*) ={A e C: |\ — L| < L} U H U {0}, where

v
< oo} .

Proof. Suppose that\’ f = \f for f = (fo, f1, f2, ...) # @ in ¢* = ;. Then, by
solving the system of equations

(0)fo = Afo,
vof1 —vofe = A,
vifo —vifs = Afa,

k—2

[I

=0

o0

H:{)\G(C:|)\—L|:L, >

k=2

)\—Ui

U;

Vp—2fi—1 — Vk—2fx = AMfu—1,

we obtain

fr = Mfk—la

V-2

forall k£ > 2. If fo # 0, thenA = 0. So,\ = 0 is an eigenvalue with the corresponding
eigenvectorf = (fo, 0,0, 0, ...), thatis,A = 0 € ¢,(A},c*). Itis clear that, for all
k € N, the vectorf = (0, f1,..., fx+1,0,0,...) is an eigenvector of the operatac’,
corresponding to the eigenvalue= v, wheref; # 0and f,,+1 = %fm for all
n=123,..,k Thus{v, : k € N} C g,(A},c*). On the other hand ik # v, for all

v
k € Nand) # 0, then we can see th3t | f| < oo if Jim = [22L]| < 1. Also, it
k — 00

can be proved thatl C o,(A%,c*). Thus

Ffr+1
I

(NeC: A= L| < L}UHU{0} Co,(AL, ).

Conversely, it is easy to prove that ih € o,(Af,c*), then A €
{AeC:|A—L| < L}uU H U{0}. This completes the proof. O

Example 2.2. If v, = % k € N, then we can easily see thate H and so

1 € 0,(A}, ¢*). Onthe other hand, i, = 2’%@ thenwe have ¢ H andl ¢ o,(A%, c*).

Also, we give the following results for the residual spectrum and the continuous spec-
trum of the operaton\, on c.
Theorem 2.8. o,(A,, ¢) = g,(A¥, ¢*).

Proof. The proof follows immediately from the definition of the residual spectrum and
Lemma 1.4. [
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Theorem 2.9. 0, (Ay,c) ={ A€ C: A= L| < L} UH U{0}.

Proof. The proof follows immediately from Theorem 2.7 and Theorem 2.8. O

Theorem 2.10. 0.(Ay, ¢) = 0 (A, c)\op (A, c*).

Proof. The proof follows immediately from Theorem 2.3 and Theorem 2.8. O

Theorem 2.11. 0.(Ay,¢) ={Ae€C:|]A—L|=L}\ (HU{0}).

Proof. The proof follows immediately from Theorem 2.2, Theorem 2.7 and Theorem 2.10.
O

2.2 The spectrum of the operatorA, onl,, (1 < p < o0)

The fine spectrum of the operatdyr, over the sequence spalgwherel < p <
oo has been studied by El-Shabrawy [11]. In this subsection we summarize the main results.

Theorem 2.12.[11, Theorem 2.1] The generalized difference opeanigr: I, — I, is a
bounded linear operator angls vy < [Aull;, < 2vo.

Theorem 2.13.[11, Theorem 2.2y (A,,l,) ={A € C: |\ - L| < L}.
Theorem 2.14.[11, Theorem 2.3}, (A, [,,) = 0.

IfT:1, — I, wherel < p < oo is a bounded linear operator with matedx then it is
known that the adjoint operatd : [, — [ is defined by the transpose of the matix|t
is well-known that the dual spaég of I, is isomorphic td, with p~* +¢~* = 1.

Theorem 2.15.[11, Theorem 2.4]

i {AeC:A—L| < L} U{vo} Cop(AL 1),
v 'p

<1j.

Theorem 2.16. [11, Theorem 2.5, (A, ) = o,(A%, 1).

vIUp

i ) A—vy,
ii. {)\ eC: sgp‘Tkk

< 1} C o, (A%, 1),

v 'p

iii. o, (A%, 1%) C {/\ eC: nlif\%’k

Theorem 2.17.[11, Theorem 2.6]
. {AeC:|A—L|<L}U{w} Co (A1),

i, {)\G(C:Stlip’/\v:k

< 1} Cor(Ay, 1),
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< 1} .
Theorem 2.18.[11, Theorem 2.7p.(A,, 1) = 0 (A, 1) \op(AS, %),

v Up
Theorem 2.19.[11, Theorem 2.8]
i (A1) S{AeC: | N=L|=L}\{w},

iii. 0,.(Ay,lp) C {A € C:inf ‘A_Tk

i. {)\GCZP\_L<L}0{A€(C:iréf"\_’f’k

Vk

> 1} C 0c(Ay,lp).
Consider the following example:

Example 2.3. Let p = 2 and consider the sequen¢e,), wherev, = 2’“,@%35 k e N.

Clearly, (vx,) is a strictly decreasing sequence of positive real numbers satisfying

lim vy =L =1%>0, and

k—o0 2
Sup v = % <1=2L.
k

We can prove that € 0,(A},15). But,1 ¢ {Ae€C:|A—L|<L}U{v} andl ¢

{)\ € C:sup < 1}.
k
On the other hand, ify, = k +3 — Vk?2+5k+6, & € N then(vy) is a strictly
decreasing sequence of positive real numbers and

Afl)k
Vi

lim vy =L =2 >0, and

k—oo 2

Sup v = 3—v6< 1 =2L.
k

We can prove that ¢ o,(A%,13) andl € {)\ € C:inf ‘A;—:k

< 1}.
From Example 2.3, we note that the equalities in Theorem 2.15 do not hold in gen-

eral. But we can similarly, as in Section 2.1, prove the following new result for the point
spectrum of the adjoint operatex;;.

Theorem 2.20. 0, (A}, 1%) ={A € C: |\ - L| < L} U Hy, where

v ip
00 k_l)\_v,q
le{)\E(C:/\—L|:L,ZH . ! <oo}.
k=1li=0 ¢

Example 2.4.Letp = 2 and consider the sequen@g ), wherev,, = 3%, k € N. We can
provethatl € H; andsal € g,(A%,15). Onthe other hand, ify, = k+3—+vk% + 5k + 6,
k € Nthenl ¢ H, andl ¢ o,(A},15).

Also, as in Section 2.1, it can be proved that the residual spectrum and the continuous
spectrum of the operatdk,, are given by the following theorems.
Theorem 2.21.0,(A,,l,) ={ € C: |\ - L| < L} U H.

Theorem 2.22.0.(Ay,1,) C{A € C: A= L| =L} \H;.
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2.3 Comments on the operato,,

In this subsection we are going to show some ideas about changing the conditions
on the sequencey) in the fine spectrum of the operatd,.

If the sequencéuvy,) is assumed to be a sequence of positive real numbers (not neces-
sarily strictly decreasing) satisfying Conditions (2.2) and (2.3), then we can have results
similar to those in Sections 2.1 and 2.2. This means that the condition that the sequence
(vg) Is strictly decreasing is not an effective condition. In the following examples we see
that although the sequence,) is not strictly decreasing, the residual spectrum and the
continuous spectrum in addition to the spectrum and the point spectrum of the ogerator
are exactly determined.

(k+2)?

Example 2.5. Consider the sequencey, ), wherev, = T e

(vx) is a sequence of positive real numbers satisfying

k € N. Clearly,

lim vk:L:%>O, and

k—oo
sipvk = % <1=2L.
Then, Conditiong2.2) and(2.3) are satisfied. We can prove thhe operatorA, : ¢ — ¢
is a bounded linear operator with the norf\, ||, = 1 and
a(Ay, —{)\EC:|/\—%’§%}.
op(Ay ) =.
»(A5, ") = {AeC:|A-L| <1} u{o}.
(
(

Q

Av,c {AeC:]A—i<ilu{o}.
Ave) = (e CiA— 1] = 11\ oy

Or

Oc

Example 2.6. Let p = 2 and consider the sequente;), wherev, = 5%, k € N.
Clearly, (vy) is a sequence of positive real numbers satisfying

lim Uk=L=%>O, and

k—oo

supvkzég 1=2L.
k

Then, Conditiong2.2) and(2.3) are satisfied. We can prove that the operator. [, — [,
is a bounded linear operator with the nonﬂﬂv”lp =1land
o(Ay, 1) —{)\E(C: |)\—% S%}

op(Ay, 1) = 0.

op(As, 1) = {XeC: |A-3| <3}
or(Ay,lp) ={XeC: A= <3}
oc(Ay,lp) ={AeC:|A-1%|=1}.
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3 The spectrum of the modified operator A, on ¢ and
l,, 1<p<oo

In this section we modify the definition of the operaty;, which is represented
by the matrix

by dropping the condition that the sequeiffcg) is strictly decreasing sequence of positive
real numbers and replacing Condition (2.3) by another condition. That is, throughout this
section, the sequendey,) is assumed to be a sequence of nonzero real numbers which is
either constant or satisfying the conditions

klim vp=L>0 (3.1)
and
supvg < L. (3.2)
k

We should indicate the reader that we use the same symbol for the oparatord
its modification here, since they have the same matrix representation and the difference
between them lies in the conditions on the sequéngé.

In this section we determine the spectrum, the point spectrum, the residual spectrum
and the continuous spectrum of the modified operatpon the sequence spaceandl,,,
wherel < p < oo.

3.1 The spectrum of the modified operatorA, onl,,1 < p < oo

We begin with a theorem concerning the bounded linearity of the opefatan
the sequence spagg wherel < p < oo.

Theorem 3.1. The operatorA, : I, — [, is a bounded linear operator satisfying the
inequalities

1
2v St;p\vk\ <A, < 2S%p\vk| :

Proof. The linearity of A, is trivial and so is omitted. Let us take amy= (z1) € I,.
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Then, using Minkowski’s inequality, we have

1
P
||Avaz = | VR T —Ulc—lﬂ?k—l\p
P

k

v
<Z|kak|p> + (Z Uk_1f€k—1|p>
k k
1 1
Sl;p\vk\ (Z |$kp> +Sgp\vk\ (lekp>

k k
= 2(swlu ) o,

[Aull,, < 252p|vk|~

1
P

IN

IN

Then

Now, for eachk € N, lety = (y,,) be the sequence such that= 1 and y,, = 0 for
alln € N\ {k}. Then, for eaclt € N, we have

”Avy”l 1 1
||Av||lp > Hip = (2|vk‘p)p =27 |ug].
y||zp
Thus
1
1801l = 27 sup o]
This completes the proof. O

Now, we give the following lemma which is required in the proof of the next theorem.

Lemma 3.1. [16, p. 174]. Letl < p < oo and supposed € (I,lo) N (I1,11). Then
A€ (lp,1,).

Theorem3.2.LetD ={A € C: A= L| < |L|}andE = {v : k € N, |vp — L| > |L|}.
Theno(A,,l,) = DU E.

Proof. First, we prove thatA, — AI)~! exists and is iBB(l,,) for A ¢ D U E and next the
operatorA, — Al is not invertible forA € D U E.
Let A\ ¢ DUE. Then,|A—L| > |L| andX # v, forall k € N. So,A, — Al is
triangle, and henceA, — A1)~ exists. We can calculate that
1
(vo—A) 0 0
Vo 1 0
(1}07}\)(’017/\) (’Ulf)\)

VU1 v1 1
(vo=A)(v1=A)(v2=A)  (v1—=A)(v2—A)  (v2—2A)

(A, — A=
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Then, the supremum of thg norms of the columns ofA, — A\I)~!issup Ry, where
k

1 |vk| vk [vk+41]
Ry, = + .y k € N.
vk = Al o = Al Jorr = Al ok = Al Jorgr = Al [vegz = Al
. ) L .
Since klinéo Wff_A’ = ‘T—,\’ < 1, then there exisky € N andgy < 1 such that
kaf_k’ < qo forall k > kq. Then, for eactk > kg + 1,

1
R.<—— 1 24 7.
k_|vrA|[+qo+qo+ ]

But, there exisk; € N and a real numbey, < \T1| such thatﬁ < q forallk > k;.

Then,
q1

1—qo’
for all k > max {ko, k1 }. Thussup Rr < oo. This shows thatA, — AXI)~! € (I1,11).
k

Ry <

Similarly, we can prove thatA, — M)~ € (I, ) and so(A, — M)t € (I3,11) N
(Isos loo). By Lemma 3.1(A, — AI)~! € (I,,,1,,). This shows that(A,,l,) C DUE.
Conversely, suppose that ¢ o(A,,l,). Then (A, — A)~*e B(l,). Since
(A, — M)~!-transform of the unit sequence; = (1, 0, 0, ...) is in [,, we
have kli_)n;o kafﬂ‘p = ‘% ! < land X # w, for al k& € N. Then
{AeC:|]A—-L| <I|LI}C o(A,,l,) and{vi : k € N}C o(A,, 1p). But, o(A,,l,) is
compact set, and so it is closed. Then= {A e C: |\ - L| < |L|}C o(A,,1,) and
E={v:keN, vy — L| > |L|} C o(Ay,1,). This completes the proof. O

The point spectrum of the operatdr, is given by the following theorem.
Theorem 3.3. 0,,(Ay,1,) = E.

Proof. Supposel,z = Az forz # 6 = (0, 0, 0, ...) in{,. Then by solving the system
of equations
VoTo = )\CL‘O
—Voxo + V11 = Ax1

—0121 + Voo = ATo

we obtain

(vo — A)zo =0and — vixy, + (Vg1 — N)zry1 =0, forall k € N..

Hence, for allx ¢ {v; : k € N}, we haver,, = 0 for all £ € N, which contradicts our
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assumption. So\ ¢ o,(A,, ). This shows that,(A,,1,) C {v; : k € N}. Also, if A =
L, then we can easily prove that¢ o,(A,, ). Thuso,(A,,l,) € {vk - k€ N}\ {L}.
Now, we will prove that

A €o,(Ay,ly) ifandonlyif\ € E.

If X € 0,(Ay,1,), thenX = v; # L for somej € N and there exists € [,,, z # 0
such thatA,x = v;x. Then

p p
lim |25+l = ‘ L oy
k—oo | Tk L— Uj
But ‘ | # 1 Thenh =) € {ug tk €N, Jug — L| > |LI} = E. Thusa,(A,.1,) €
E.
Conversely, let € E. Then there existg € N, A = v; # L and
T p L p
lim | ZL = ‘ <1,
k—oo | T L— Vj
thatis,z € [,. ThusE C o,(A,,1,). This completes the proof. O

We give the following lemma which is required in the proof of the next theorem.
Lemma3.2. Letl < p < occandX € {A € C: |\ — L| = |L|}. Then the series

Z (1)0 - )\)(1}1 - )\) (Uk—l - )\) p

7
UoV1 ... U
k ovt1 k—1

is not convergent series.

Proof. Let A = Ay + X2 € Csuchthath — L| = |L|. Then

IA? = A2+ 22 =2\ L.

Also,
ok = AI* = (vk = A1)? + A3

=vi 4+ (M +23) — 220

=v} =2\ (vy — L)

> v7.
Therefore

Uk _)\‘ > 1, forall k € N.
U

This completes the proof. O

Theorem 3.4. 0, (A%, 1%) = {AeC: |A—L| <|L|} U{v : k € N}.

v Vp
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Proof. Suppose thah\} f = \f for f = (fo, f1, fa,...) # 0 in [} = [,, wherel < p < oo
andp~! + ¢~! = 1. Then, by solving the system of equations

vofo — vof1 = Afo,
vifi —vifa = Af1,

Ve[ — Ve frr1 = A,

we obtain
Vg

-
fr, k€N.
Vk

fr1 =

Thenfy # 0, sincef # 6.

It is clear that, for alk € N, the vectorf = (fo, f1,-.., f%,0,0,...) is an eigenvector
of the operatorA} corresponding to the eigenvalle= vy, wheref, # 0 and f,, =
%fn_l, forall 1 <n <k.Thus{vg : k € N} C ap(Ajj,l;). Also, if A # vy, for all
k€ N, thenfy # 0 forall k € N, and 505> [fy|’ < oo if lim PSS,

k c— OO
Thus{A € C: A= L| < [L]} U{vy : k € N} C 0, (A}, 15).

Conversely, ifA € 0,(A7, 1), then there existg = (fo, f1, f2,...) # 0 in I} = 1,

v ip

A*f = \f.Then,fr, = 2%=2f ke NandY |fe|? < oc. Therefore lim
k? — 00

Vi

fr+1
&

fr+1

Jr
|225|" < 1orX € {v; : k € N} (note thatl L — | = | Z| contradicts with%: | fl? < oo,

by using Lemma 3.2). This completes the proof. O

Theorem 3.5. 0, (A, 1) = 0 (AL, U)\op(Ay, 1y).

v 'p

Proof. The proof follows immediately from the definition of the residual spectrum and
Lemma 1.4. O

Theorem 3.6. 0. (A, 1) = {Ae€C: A= L| < |L|}.

Proof. The proof follows immediately from Theorems 3.3, 3.4 and 3.5. O

Theorem 3.7. .(Ay, Ip) = o(Ay, Ip)\op(AL, 15).

v 'p
Proof. The proof follows immediately from Theorems 3.2, 3.3 and 3.5. O
Theorem 3.8. 0. (A,,l,) ={ A€ C: |A—-L|=|L|}.

Proof. The proof follows immediately from Theorems 3.2, 3.3 and 3.6. O
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Combining Theorems 3.1, 3.2, 3.3, 3.4, 3.6 and 3.8, we can have the following main
theorem:

Theorem 3.9. 1. The operatorA, : I, — I, is a bounded linear operator and

1
2% sup |ug| < ”Av”lp < 2sup |vg] .
k k

2. 0(Ay,l,)=DUE.
3. 0p(Ay, 1

(Av,lp) =

op(A515) = {AeC: A= L| < |L|}UE.
(Ao bp) = A€ C A= L] < [L[}.
Te(Au, 1)

owm.b

Ay ly)={\eC:|\—L|=|L|}.

We note that Condition (3.2) is important to be satisfied for the modified opetator
If Condition (3.2) is not satisfied, then we can see that some of the results in this section
can not be applied in that context. Consider the following example.

— i _ k43
Example 3.1. Let p = 2 and consider the sequenge,) such thaty, = 5=, k € N.
Clearly, (vy) is a sequence of nonzero real numbers satisfying
JE&“’“ZL:%>O’ and

supvk:%>%:L.
k
Then, Condition(3.2) is not satisfied. We can easily prove that o,(A%,15) andl ¢
{AeC:|A-L|<|L|}UE.
3.2 The spectrum of the modified operatorA,, on ¢
The point spectrum of the adjoint operaid}, is given by the following theorem.
Theorem 3.10. 0, (A}, c*) ={ A€ C: A - L| < |L|} UEU{0}.

Proof. Suppose thal\* f = \f for f = (fo, f1, f2,...) # 0in ¢* = [;. Then, by solving
the system of equations

0)fo = Xfo,
vofi —wvofe = Afi,
vifao—vifs = Afa,

Vk—2fb—1 — Vk—2fk = Afk—1,
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we obtain that

0 — A
(0) fo = Afo andfy, = %fk_l, k> 2.

If fo # 0, thenA = 0. So,\ = 0 is an eigenvalue with the corresponding eigenvector
f = (£0,0,0,...), thatis,\ = 0 € o, (Af,c*). If A # 0, then f; = 0 and so, using
arguments similar to those in the proof of Theorem 3.4 one can se¢ that,. This
completes the proof.

O

Since the spectrum of the operatfy, on the sequence spacecan be obtained by
arguments similar to those used in the case of the spawgherel < p < co, we omit the
details and give the results without proof.

Theorem 3.11.

1. The operatorA,, : ¢ — cis a bounded linear operator with the normjA, ||, =

sgp(|vk| + |vk-1]) -
2. o(Ay,¢) = DUE.
3. 0,(Ay,c) = E.
4. 00 (Ay,c) = A eC: A= L| < |L[}U{0}.

5. 0.(Ay,c) ={AeC:|A—L| = |L|}\ {0}.

4 Conclusion

In Section 2we have considered the operatdy which has been introduced by
Srivastava and Kumar [19] and has been studied over the sequence: §lyad&hmedov
and El-Shabrawy [4] and over the sequence spabg El-Shabrawy [11]. We have sum-
marized the main recent results concerning the fine spectrum of the opArataer the
sequence spacesindl,, wherel < p < co. Also, we give some new results for the resid-
ual spectrum and the continuous spectrum of the operatoover the sequence spaces
andl,, wherel < p < co. We note that, in Sections 2.1 and 2.2, the point spectrum of the
adjoint operato\?, and consequently the residual spectrum and the continuous spectrum
of the operatoA,, over the sequence spageandi,, are not exactly determined as in the
case of the operatol3(r, s) andA (cf.[1,5,6,9]). Also, we have shown that the condition
that the sequencgy;) is a strictly decreasing is not an effective condition. BoSec-
tion 3, we have modified the definition of the operatdy by dropping the condition that
the sequencéuy,) is a strictly decreasing sequence of positive real numbers and replacing
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Condition (2.3) by another condition. The modified operakgrcan be considered as a
generalization of the difference operathr We have determined the spectrum, the point
spectrum, the residual spectrum and the continuous spectrum of the modified operator
over the sequence spaceandl,, wherel < p < oo in simple forms. Also, it should be
noted that, part of the value of the modification of the operatpties in the fact that the
obtained results impove some of the corresponding results in [4,11].

Finally, we note that the spectrum of several special limitation matrices over the se-
guence spacesand/, is a region enclosed by a circle. It is interesting that the spectrum of
the modified operataf,, over the sequence spaeesndl, may include also a finite num-
ber of points outside the region enclosed by a circle. Also, we may g, c) # ()
ando,(A,,l,) # 0. Nevertheless, the point spectrum of several limitation matrices over
the sequence spaceandl,, is the empty setof.[ [1], [4], [5], [6], [9], [11], [12], [13]]).
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